<<

U-Pb Age and Formation Mechanisms for -Filled Fractures of the First Bone Spring Debris Flows, ,

by

Austin D. Bertoch, B.S.

A Thesis

In

Geosciences

Submitted to the Graduate Faculty of Tech University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCES

Approved

Paul J Sylvester, Ph.D. Chair of Committee

Dustin Sweet, Ph.D.

George Asquith, Ph.D.

Mark Sheridan Dean of the Graduate School

August, 2020

Copyright 2020, Austin D. Bertoch

Texas Tech University, Austin D Bertoch, August 2020

ACKNOWLEDGEMENTS

First and foremost, I would like to express my gratitude to my advisor Dr. Paul J

Sylvester for his guidance and encouragement that ultimately made this work possible.

His expertise has truly made this research a source of inspiration for me to be the best

scientist I can be. I also wish to extend my gratitude to Dr. Kate Souders for her advice and support during the tedious data processing phase of this project; without her, this process would have been far more difficult. I am also grateful for the wonderful help and work done by Dr. Bo Zhao at Texas Tech with the SEM-BSE-EDS analyses for this project, Dr. Sam Hudson at Brigham Young University for the HAWK pyrolysis analyses,

Rui Liu for his help with zircon imaging and LA-ICP-MS analysis, and Dr. Branimir

Segvic and Giovanni Zanoni at Texas Tech for XRD and FTIR analyses. I would also like to thank my committee members, Dr. Dustin Sweet and Dr. George Asquith for their expertise and support in reviewing and editing this research that in the end made this project a more complete and well-rounded study. I am also indebted to the wonderful staff of Texas Tech University who provided guidance and encouragement during this whole process. Lastly, I am grateful for ExxonMobil providing the core and Stratum Reservoir for sample preparation that made this project a reality.

ii

Texas Tech University, Austin D Bertoch, August 2020

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...... ii

ABSTRACT ...... v

LIST OF TABLES ...... viii

LIST OF FIGURES ...... ix

I. INTRODUCTION ...... 1

II. BACKGROUND ...... 4

U-Pb Geochronology ...... 4 Calcite ...... 4 LA-ICP-MS ...... 4 Pre-imaging Techniques and Post-Processing of U-Pb Data ...... 6 U-Pb Age of Ash Bed Zircons ...... 7 Mechanisms for Fracturing ...... 8 Disequilibrium Compaction ...... 9 Aquathermal Expansion ...... 11 Clay diagenesis ...... 11 Hydrocarbon generation and expulsion ...... 13 Tectonically induced fractures ...... 15 Geologic Setting...... 18 Basin Evolution...... 18 Core Analysis ...... 20 Sampling ...... 22 III. METHODS ...... 24

Optical Microscopy and SEM-BSE/EDS ...... 24 HAWK Pyrolysis ...... 25 X-Ray Diffractometry ...... 26 Fourier Transform Infrared Spectrometry ...... 26 LA-ICP-MS ...... 27 IV. RESULTS ...... 30

Samples Analyzed ...... 30 General petrographic observations ...... 31 Sample 1 ...... 33

iii Texas Tech University, Austin D Bertoch, August 2020

Sample 2 ...... 35 Sample 3 ...... 36 Sample 4 ...... 38 Sample 8 ...... 39 Sample 9 ...... 41 Sample 12 ...... 42 Sample 13 ...... 43 HAWK-TOC Pyrolysis ...... 45 X-Ray Diffractometry ...... 47 Fourier Transform Infrared Spectrometry ...... 50 U-Pb Ages ...... 51 Volcaniclastic Ash Bed Zircons...... 51 Calcite ...... 53 V. DISCUSSION ...... 58

Mechanisms of Fracture Formation ...... 58 Disequilibrium Compaction and Aquathermal Expansion ...... 58 Oil Generation ...... 59 Clay dehydration ...... 61 Tectonic related fracturing ...... 62 U-Pb ages and Fracturing Mechanisms ...... 62 Age Population One ...... 66 Age Population Two ...... 68 Age Population Three ...... 72 Constraining the Delaware Basin Burial History Model ...... 74 VI. CONCLUSION ...... 77

REFERENCES ...... 79

APPENDIX A ...... 88

APPENDIX B ...... 92

APPENDIX C ...... 95

iv Texas Tech University, Austin D Bertoch, August 2020

ABSTRACT

The Age (middle ) First of the

Northern Delaware Basin of southeastern New Mexico and is comprised of

carbonate debris flows and siliciclastic turbidite deposits. Calcite features such as fracture

fillings and bioclasts are found throughout the carbonate debris flows. Samples of these

features were examined and sampled from the Big Eddy Unit 14 Federal SWD No 1 well provided by ExxonMobil. The fractures found in these deposits were of particular interest because the timing and origin of fracturing events may constrain estimates for subsidence

rate and timing of oil generation in the basin.

Five major fracturing mechanisms (and timing related to the burial history of the

First Bone Spring Formation) considered for this study include: 1) disequilibrium

compaction (early), 2) aquathermal expansion (early to late), 3) oil generation (late), 4) clay dehydration (late), and 5) tensional fracturing related to tectonics (variable timing depending on specific tectonic events). In order to evaluate oil generation and clay dehydration as potential fracturing mechanisms, analyses were performed using HAWK rock pyrolysis, X-Ray Diffraction, and Fourier Transform Infrared spectrometry. For assessment of the remaining mechanisms, data were drawn from previous research done in the Delaware Basin. Results from HAWK rock pyrolysis and FTIR analysis indicated significant presence of organic material with the HAWK analysis recording an average

TOC at 2.72 wt. % and thermal maturity ideal for oil generation. XRD results confirmed the presence of illite-smectite clays with percentages reaching thirty percent for the carbonate debris flows. These results support the possibility of oil generation and clay dehydration as potential fracturing mechanisms for the First Bone Spring carbonate debris

v Texas Tech University, Austin D Bertoch, August 2020

flows.

U-Pb ages of the calcite filled fractures and bioclasts were measured using Laser

Ablation-Inductively Coupled Plasma-Mass Spectrometry. The resulting ages reported from this analysis were interpreted and separated into three age populations. Each age population was then placed within a depositional model of the Delaware Basin. Potential fracturing mechanisms assigned to the age populations are based on the burial depths and timeline of geologic events of the basin model. The depositional age of the First Bone

Spring was obtained from U-Pb ages of ash bed zircons in the core and was used for a reference date used to compare with the calcite age populations.

Calcite Age Population One (comprised of two separate calcite fractures) has measured U-Pb ages of 274. 5±1.8 Ma and 272.5±4.4 Ma which places the formation of this population shortly after deposition (275.0±1.7 Ma, from ash bed zircon U-Pb ages).

Due to the near depositional age, the fracturing mechanism of population one may be disequilibrium compaction. Age Population Two (comprised of four separate calcite filled fractures and one fluid-altered bioclast) has a combined U-Pb age of 263.2±1.0 Ma – over ten million years after deposition. This age population thus may record the subsidence of the First Bone Spring Formation into the oil window (substantiated by organic inclusions found in fracture fill). The final age population (comprised by a single sample) had a measured U-Pb calcite age of 249.4±4.8 Ma – close to twenty-five million years after deposition.

This final age population likely records episodic oil generation or clay dehydration events as the Formation would have remained buried at sufficient depths for these processes to continue to take place. By anchoring burial history models with U-Pb

vi Texas Tech University, Austin D Bertoch, August 2020 zircon and calcite ages and relating these ages to geologic events, more substantiated economic and scientific predictions can be made for basins of interest – not only the

Delaware Basin.

vii Texas Tech University, Austin D Bertoch, August 2020

LIST OF TABLES

Table 1. Fracturing mechanisms with corresponding relative timing and burial depths...... 9

Table 2. X-Ray Diffractometry results for eight samples of the carbonate-debris flows of the First Bone Spring Formation ...... 49

Table 3. U-Pb Age results with 207/206o ratios, MSWD, and whether the analysis was manually anchored ...... 56

Table 4. U-Pb calcite ages that pre-date the U-Pb zircon ages ...... 57

viii Texas Tech University, Austin D Bertoch, August 2020

LIST OF FIGURES

Figure 1. Paleogeographic map of the Permian Basin (modified after Gawloski, 1987) ...... 3

Figure 2. Disequilibrium compaction and aquathermal expansion (modified Zhao et al., 2018) .. 10

Figure 3. Clay dehydration diagram (modified from Al-Ramadan, 2014) ...... 13

Figure 4. Hydrocarbon genereation diagram (modified from Crain, 2015) ...... 15

Figure 5. Mohr circle and tensional fracturing ...... 16

Figure 6. Delaware Basin depositional model (modified from Matador, 2015) ...... 18

Figure 7. Simplified stratigraphic column of First Bone Spring core ...... 22

Figure 8. Optical microscope image of sample 4 ...... 27

Figure 9. Thin section scans of eight analyzed samples ...... 31

Figure 10. Optical microscope images detailing matrices and calcite fracture fill ...... 32

Figure 11. Example of EDS mapping of sample 13 ...... 33

Figure 12. Petrography of sample 1 ...... 35

Figure 13. Petrography of sample 2 ...... 36

Figure 14. Petrography of sample 3 ...... 38

Figure 15. Petrography of sample 4 ...... 39

Figure 16. Petrography of sample 8 ...... 41

Figure 17. Petrography of sample 9 ...... 42

Figure 18. Petrography of sample 12 ...... 43

Figure 19. Petrography of sample 13 ...... 45

Figure 20. HAWK rock pyrolysis results...... 47

Figure 21. FTIR results for oil inclusion and matrix organics ...... 50

Figure 22. FTIR results zoomed view of oil inclusion ...... 51

Figure 23. Wetherill plots for three volcaniclastic zircon age populations ...... 53

Figure 24. Tera-Wasserburg plots of 40-,80-micron static spots and line scans with 40 micron spot ...... 54

ix Texas Tech University, Austin D Bertoch, August 2020

Figure 25. Tera-Wasserburg plots of unanchored and anchored calcite samples ...... 55

Figure 26. Simplified stratigraphic column of First Bone Spring core with the three calcite U-Pb age populations ...... 64

Figure 27. Delaware Basin depositional model with ages (modified from Sirius Exploration Geochemistry Inc., 2015) ...... 65

Figure 28. Composite figure consisting of a Late paleogeographic reconstruction of the Permian basin, thin section scan of sample 4, and Delaware Basin depositional model with ages (modified Geosystems, 2019 and Exploration Geochemistry Inc., 2015) ...... 68

Figure 29. Composite figure consisting of a Late Epoch paleogeographic reconstruction of the Permian basin, thin section scan of sample 4, and Delaware Basin depositional model with ages (modified Colorado Plateau Geosystems, 2019 and Exploration Geochemistry Inc., 2015) ...... 72

Figure 30. Composite figure consisting of an Early Period paleogeographic reconstruction of the Permian basin, thin section scan of sample 4, and Delaware Basin depositional model with ages (modified Colorado Plateau Geosystems, 2019 and Sirius Exploration Geochemistry Inc., 2015) ...... 74

Figure 31. Burial history models of the Delaware Basin with and without U-Pb anchor points (Sirius Exploration Geochemistry Inc.,2015)…………..……………………………...76

x Texas Tech University, Austin D Bertoch, August 2020

CHAPTER I

INTRODUCTION

The Delaware Basin is the western sub-basin of the Permian Basin of West Texas

and south . The Kungurian-age First Bone Spring Formation of the

Northern Delaware Basin has long been a target for hydrocarbon exploration. Attention

usually has been on the – within this depositional sequence (Wiggins and Harris,

1985; Saller et al., 1989; Montgomery, 1997) rather than thick carbonate packages associated with the sands. The carbonate strata contains debris flows that have been generally seen as highly impermeable seals encasing the more ideal hydrocarbon hosting reservoirs (Davis, 2015). These carbonate debris flows are identified by their high resistivity signatures seen in well logs. They are generally considered to be low in organics

(i.e. lean). These carbonate deposits host a variety of complex features such as clasts, fractures, soft- deformation and others.

While not all of these features are related to a post-depositional diagenetic event, some of these features (specifically fractures) can be related to significant processes that occurred at different temporal phases of the Northern Delaware Basin. There are five main deformational processes that are commonly considered to produce fractures, which can be filled with various mineral phases – such as calcite. The processes specific to the Delaware

Basin are disequilibrium compaction, aquathermal expansion, oil generation, clay dehydration, and tensional fracturing related to tectonics (Dickinson, 1953; Rubey and

Hubbert, 1959; Magara, 1975; Sharp, 1976; Barker, 1972; Bradley, 1975; Plumley, 1980;

Powers, 1967; Schmidt, 1973; Magara, 1975; Hutcheon, 1986; Timko and Fertl, 1971;

Law and Dickinson, 1985; Spencer, 1987; Berry, 1973; Gretener, 1981; Luo et al., 1994;

1

Texas Tech University, Austin D Bertoch, August 2020

Cosgrove, 2001; Cobbold et al., 2013; Meng et al., 2017; Lindsay, 2019).

Previously, to assess the timing of fracturing, methods were limited to qualitative analysis such as the principle of cross-cutting relationships, the principle of inclusion, and other relative dating means. Being able to quantitatively obtain the timing of fracturing, through radiometric dating of calcite, provides considerable predictive power to basin depositional models that are based on such data. Specifically, by using U-Pb dating on calcite features found within the First Bone Spring carbonate debris flows, more accurate depositional models can be made that include the timing of disequilibrium compaction, hydrocarbon generation, illite-smectite conversion, and the timing of tectonic related fracturing of the Northern Delaware Basin.

The purpose of this research is to perform U-Pb dating of calcite-filled fractures as well as altered skeletal fragments (bioclasts) via Laser Ablastion – Inductively Coupled

Plasma - Mass Spectrometry (LA-ICP-MS) in order to constrain the timing of the five major fracturing mechanisms – disequilibrium compaction, aquathermal expansion, oil generation, illitization, and tectonic forces in the Northern Delaware Basin. In particular, the timing of oil generation identifies when the First Bone Spring entered the necessary depth and temperature conditions for catagenesis; the timing of illitization is a major fluid migration event that influences oil migration (Bruce, 1984), and; the timing of tectonically related fracturing events may relate to reservoir or seal properties used for hydrocarbon exploration models. The following background, results, and discussion of this research is based on First Bone Spring calcite features sampled from drill core from a well located near the Northwestern shelf of the Delaware Basin in Eddy County, New Mexico, and were provided by ExxonMobil (XTO Energy) (Figure 1).

2

Texas Tech University, Austin D Bertoch, August 2020

Figure 1. Paleogeographic map of the Permian Basin after it had been split into two main depocenters (Midland and Delaware Basins). The map is depicted with modern state lines as well as the location of the core provided by XTO (modified after Dutton et al. 2000). Included is a stratigraphic column showing upper Permian stratigraphy. The red box in the legend at the right above indicates the Bone Spring members represented within the core. The carbonate intervals within the box represent debris flows while the sand units represent the fine-grained siliciclastic

3 Texas Tech University, Austin D Bertoch, August 2020

CHAPTER II

BACKGROUND

U-Pb Geochronology

Calcite

The ability to accurately and precisely U-Pb date calcite potentially is a very powerful tool – mainly due to its overwhelming abundance in many rocks compared to other common U-Pb dated minerals such as zircon. Commonly considered a ubiquitous

mineral, calcite is found in nearly all geologic environments and appears in sedimentary,

igneous, and metamorphic rocks. Calcite can be authigenic, biogenic, diagenetic, and

detrital. U-Pb age dating of calcite generation found in these various conditions can

improve understanding for a variety of fields of research and is by no means limited to

sedimentary basin studies like this research. It is only recently that U-Pb dating of calcite

has been the subject of increased attention due to improvement in the sensitivity of

analytical instruments for measurements of low-uranium minerals and the development of

calcite standards used for calibration of U-Pb analysis (Roberts et al., 2017). With this

ushering in of highly sensitive instruments the field of U-Pb calcite age dating has exploded within the past ten years as researchers apply this method to various geologic problems.

LA-ICP-MS

As mentioned, much of this research is possible due to the increased sensitivity of mass spectrometry equipment today. In the past, before equipment improved, U-Pb dating of calcite was only possible for uranium-enriched in order to achieve analytical success and required time-consuming, bulk-chemical, lab techniques such as Isotope

Dilution - Thermal Ionization Mass Spectrometry (ID-TIMS) (Moorbath et al., 1987;

4

Texas Tech University, Austin D Bertoch, August 2020

Roberts et al. 2017). Due to the more rapid, in-situ analysis of LA-ICP-MS, these same

analyses can be done more readily and target specific areas of carbonate minerals even in

thin sections. The ability to target specific areas becomes increasingly important as

carbonate growth phases may likely incorporate detrital material as well as open system

behavior. Thus, LA-ICP-MS provides the ability to analyze spots or lines that correspond

with growth phases of specific grains or layers within a sample instead of requiring

dissolution and homogenization of the entire sample for analysis. These benefits coupled

with the widespread occurrence of calcite make LA-ICP-MS geochronology of calcite a powerful tool available for dating geologic events that will have an impact on multiple fields of research. A few of these fields of research include paleoclimatology, structural geology, sedimentology, hydrogeology, and hydrothermal studies (Getty et al., 2001;

Denniston et al., 2008; Rasbury and Cole 2009; Cobbold, et al. 2013). While most of

these studies aim to date primary calcite formation, better understanding of subsequent

secondary alteration to calcite can also be of great importance to understanding geologic

questions (i.e., basin evolution), which also have direct implications for each of the

previously mentioned fields of research (Cobbold, et al. 2013; Roberts & Walker, 2016;

Ring & Gerdes, 2016; Goodfellow et al., 2017; Nuriel et al., 2017; Parrish et al., 2018;

Smeraglia et al., 2018).

Before any LA-ICP-MS analysis is to take place, there are some properties of

calcite that need to be addressed and resolved for accurate interpretations. The first issue is calcite tends to be relatively unstable and thus susceptible to alteration, most

commonly during later diagenetic reactions to form high Mg calcite or or

simply during recrystallization. It is possible that these secondary processes may disturb,

5

Texas Tech University, Austin D Bertoch, August 2020

or partially to fully reset the U-Pb system – this can be seen in common lead variations

(Smith et al., 1991, 1994; Wang et al., 1998; Rasbury and Cole, 2009). These

disturbances can generally be resolved petrographically or by other geochemical means

so that the age provided by the U-Pb analysis can be linked to the geologic event that

date represents. For calcite, initial (common) Pb-isotopic conditions are also of

importance since the system may not start with a homogeneous Pb composition, or a

series of ages may not all have the same common Pb composition. This becomes an issue

when common lead corrections must be determined or assumed during the data reduction

phase of the research. Fluid flow events after the initial deposition or crystallization of

the calcite may precipitate new calcite and/or alter the U-Pb ratios and initial common lead of existing calcite. This may introduce high levels of scatter while plotting the data

– this is more of a concern for calcite rather than for resistant phases such as zircon.

These U-Pb disturbances can produce calculated ages that are either older or younger than the original crystallization age (Rasbury and Cole, 2009). However, in a case where open system behavior is suspected, the resulting mean square weighted deviation

(MSWD) for the U-Pb date may typically range from 10-100 or even greater

Pre-imaging Techniques and Post-Processing of U-Pb Data

Post-crystallization disturbances and multiple-generations of calcite growth may be identified through various pre-imaging techniques and post-processing of U-Pb data.

Pre-imaging methods include but are not limited to Cathodoluminescence Microscopy

(CL), Electron Microprobe Analysis (EMPA), and Scanning Electron Microscopy-

Energy Dispersive Spectroscopy (SEM-EDS) and Backscattered Electron (BSE)

Imaging. Using simple optical microscopy with a petrographic microscope, calcite

6

Texas Tech University, Austin D Bertoch, August 2020

features such as sutures, zonation, twinning, granularity, inclusions, crystal growth structures (beef vs. dogtooth vs. replacement calcite) and incorporation of bioclasts can be identified and help more accurately interpret the subsequent U-Pb ages. This research will incorporate SEM-EDS-BSE and standard optical microscopy.

As with other minerals dated using LA-ICP-MS U-Pb methods, calcite U-Pb dating requires primary and secondary standards in order to calibrate and assess the accuracy of the laser-ablation measurements. There are a few potential standards that have been used before and are documented with localities and calibrated using methods such as

ID-TIMS for ultra-precise ages (Roberts et al., 2017). These U-Pb standards act as references to assure that LA-ICP-MS instrumentations is accurately and precisely measuring the isotope ratios and thus the ages obtained for the unknown samples are accurate as well. For the primary calibration standard, this research utilized the calcite- reference material known as Walnut Canyon (WC-1) (Roberts et al., 2017). This is a ca.

254 Ma marine calcite cement that filled a fault-related discordant Neptunian dike in the

Permian (Capitanian) Complex, exposed in the on the western side of the Delaware Basin. The ca. 64 Ma Long Point Limestone from the Duff Brown

Tank locality, Coconino Plateau, Arizona (Hill et al., 2016) was used as a secondary standard. The NIST SRM614 soda-lime silicate glass (Woodhead and Hergt, 2001) was used for was used for calibration of 207Pb/206Pb, and U and Th concentrations.

U-Pb Age of Ash Bed Zircons

Along with the dating of calcite-filled fractures, zircons in a volcaniclastic ash bed layer within one of the carbonate-debris flows were dated. It is expected that zircon populations in volcaniclastic ash bed layers contain both detrital (older) and volcanic

7

Texas Tech University, Austin D Bertoch, August 2020

zircons (younger) based on comparisons with similar deposits elsewhere (Sato et al.,

2016). Using the U-Pb ages of the volcanic zircons, a depositional age can be established

and compared to the calcite U-Pb ages. Comparing ages is intended to better constrain the

timeline of events within the basin – specifically the time from deposition to mechanical

rock failure and calcite growth within the resulting fractures.

Mechanisms for Fracturing

After obtaining U-Pb ages, one of the major challenges of this project is correctly

identifying the possible mechanism(s) of fracture formation within carbonate-debris flows

of the First Bone Spring Formation. As was mentioned earlier, there are five main

mechanisms of fracture formation that were considered for fracture generation in the

carbonate-debris flows of the First Bone Spring Formation. The following are the five

potential mechanisms of fracturing: 1) disequilibrium compaction, 2) aquathermal

expansion, 3) clay dehydration, 4) oil generation and 5) tensional fracturing related to

tectonic stresses (Dickinson, 1953; Rubey and Hubbert, 1959; Magara, 1975; Sharp, 1976;

Barker, 1972; Bradley, 1975; Plumley, 1980; Powers, 1967; Schmidt, 1973; Magara,

1975; Hutcheon, 1986; Timko and Fertl, 1971; Law and Dickinson, 1985; Spencer, 1987;

Berry, 1973; Gretener, 1981; Luo et al., 1994; Cosgrove, 2001; Cobbold et al., 2013; Meng

et al., 2017; Lindsay, 2019). While it may be easiest to attribute one of these mechanisms

as the sole driver for fracture formation, it is likely that more than one of these mechanisms

will contribute to mechanical failure of the host rocks. Though this may provide a less

than ideal correlation to the U-Pb ages obtained, these processes generally occur at different stages of basin evolution and therefore certain mechanisms will become more appropriate based on the U-Pb calcite-ages measured. These five proposed mechanisms

8

Texas Tech University, Austin D Bertoch, August 2020 will be briefly discussed as will their potential occurrences within the overall basin- evolution timeline (Table 1).

Table 1. Fracturing mechanisms with corresponding relative timing and burial depths.

Mechanism Relative Timing Post Deposition Burial Depth

Disequilibrium Shortly after deposition (synchronous) 0-2 km

Compaction

Aquathermal Timing linked to depth and geothermal All depths

Expansion gradient1

Oil Generation 10s of millions of years post deposition and 2-5.5 km

continued while depth and temperature

conditions are met1

Clay Dehydration 10s of millions of years post deposition and > 2 km

continued while depth and temperature

conditions are met 1

Tectonic Shortly after deposition and at different All depths

tectonic periods 10s to 100s of millions of

years post deposition

1Highly dependent on burial rate and geothermal gradient

Disequilibrium Compaction

The commonly proposed conditions that lead to disequilibrium compaction are as compressive stresses increase and a subsequent reduction in pore volume occurs the fluids

(mainly water) cannot be expelled fast enough due to low permeability in the host rock

9 Texas Tech University, Austin D Bertoch, August 2020

thus create fluid overpressure (internal fluid pressures exceeding the pressure of a column of water equivalent to total vertical depth). This process occurs starting just below the sediment water interface and continues to depths around 2 kilometers where the method of compaction switches from mechanical to chemical. Within the mechanical compaction

interval, disequilibrium compaction could potentially increase pore pressure and

eventually enter conditions necessary for fracturing the rock as it surpasses its respective

fracture gradient (Figure 2).

Figure 2. Diagram illustrating normal compaction vs disequilibrium compaction and aquathermal expansion. The graph to the right shows the effects of disequilibrium compaction and aquathermal expansion on internal pore pressures and the subsequent potential for surpassing the fracture gradient and inducing mechanical failure of the host rock (modified Zhao et al., 2018). This phenomenon occurs based on the argument that internal fluid pressure in the

rock acts opposite to the applied stresses. For the case of the First Bone Spring, σ1 is vertical compressional stress due to sediment overburden and this stress is being opposed by the internal fluid pressure. Overpressure due to disequilibrium compaction, although

10

Texas Tech University, Austin D Bertoch, August 2020

common in younger basins, is highly likely to be present during the lifetimes of most basins, especially when rapid sedimentation is occurring (Bruce, 1984). These conditions are met and documented for the First Bone Spring of the Northern Delaware

Basin (Luo et al., 1994; Sinclair, 2007).

Aquathermal Expansion

Osborne and Swarbrick (1997) proposed mechanisms of overpressure in sedimentary basins that include the process known as aquathermal expansion. The idea behind this proposal is that as temperature increases with burial depth pore water will expand and exert forces on the surrounding and become overpressured (Figure

2). This is a simple pressure-volume-temperature relationship. They found that these aquathermal expansion forces were too small to generate significant pressure unless the system was close to a near perfect seal (highly impermeable) so that fluids would not escape as depth increased and temperature as well. Due to this rare condition of a perfect seal this process is thought to be relatively rare. In an earlier study, Luo and Vasseur (1992) found that the aquathermal expansion had little effect compared to disequilibrium compaction. Therefore, this mechanism is most likely a supporting effect rather than the main driver and will be considered as such as U-Pb calcite ages are related to fracturing mechanisms.

Clay diagenesis

At a depth of around 2 kilometers and temperatures generally around 80 to 115℃, the conversion of smectite to illite (clay dehydration/illitization) releases significant amounts of water into the surrounding sediments. Up to 15.5% of the total rock volume is released as water, representing a potential major player in the overpressure/internal

11

Texas Tech University, Austin D Bertoch, August 2020

fracturing debate (Figure 3) (Bruce, 1984; Luo et al., 1994). The effect of compaction conversion of smectite to illite can be seen as well-log derived-velocities and densities that record higher measured values than model values expected from mechanical compaction alone – these measurements support the depths and temperatures at which this process occurs (Peletonen et al., 2009). Because this process occurs close to the same time kerogen begins to convert to moveable hydrocarbons there is reason to believe that density driven differences between liquids and gases impart seepage forces on the surrounding sediments, which further increases internal-fluid pressures (Cobbold, 2007). This chemical compaction and fluid injection into sediments has also been linked to the release of significant amounts of silica (Weaver, 1959; Towe, 1962; Boles and Franks, 1979; Srodon,

1999; Peletonen et al., 2009). Therefore, the presence of variants in fractured rocks is related to this process of illitization.

12

Texas Tech University, Austin D Bertoch, August 2020

Figure 3. Diagram demonstrating the clay dehydration (illite-smectite) process. This conversion can occur both as a solid-state conversion as well as complete dissolution and reprecipitation. It is important to note that this process releases important mineral forming ions such as Silicon (quartz) and Magnesium (dolomite). For the calcite filled fractures, the presence of quartz fill potentially indicates Silicon saturated conditions from the clay dehydration process and therefore the timing of fracture fill coincides with clay dehydration (modified from Al-Ramadan, 2014). The potential source for Potassium needed to convert illite-smectite to pure illite is the K-feldspar present throughout the core. Hydrocarbon generation and expulsion

Hydrocarbon generation and subsequent expulsion occurs from 65 to 150 ℃

(>150℃ generally marks the transition to natural gas generation) and at depths ranging from 2 to 5.5 kilometers depending on the geothermal gradient (Figure 4). Oil generation and expulsion has long been thought as a means of over pressuring and therefore a potential source of fracturing host rocks (Timko and Fertl, 1971; Law and Dickinson,

1985; Spencer, 1987; Luo et al., 1994; Cobbold et al., 2013). Recent research has also demonstrated that high total organic carbon (TOC) helps trigger overpressured conditions

13

Texas Tech University, Austin D Bertoch, August 2020

in the host rock (Meng et al., 2017). This same research found that there was a positive correlation with calcite-vein thickness and TOC, thus indicating that veins potentially derive their carbon partially from organic matter – though not every sample tested found this to be the case.

The amount of time these organics sit within the previously described oil window is not of major concern as research has shown that kerogen thermal maturity stabilizes rather quickly geologically speaking, taking 1 to 10 million years (Robert, 1980; Barker,

1983; Price, 1983; Kisch, 1987; Barker, 1988). Therefore, the most important factor in assessing thermal maturity required for oil generation is temperature rather than temperature and time together (Barker, 1988).

14

Texas Tech University, Austin D Bertoch, August 2020

Figure 4. This diagram illustrates multiple phases of hydrocarbon generation and corresponding temperatures and relative depths. Any one of these processes, whether it’s methanogenesis at shallow depths or catagenesis at deeper depths, can create internal pressures sufficient enough to induce fracturing (modified from Crain, 2015). Tectonically induced fractures

This means of fracturing and mineral fill involves deformation due to compressional or extensional events. Because there is no displacement seen for the fractures within the carbonate-debris flows of the First Bone Spring, these are most likely tensional fractures (Figure 5). Tensional fractures in the carbonate-debris flows of the First

Bone Spring were plausibly produced during any of the three tectonic events – (1) the Late

Ouachita Orogeny (ca. 275 Ma), (2) the Sevier (ca. 140 – 50 Ma) and Laramide (ca. 75 –

35 Ma) orogenies of the Mesa Central subduction complex, and (3)

15

Texas Tech University, Austin D Bertoch, August 2020

rift extensional stresses during the Miocene (ca. 25 – 5 Ma) (Lindsay, 2019). However,

because the fractures were located solely in the carbonate-debris flows and not in the

adjacent siliciclastic turbidites this method of fracture formation is difficult to justify as

the sole contributor to fracturing. This can be further clarified by comparing the brittleness

of the two rock types to determine if they are relatively equivalent and would therefore

undergo mechanical failure when exposed to similar tectonic stresses – this was not

assessed for this project.

Figure 5. Mohr circle demonstrating the effects of pore water (blue ρ) lowering the stress needed to cause rock failure. Because offset is not seen in any of the fractures it was concluded that these fractures would be the result of tensional fracturing instead of compressional failure. Fracture orientation can be related to principal stresses whether the fractures are

vertical or horizontal. This project does not include primary means of assessing the

orientation of the fractures found in the carbonate-debris flows (such as an FMS log),

though based on previous research, fracture-orientation of the Northern Delaware Basin

for Leonardian age formations typically are NE-SW (Forand et al., 2017). Due to the lack of fracture-orientation data this project considers this fracturing mechanism as likely

16

Texas Tech University, Austin D Bertoch, August 2020

involved in the fracturing process but cannot accurately relate the fractures to specific

tectonic stress regimes via orientation data.

In a tectonically relaxed basin, the principal stress will be vertical due to sediment overburden and this will normally induce vertical fractures. It is possible that at depth even in a tectonically relaxed basin that fractures can change from tensional to shear where stresses exceed 4 times the tensile strength of the host rock (Cosgrove, 2001), though this was not observed in the core sampled evidenced by the lack of displacement. Internal fluid pressures should not be excluded when considering tectonically induced fractures. Pore fluids act by opposing the applied stresses and therefore manipulate mechanical properties of the rock that can lead to brittle deformation.

17 Texas Tech University, Austin D Bertoch, August 2020

Geologic Setting

Basin Evolution

Preceded by the Tabosa Basin, the young Delaware Basin began to form during the Late Mississippian as compression from the southwest caused the greater Permian

Basin to be split into two main depocenters – the Midland and Delaware Basins (Hill,

1984). As the basins continued to develop, extensive carbonate platforms formed around the perimeter of both basins, carbonate platforms such as the Diablo Platform to the west, the Northwestern Shelf, and the Central Basin Platform to the east of the Delaware Basin.

These platforms supplied the respective basins with ample carbonate detrital input

(Figures 1 and 6).

Figure 6. Delaware Basin depositional model. It is the relationship between the carbonate debris flows and siliciclastic turbidites that comprise the First Bone Spring formation. This relationship is often termed reciprocal sedimentation where siliciclastic deposits occur during low stand while the carbonate debris flows occur during high stand (modified from Matador, 2015). It was during the Middle Permian (Kungurian 283.5-272.95 Ma) that the First

Bone Spring Formation was deposited in the Delaware Basin. The Bone Spring Formation

18

Texas Tech University, Austin D Bertoch, August 2020

generally consists of alternating carbonate and siliciclastic deposits. Specifically, closer

to the carbonate platforms, deep-water carbonate-debris flows and Mass-Transport

Deposits (MTDs) and fine-grained siliciclastic-turbidite deposits comprise the First Bone

Spring Formation (Saller et al., 1989; Kerans et al., 1993; Asmus and Grammar, 2013).

Examples of these submarine-debris flows, and turbidity currents are exposed in the rocks of the Guadalupe, Delaware, and Chinati Mountains at the distal edge of carbonate platforms that rim the basin (Rigby J. K., 1958). Generally, where this pattern of alternating carbonate-debris flows and siliciclastic turbidites occurs, the greater the

accommodation than in other portions of the Delaware Basin. This alternation of

carbonate and siliciclastic deposits is also related to the alternation between highstand systems tracts and lowstand systems tracts. generally are deposited during high stand when the carbonate factory is active, and siliciclastic sediments are deposited

during low stand when the carbonate factory is no longer active and mainland eolian

systems (in the case of the Delaware Basin) are supplying siliciclastic sediments to the

basin (Kendall and Schlager, 1981).

The rapid depositional nature of debris flows, and their low permeability make these deposits prime subjects for disequilibrium compaction (Yang et al., 2016). This may have implications for overpressure conditions, which may lead to internal-hydraulic fracturing during burial (Luo et al., 1994). The depositional history of the First Bone

Spring Formation can be seen as unending boredom punctuated by instantaneous chaos – as is the nature of debris flows and turbidites. This pattern continued until the subsequent drowning of the carbonate platform and the development of an unconformable surface followed by the deposition of the Cutoff Formation (Amerman et al., 2011).

19

Texas Tech University, Austin D Bertoch, August 2020

For most of the Mesozoic, deposition had virtually halted. During the Late Triassic to the southwest the Mesa Central subduction complex initiated the process of subducting beneath modern day Mexico and potentially had minor influences on stress regimes within the Delaware Basin (Dickinson and Lawton, 2001). After this, during the Late- to Early , the Delaware Basin experienced fairly significant compression due to the Sevier and Laramide orogenies to the west. This event led to the reactivation of basement faults within the basin. This can be seen in the carbonate strata of the Grayburg that contain vertical-oriented stylolites related to Laramide compression (Lindsay, 2019).

From the Late Eocene to Late Miocene, the Delaware Basin was influenced by the

Cordilleran Alkali Igneous Belt and the Southern Rocky Mountain Epi-orogeny. This caused regional uplift from Mexico northward to Canada. This uplift most likely reactivated deep-seated basement faults. This was followed by the Rio Grande Rift extension that created the modern-day horst/graben setting (Lindsay, 2019).

Core Analysis

The core, Big Eddy Unit 14 Federal SWD No 1, was taken from Eddy County

New Mexico PLS coordinates 20S 31E Section 14. Within this core there are two main lithologies – carbonate-debris flows and fine to very fine-grained siliciclastic turbidite sands (Figure 8). There are 6 debris flows and 5 turbidite deposits within the core that cover depth intervals 8530 – 8797 ft or 2600 – 2681 m (total length of 267 ft or 81 m)

(Figure 7). These turbidite sands tend to fit into bottom-cut sequences where the preserved

Bouma sequences are the upper categories D and E (very fine with horizontal lamination followed by silt to mud sized deposits). Based on basinal marine fan models this tends to indicate either levee deposits or mid to lower marine fan turbidites (Walker,

20

Texas Tech University, Austin D Bertoch, August 2020

1978). It is solely within the carbonate-debris flow deposits that calcite features (fracture fill and bioclasts) are present for U-Pb dating. In one of the carbonate-debris flows there is what appears to be a reworked ash bed that fluoresced with UV light. This volcaniclastic deposit was used for subsequent dating of the volcanic zircons to obtain the depositional age of the First Bone Spring.

21

Texas Tech University, Austin D Bertoch, August 2020

Figure 7. Simplified stratigraphic column representing the First Bone Spring Big Eddy Unit 14 Federal SWD No 1 well. The core is comprised of 6 carbonate debris flows and 5 siliciclastic turbidites. In the 6 debris flows there are 10 calcite filled fractures, and 7 calcite filled bioclasts. Included in the core is a volcaniclastic deposit that hosts reworked ash beds and zircons used for depositional age. The figure also includes core images that were included to represent the two main facies (siliciclastic turbidites (A) and carbonate debris flows (B)). Fracture and bioclast sizes are greatly exaggerated. Sampling

Seventeen calcite features were sampled (both fractures and bioclasts) form the

Big Eddy Unit 14 Federal SWD No 1 well. These samples were hosted by the carbonate-

debris flows and each of the 6 debris flows had a feature that was sampled (Figure 7). The

22

Texas Tech University, Austin D Bertoch, August 2020

samples were cut and processed by Weatherford Labs in , Texas, where the core was being stored. Included with the finalized thin sections, each sample was provided with the offcut billets to be used for various analytical methods that cannot be done on thin section, such as rock pyrolysis and X-Ray Diffraction.

23

Texas Tech University, Austin D Bertoch, August 2020

CHAPTER III

METHODS

There are generally two schools of thought when it comes to LA-ICP-MS U-Pb age dating: 1) extensive pre-imaging (by optical and electron microscopy) in order to select ideal spots (high uranium, little alteration) where analytical precision is the highest, and 2) forgo pre-imaging and analyze large areas or numbers of spots and derive precise results during post-processing of data. This research will implement the first where

multiple pre-imaging techniques are used. There are also other techniques used such as

HAWK rock pyrolysis and X-ray diffractometry that were performed to confirm or rule

out the possibility of specific fracture forming mechanisms – oil generation and clay

dehydration.

Optical Microscopy and SEM-BSE/EDS

Optical Microscopy and Scanning Electron Microscopy and Backscattered

Electron Imaging / Energy-Dispersive Spectroscopy was used for placement of spots

within calcite grains to target for laser U-Pb analyses based on the mapping of grain

boundaries and qualitative to semi-quantitative elemental concentrations (Figure 6). A

Nikon Polarizing ECLIPSE LV100N POL Microscope at Texas Tech was used for the

optical petrography. The microscope is equipped with a DS-Ri2 digital sight microscopy camera and NIS-Elements Imaging Software for capturing digital images. The DS-Ri2 is a Nikon FX-format digital SLR 16.25 megapixel camera recording a 36.0 x 23.9 mm image size.

For electron microscopy, a Zeiss Crossbeam 540 FIB-SEM at Texas Tech was used for the analyses performed with a beam current of 3-4 nA, 15kV accelerating voltage,

24

Texas Tech University, Austin D Bertoch, August 2020

at 70x magnification, and with a dwell time of 0.2 ms. The steps/results for this analytical

method are as follows:

1. Cut billets from the core samples for polished thin sections

2. Use optical microscopy to determine zones of thin sections to be scanned by SEM

3. Use BSE/ EDS to determine grain boundaries and obtain elemental maps of each

zone to be analyzed and document the petrography of the calcite fracture-fill

4. Identify preferred ideal calcite targets for LA-ICP-MS with low magnesium and

high calcium X-Ray intensities

5. Use SEM images to set target areas for LA-ICP-MS analysis

HAWK Pyrolysis

Organic matter pyrolysis was carried out at Brigham Young University with a

HAWK Workstation apparatus. HAWK pyrolysis ignites powered samples in the absence

of with increasing temperature for data such as total organic content, total

inorganic content (carbonate sourced carbon present), S-peak data, T-max, hydrogen index, and oxygen index. This technique was applied to all 17 samples selected from the core and analyzed using the following steps:

1. Take offcuts (approximately 5-grams) from thin section process and grind them

using a mortar and pestle so that the particles pass through 500-micron sieve

2. Samples are then introduced to the HAWK pyrolysis equipment for ignition

3. Each sample’s organic characteristics will be recorded individually and reported

as such

4. Hydrocarbon presence, maturation and typing assessed from data

25

Texas Tech University, Austin D Bertoch, August 2020

X-Ray Diffractometry

Using the Bruker D8 Advance XRD at Texas Tech University, eight samples from

the First Bone Spring core were analyzed in order to confirm the presence of smectite/illite

and establish clay diagenesis as a potential means of hydraulic fracturing. This equipment

requires powdered samples (same powders from HAWK analysis) which are then

introduced into the chamber where x-rays bombard the samples producing scattering

patterns. These patterns are then matched to standards library to identify mineral species

and reported as mineral percent abundances, which have relative standard deviations

within 10%. Detection limits are 0.5 wt.% (0.3 wt.% for very crystalline phases). The

Bruker Diffrac.Suite, and EVA software package was used to analyze and further interpret the data.

Fourier Transform Infrared Spectrometry

For one of the calcite filled fractures (sample 4) there is a significant inclusion of

organic matter that was analyzed using a Fourier Transform Infrared (FTIR) instrument

at Texas Tech University in an attempt to type the organic compounds and thus distinguish

its origin (Figure 8). This analytical technique can be performed so as not to destroy the

sample and analyze molecular structure of organic and inorganic materials. This type of

analysis is also a means of mapping organic distributions and makes studies on

heterogeneities within and other organic bearing sediments possible (Chen et al.

2015). This research used FTIR analysis to compare the signal of the oil inclusion with

the surrounding matrix organics in order to determine if the oil inclusion is from the

maturation of kerogens in situ or from the migration of adjacent source units. Analysis

can be done by reflectance, which is done directly on thin section (non-destructive), or via

26

Texas Tech University, Austin D Bertoch, August 2020

transmittance (destructive) with a powdered sample. Because of the lower sensitivity of

reflectance analysis and the relatively low concentrations of organics (mainly for the

matrix) transmittance was the chosen method of FTIR analysis. The transmittance analysis

done on the oil inclusion and matrix were performed separately – both powdered into

separate samples. The powder for the matrix analysis was taken from the corresponding

billet to sample 4 (approximately 5-grams), while the powder for the organic inclusion

was removed from the calcite fracture of a duplicate thin section (approximately 1-gram).

Figure 8. Sample 4 calcite filled fracture showing dark organic matter included in the mineral fill which is composed of multiple phases of growth (10x mag, PPL).

LA-ICP-MS

LA-ICP-MS was carried out in the Mineral Isotope Laser Laboratory at Texas

Tech University. The instrument is an ESI NWR193UC ArF Excimer Laser Ablation

System coupled Nu Instruments AttoM Magnetic Sector Single Collector ICP-MS. In

order to establish a procedure for analyzing the entire suite of samples, static spot and line traverse tests were performed. Three laser spot sizes were tested – an 80-micron spot

27

Texas Tech University, Austin D Bertoch, August 2020

analysis, 40-micron spot analysis and a line scan made with a 40-micron spot. These initial results determined that the 40-micron line scan was the most appropriate method for data acquisition for this study in terms of the required sensitivity for U and Pb isotopes and spatial resolution needed to target surface domains of interest. This project also

incorporated a series of standard LA-ICP-MS preparation work as well as optimizing

parameters for laser scans of the calcite present in these samples.

Post-processing of the LA-ICP-MS U-Pb data uses the VizualAge UcomPbine

Data Reduction Scheme (DRS) for the Iolite software, which corrects for common lead

heterogeneities before downhole U/Pb fractionation is calculated (Chew et al., 2014). This

research implements the Terra-Wasserburg plot and background, drift and downhole

fractionation corrected 207Pb/206Pb and 238U/206Pb ratios plotted as a Discordia line to

obtain the reported ages (Roberts et al., 2020). Though other research has suggested the

use of a 3-D Concordia plot in an effort to account for initial isotopic heterogeneities this

research did not find this technique necessary (Wendt, 1984; Zheng, 1992; Rasbury and

Cole, 2009). The method is as follows:

1. Obtain and mount primary calcite standard Walnut Canyon (WC-1) for LA-ICP-

MS calibration and secondary calcite standard Long Point Limestone and NIST

SRM 614 soda-lime silicate glass for data quality assessment.

2. Load thin section samples with calcite filled fractures on the laser ablation

stage.

3. Tune the instrument gas flows to maximize sensitivity of the AttoM, which

were generally ~13.0 l/min Argon cooling gas, ~0.85 l/min argon auxiliary

gas, ~0.80 l/min Argon make-up gas and ~0.81 l/min laser cell Helium carrier

28

Texas Tech University, Austin D Bertoch, August 2020

gas.

4. Ablate each analysis of the sample for 300 cycles, using a 40 µm spot at 8 Hz

and a fluence of 7 J/cm-2, on a 150 µm long line scan, translated at 5 µm/sec.

5. Collect intensities of the following isotope masses on the mass spectrometer:

202Hg, 204Pb, 206Pb, 207Pb, 208Pb, 232Th, 235U, 2038U

6. Process the isotope data using the Iolite software VizualAge UcomPbine DRS

(Chew et al. 2014) including for background subtraction and downhole U/Pb

fractionation to yield calibrated 238U/206Pb and 207Pb/206Pb ratios.

7. Plot the data on Tera-Wasserburg diagrams using the IsoplotR program

(Vermeesch 2018) to calculate Discordia lines and ages that represent the ages

of calcite precipitation.

29

Texas Tech University, Austin D Bertoch, August 2020

CHAPTER IV

RESULTS

Samples Analyzed

Eight of the original seventeen thin sections were analyzed using the methods

previously mentioned. This reduction of samples was due to two parts. First, not all of the

17 samples had calcite features to date, only 12 samples had such features. This was due

to the difficulty of identifying calcite fill in fractures in the core when original sampling

was performed. These 12 samples had some analytical methods performed but not all of

the procedures were done on each sample. SEM-BSE-EDS, HAWK rock pyrolysis, and standard optical work were performed on the 12 calcite features while LA-ICP-MS was performed on 8 of the samples. This second wave of sample reductions (from 12 samples to 8 samples) was due to external difficulties that prevented access to the LA-ICP-MS instruments. Thus, the following results will be limited to those 8 thin sections – samples

1, 2, 3, 4, 8, 9, 12, and 13 (Figures 7 and 9). The petrography of the 8 samples will be described using optical microscope, SEM-BSE-EDS, then the sample results for HAWK,

XRD, FTIR, and LA-ICP-MS U-Pb calcite and zircon ages will be reported.

30

Texas Tech University, Austin D Bertoch, August 2020

Figure 9. Optical microscope images (25 x 46 mm) of polished thin section scans of calcite features analyzed in the 8 samples analyzed in detail. Both calcite filled fracture morphology as well as the corresponding matrices are variable. Samples 4 and 13 have an oil inclusion and quartz (chalcedony) fill respectively. Of the eight samples, SEM-EDS elemental mapping was done on samples 8, 9, 12, and 13. General petrographic observations

Upon first observations it became apparent that the bulk samples (vein plus

adjacent groundmass matrix) were a mixture of many mineral components. While the

predominant mineral in all the veins is calcite, there are significant percentages of the

matrix that consist of minerals such as quartz, clays, dolomite, K-feldspar, albite with

smaller percentages of pyrite, iron-oxides, and occasionally /. This variability in mineral assemblage is seen in other similar debris flows (Lowe and Guy,

2000). The abundance of spicules, calcispheres, shell hash and other skeletal grains indicate large detrital input of bioclasts with few authigenic grains (Figure 10). The clay component in the groundmass is homogeneous in texture and has filled any potential pore volumes. There are also variable amounts of organic matter in the groundmass of each sample, and in at least one vein (sample 4, Figure 8).

31

Texas Tech University, Austin D Bertoch, August 2020

Figure 10. Optical microscope images (PPL) of five different samples. These samples represent the general mineralogy of the matrices and calcite fracture fill. Image A (sample 12) shows the very fine to silt sized grains of mainly calcite and quartz that make up a majority of the 8 sample matrices. Image B (sample 1) is a good example of higher percentages of clay as well as spicules in the matrix. Image C (sample 2) shows the blocky calcite fracture fill present in most samples as well as the variability in degree of calcite crystal twinning. Images D (sample 4) and E (sample 13) show unique phases of mineral growth with image D having an organic rich inclusion and image E containing a later phase of quartz (chalcedony) fill. Calcite-filled fractures are almost strictly blocky calcite variants with individual calcite crystals showing varying degrees of twinning and microscopic inclusions. These

microscopic inclusions give the calcite a cloudy/dirty look. Two samples have degrees of

quartz filling as well as calcite and one of these fractures has a significant organic-rich

inclusion (Figures 10 and 11).

SEM-BSE-EDS elemental mapping was performed on four of the eight samples

(Figure 11). Not all 8 samples had elemental mapping done because 4 of the 8 samples did not display complex phases of mineral growth and thus would not benefit from elemental maps. Though, all 8 samples were stained with alizarin red to confirm the

absence of dolomite in the veins. This staining was performed on duplicate slides made

32

Texas Tech University, Austin D Bertoch, August 2020

for each sample so as not to introduce contamination issues for later analyses.

Figure 11. An example of SEM-BSE-EDS elemental maps of mineral filled fractures from sample 13. Image A is the silicon map while image B is the calcium map. The intensity of the respective colors (orange for silicon and purple for calcium) reflects the relative concentrations of the respective elements being measured (higher intensity of color equates to higher elemental concentrations). This sample has two main phases of mineral growth quartz (chalcedony) and calcite. The EDS mapping was used to map the distribution of calcium, silicon, aluminum

and iron in the fracture-fill veins and groundmass of each sample. This approach is

particularly useful since one of the main concerns at first was the extent of dolomitization

within the veins. Dolomitization of calcite may reset U-Pb systematics to secondary ages.

Also, the presence of high amounts of magnesium would complicate LA-ICP-MS analyses since dolomite and higher magnesium variants of calcite are not a well-calibrated for U-Pb LA-ICP-MS analyses. Since magnesium concentrations were low, the calcium

rich mineral fills can then be assumed to be the ideal form of calcite for U-Pb dating

methods. The subsequent sections will detail petrographic properties for each sample

individually.

Sample 1

This vertical fracture is filled with a variety of blocky, occasionally twinned calcite

but mostly massive in texture. The size of calcite crystals in the vein has little variation in size (often ~ 0.2 mm). Unlike other samples this fracture fill has a center suture where the blue dyed epoxy is visible (Figure 12). This suture likely separated during exhumation

33 Texas Tech University, Austin D Bertoch, August 2020

from the deep basin or during the mechanical process of billeting and creating the thin section. Also seen are matrix inclusions within the calcite fill. Both large inclusions have the same orientation (oblique to the vein) and represent the groundmass of each separate side of the vein. The groundmass itself seems to be separated at times by the fracture, with a packed biomicrite on one side (with golden straw like amorphous quartz likely representing diagenetic cement) and a sparse biomicrite on the other side. This may potentially introduce mechanical differences that preferentially allowed for fracturing between the two groundmasses. Overall, the groundmass has small (around 0.2 mm in length) sponge spicules throughout as well as occasional dolomite rhombohedra and what appear to be calcispheres (or transected spicules). Typical grain size in the ground mass is very fine- to silt-sized grains with little variation. The transition from the vein to the groundmass is sharp, distinct, and easy to identify throughout the entire sample and there is only the one vein. There does not appear to be any soft-sediment deformation as well as onlapping grains (suggesting fully lithified conditions during fracture).

34

Texas Tech University, Austin D Bertoch, August 2020

Figure 12. Sample 1 showing a thin section scan (top-left), SEM-BSE image (right) and an optical microscope image (bottom left). The thin section scan shows the contrasting matrices with the fracture separating the packed biomicrite on the right and the sparse biomicrite (mud supported) matrix on the left. The SEM-BSE image shows the center suture going through the entire calcite filled fracture. In the optical microscope image, the variation between twinned calcite and un-twinned calcite can be seen as well as the groundmass inclusions. Sample 2

This sample has some striking features not seen in the other samples. First it has significant soft sediment deformation features as well as anhydrite/gypsum pockets adjacent to the main calcite filled fracture. The fracture itself appears to have been broken and translated over itself, which this movement seems to relate to the soft sediment deformation (Figure 13).

The calcite crystals in the feature vary from strongly twinned variants to more massive calcite crystals. This remains consistent throughout the entire feature. Typical

35

Texas Tech University, Austin D Bertoch, August 2020 calcite crystal size in the fracture is 0.3 mm. There are also color variations of calcite crystals in the fracture that range from tan to gray to brown possibly related to the degree of inclusions in the calcite crystals. The surrounding groundmass is banded with some laminations consisting of mud supported calcite and quartz grains and other laminations being better categorized as a packed biomicrite. Grain size is typically very fine to silt sized.

Figure 13. Sample 2 showing a thin section scan (top-left), SEM-BSE image (top-middle), optical microscope images (A, B, and C), and a close-up image of the feature from the core (bottom- middle). Both the thin section scan and the SEM-BSE image show the onlapping laminations indicating soft sediment deformation and the bright mineral phase seen in the BSE image likely represents anhydrite/gypsum. Optical image C and A show these bands and re-oriented grains. Optical image B shows the calcite fill as well as the adjacent anhydrite – calcite crystals display variation in degree of twinning. Sample 3

This sample contains multiple distinct fractures. The overall morphology of these fractures is best described as ptygmatic and are generally vertical in orientation (Figure

36 Texas Tech University, Austin D Bertoch, August 2020

14). The surrounding groundmass consists of spicules, calcite grains, clays, and near the

fracture golden straw like amorphous quartz. The grain size is very fine to silt sized grains.

The contact between the fracture fill and the surrounding groundmass is distinct at times

while other sections of the fracture have a less distinct transition to groundmass. For one

of the fractures within this sample, there is also what appears to be a more rigid, straight variant of calcite bisecting the fracture fill. This object is darker in color and does not have the blocky calcite texture like the other calcite crystal fill in the sample. Calcite crystal sizes within the veins is dependent on the diameter of the vein itself. The smaller the vein the smaller the calcite crystals within the vein (~0.1 mm) where vein size increases the subsequent calcite crystals increase in size as well (~0.2-0.3 mm). Most of the grains themselves are massive with a decent amount of twinned calcite grains. The surrounding groundmass is mud supported and grains of calcite and quartz are silt sized.

37

Texas Tech University, Austin D Bertoch, August 2020

Figure 14. Sample 3 showing a thin section scan (top-left), optical microscope images (A, B, and C), and a SEM-BSE image (right). There are four main fractures with calcite fill represented in this sample and each of them has a meandering, varicose type morphology (this is seen best in the thin section and BSE image). Optical image A shows two distinct phases of calcite growth with a darker non-blocky calcite variant cutting through the larger fracture fill. Images B and C show the golden straw amorphous quartz growth (potentially a cement phase) near the calcite filled fractures. Sample 4

Sample 4 contains some very interesting and at times complex features, all of which cannot be covered with the scope of this project. It is first important to note that this fracture has many phases of mineral growth and that the minerals within the fracture itself are quite variable. There are phases of calcite growth, quartz (chalcedony) fill, dolomite, amorphous silica (golden straw color/texture mainly seen in the groundmass), as well as dark organic-rich material. There appears to be occasional dissolution of calcite crystals on the margin of the fracture, cross-cutting phases of mineral growth within other portions of the marginal calcite, and fragmented calcite pieces ‘floating’ in the organic fill

(Figure 15).

Other simple observations show that this fracture is oriented vertically, contact with the groundmass is not as sharp as other fractures within the sample suite, and the groundmass is mainly a packed biomicrite with calcite grains, few dolomite rhombohedra,

38 Texas Tech University, Austin D Bertoch, August 2020

and golden straw like amorphous quartz. The overall groundmass grain size is very fine-

to silt-sized grains. The calcite crystal size in the fracture is quite variable and due to

fragmentation of the grains it is difficult to determine original crystal growth sizes. Most

of the crystals do not have twinning and are mostly massive. There does not appear to be

any other significant features such as soft sediment deformation or displacement.

Figure 15. Sample 4 showing a thin section scan (top-left), and optical microscope images (A, B, C, and D). Optical image A shows the dark organic material filling the center of the fracture with the calcite growth on the margins as well as fragments of the calcite ‘floating’ in the organic inclusion. Optical image B shows a branching calcite filled fracture that does not include the organic material and is mainly massive textured calcite and a larger calcite grain size than images C and D. Image C contains a variety of mineral growths with calcite, dolomite, and organic material. Image D shows dissolution of calcite that appears to have dissolved the main body of the crystals leaving the outside skeleton. Both image C and D were taken from a duplicate thin section that was stained using Alizarin red. Sample 8

This is one of the four samples that included both optical microscope work as well as

SEM-BSE-EDS elemental mapping. This is the volcaniclastic sample located in one of the carbonate debris flows where zircon U-Pb dating was performed to obtain a depositional

39

Texas Tech University, Austin D Bertoch, August 2020

age (Figure 7). Included in this sample is a set of wispy calcite fracture fills that cuts

through the groundmass (Figure 16). Using the EDS mapping, it is determined that this

volcaniclastic deposit contains a high percentages of calcium, aluminum, potassium as

well as lesser concentrations of magnesium and little iron. There are clear laminations

within this sample made up of dark bands of clay rich minerals and lighter colored bands

containing calcite, quartz, and K-feldspar. The general grain size is very fine- to silt-size

and is moderately sorted. The fracture itself using simple optical microscopy does not

have a distinct/abrupt transition to groundmass and is at times difficult to find the change

from fracture fill to groundmass. With the SEM-BSE-EDS elemental mapping the

transition from fracture fill to groundmass becomes more apparent as the vein is more Ca

rich than the adjacent volcaniclastic matrix, and the Fe, Mg, Al, K concentrations are

comparatively lower in the vein. The fracture’s orientation is vertical to oblique and

terminate rather quickly within the sample. The calcite crystals within the vein do not have distinct grain boundaries and does not have the typical blocky texture like the previously mentioned samples.

40 Texas Tech University, Austin D Bertoch, August 2020

Figure 16. Sample 8 showing a thin section scan (top left), and a subsequent optical microscope PPL image (directly to the right) and SEM-BSE-EDS images of the blue boxed in area. This calcite fracture seen in the optical image does not have a distinct border while the BSE image improves the contrast of the fracture slightly. Elements such as Fe, Mg, Al, K, and Ca were mapped. Levels of elemental concentration are represented as degrees of color intensity with each element having a separate color. Iron concentration is represented as a deep purple, magnesium is pink, aluminum is yellow, potassium is green, and calcium is blue. By far the highest concentration is calcium, with significant amounts of potassium, aluminum and magnesium. This most likely indicates the presence of calcite, K-feldspar, dolomite (or high Mg calcite), and clays. Sample 9

Sample 9 is a vertically oriented fracture filled with blocky calcite that is completely massive in texture. Near the base of the fracture, where there is a mud inclusion, the calcite crystals sizes in the fracture are larger (~0.5 mm) and the crystal sizes at the opposite end decrease to ~0.1 mm in diameter and eventually distinct grain boundaries are not visible. The groundmass for this sample is almost completely calcite with very little silica, magnesium, and aluminum concentrations based on the SEM-EDS analysis (Figure 17). The mud inclusion at the bottom of the fracture is mainly made of

41 Texas Tech University, Austin D Bertoch, August 2020

aluminum, silica, and little calcium. At the opposite end of the fracture there are web like

tendrils of calcite that branch off of the main fracture. The grains within the groundmass

do not have distinct boundaries and are silt to very fine sand sized grains.

Figure 17. Sample 9 showing a thin section scan (top left), optical microscope PPL images (directly to the right), and subsequent SEM-BSE-EDS images. The blue box represents the imaged area for one of the optical images as well as all of the SEM-EDS images. Image A is a good representation of the overall groundmass. EDS mapping indicates that this sample is mainly calcite (concentrations of calcium seen in blue) and that there is a pockets of higher silica (orange) and aluminum (yellow). There is little magnesium (purple) in this sample. Sample 12

This sample is not a fracture fill but is instead a larger fragment of a shell material.

While relict features such as growth bands are seen on the outer margin of the shell fragment (Figure 18), the replacement calcite makes phylum distinction and further species classification difficult. This fragment is most likely a detrital grain that was included in the debris flow, and while there are other smaller shell fragments and hash in this section, this is by far the largest specimen (~ 30 mm across). The surrounding

42

Texas Tech University, Austin D Bertoch, August 2020

groundmass is silt-sized calcite and quartz grains and is fairly homogenous throughout the sample. EDS mapping also showed elevated concentrations of aluminum in the groundmass as well, most likely indicating clay presence. The boundary between the shell and groundmass is abrupt and easily identified. EDS mapping also indicated that the shell was mainly calcite with occasional silica rich inclusions that potentially represent another phase of replacement possibly indicating fluid infiltration (Figure 18). There is a slightly

higher magnesium concentration in the shell than in the other calcite features analyzed.

Figure 18. Sample 12 showing a thin section scan (top-left), an optical microscope PPL image (immediately to the right), and subsequent SEM-BSE-EDS images. The blue box indicates the area where the images were taken from. This sample is not a calcite filled fracture but is instead a shell fragment that has both blocky calcite and replacement quartz. The optical image shows the relict growth bands on the outside margin of the shell as well as blue dyed epoxy where there are voids in the shell. The EDS-mapping showed high amounts of calcium (purple), pockets of silica concentrations Sample 13

Sample 13, like sample 4, has a variety of features that make it valuable for this research. First there are indications of soft sediment deformation as the surrounding groundmass is draping onto the fracture. The matrix itself is mainly silt sized grains with

43 Texas Tech University, Austin D Bertoch, August 2020

spicules and occasional clusters of packed biomicrite. Inside the fracture are marginal

phases of calcite growth followed by an inner fill of quartz (chalcedony). The calcite

crystals on the margin are jagged (dog-tooth) and are oriented towards the center of the fracture while the chalcedony fills the rest of the fracture and based on the elemental map the margins often include higher concentrations of Al, Fe, and Mg which appear to be inclusions within the marginal calcite. The calcite grain size within the vein typically are around 0.2 to 0.3 mm in diameter and are consistently this size. Texturally, the grains are

massive with no obvious twinning apparent. The outside margins of the fracture do not

abruptly transition to the groundmass, but instead have a ragged transition (Figure 19).

There are portions of the fracture where the chalcedony fill is also fragmented and filled

with a later stage of calcite.

44

Texas Tech University, Austin D Bertoch, August 2020

Figure 19. Sample 13 showing a thin section scan (top-left), optical microscope PPL image (immediately to the right), and subsequent SEM-BSE-EDS images. The blue box represents the area imaged. Soft sediment deformation can be seen in the thin section as the groundmass laminations drape onto the fracture. The optical image shows the different phases of mineral growth with the gray calcite on the outside margins and the white/tan quartz fill in the center. Also seen in the optical image is the ragged transition from fracture fill to groundmass. EDS mapping identified high concentrations of calcium (purple), silica (orange), and lesser amounts of magnesium (pink), aluminum (yellow), and little iron (red). HAWK-TOC Pyrolysis

In order to fully assess the potential of hydrocarbon maturation and expulsion as a means of fracture formation, organic analysis was performed at Dr. Sam Hudson’s sedimentology lab at Brigham Young University using HAWK pyrolysis technology. The data table of results is given in Appendix A. The HAWK analysis provided key indicators for hydrocarbon presence and maturation, indicators such as S-peak data where the data is recorded as three separate peaks S1, S2, and S3 peaks. The S1 peak represents the quantity (in mg hydrocarbon/g rock) of free hydrocarbons (oil and gas) present in the rock

45

Texas Tech University, Austin D Bertoch, August 2020

which are volatilized below 300° C. The S2 peak gives the amount of hydrocarbon-type

compounds (in mg hydrocarbon/g rock) produced by the cracking of kerogen as the

temperature increases to 600° C. S2 peak data also shows the quantity of hydrocarbons

which could be produced in this rock should burial and maturation continue. The S3 peak

shows the quantity of CO2 (measured in mg CO2/g rock) produced from pyrolysis of the

organic matter in the rock up to 390° C. Other measurements include Hydrogen Index,

Oxygen Index, TOC (Total Organic Carbon in weight percent) and other data such as carbon to carbon analysis which gives the carbonate carbon weight percent. The Hydrogen

Index (HI = (100 x S2)/TOC) indirectly determines the ratio of hydrogen to carbon, which is used to evaluate relative maturity of the host rock. The Oxygen Index (OI = (100 x

S3)/TOC) represents the amount of oxygen relative to the amount of TOC present in the sample. When plotted, Hydrogen Index and Oxygen Index give organic typing. These results are seen in Figure 20.

The other reported measurements show decent to significant oil presence with

TOC values averaging 2.7 wt. % and Production Index (PI) values (S1/S1+S2) averaging

0.40. PI characterizes the evolution level of the organic matter with values typically increasing with depth – which can be used to pinpoint zones of unusually high or low amounts of hydrocarbons. Both hydrocarbon presence indicators (TOC and S-peak data) show sufficient amounts of moveable organic material present in order to facilitate hydrocarbon induced fracturing within the carbonate-debris flows of the First Bone Spring

Formation based on comparable TOC values found in fracture source rocks (Cobbold,

2013; Meng et al., 2017). Oil Saturation Index (OSI) ([S1/TOC] *100) also indicated producible/moveable hydrocarbons for 3 of the 17 analyses (OSI>100) (Jarvie et al.,

46 Texas Tech University, Austin D Bertoch, August 2020

2012). This is also substantiated by the presence of trapped organic matter in sample 4.

Results for the level of maturation suggest ideal oil window conditions with T-max values averaging 445 ℃. One sample anomalously indicated an immature T-max value at 337

℃. Organic typing suggests primarily Type III to Type II kerogen using the Oxygen Index and Hydrogen Index (Figure 20). This indicates a mixture of both terrigenous and marine sourced organics making these organics more gas prone.

Figure 20. Hydrocarbon maturation indicators such as Oxygen Index, Hydrogen Index, and Tmax as well as hydrocarbon presence indicators such as TOC were used to plot and determine organic typing as well as maturity for the First Bone Spring carbonate debris flows. Plot A (OI vs HI) indicates predominately type III kerogen with decent showings in type IV and some type II. This is also seen in plot C (TOC vs remaining hydrocarbon potential). Plot C also takes hydrocarbon presence into consideration and none of the samples plot within the organic lean zone. Plot B shows the data plotting entirely within the oil zone based on Tmax vs Kerogen Conversion. These results suggest significant hydrocarbon presence as well as ideal maturation for oil generation. X-Ray Diffractometry

Results from the XRD analyses of the eight samples (Table 2) confirmed the presence of illite-smectite clays within the debris flows. The abundance of clays ranges

47

Texas Tech University, Austin D Bertoch, August 2020 from up to 30% illite-smectite in sample 10 to approximately 10% in sample 6. These measurements were taken throughout the core with measurements from 5 of the 6 debris flows within the core. The illite-smectite abundances in the First Bone Spring core are less than that found commonly in shales (>40% illite-smectite) but they do represent significant portions of the whole rocks. Therefore, the possibility of hydraulic fracturing induced from illite-smectite conversion is likely. Along with the illite-smectite percentages and their significance, some samples also showed high amounts of quartz as well as K-feldspar and albite (in samples 8, 16, and 18 especially) (Table 2). The presence of K-feldspar and the supply of K+ is especially important as the presence of potassium during illite-smectite conversion to pure illite is essential. Without the availability of K+ during clay dehydration the process cannot be completed. This categorizes these debris flows as a type of marl where there is a significant variance in clays, silts and carbonates.

48 Texas Tech University, Austin D Bertoch, August 2020

Table 2. X-Ray Diffractometry results for eight samples of the carbonate-debris flows of the First Bone Spring Formation

S

-

Sample % Layered I Layered - Albite% Pyrite% Feldspar % Feldspar Quartz Calcite% (Estimated) Dolomite % Mg% Calcite K- FeDolomite % Flouroapatite% Mixed Mica(Illite+Muscovite) %

2 29.5 - 56.5 6.4 0.6 5.5 0.6 - 0.9 - 5

6 20 - 72 5.2 0.7 - 1.5 - 0.8 - 5

7 11 72 - 12 1.7 1.8 1.4 - 0.4 - <5

8 58.5 - 0.8 16.5 0.4 9.5 13 1.3 - - <5

10 11 67.5 - 15.7 0.6 1.9 2.9 0.5 - - 10-

15

14 44.5 - 30 15 0.5 3.2 3.7 - 2.1 0.8 5

16 62 - 0.6 11 0.5 7.5 16.5 1.4 - - <5

18 52 16.3 - 9.6 0.3 9.3 11.3 - 1.4 0.6 5

49

Texas Tech University, Austin D Bertoch, August 2020

Fourier Transform Infrared Spectrometry

The planned purpose of analyzing the organic-rich inclusion in the vein of sample

4 (Figure 15) was to compare the spectrum of peaks of organic compounds obtained from the FTIR to the spectrum for the organics present in the surrounding matrix. This was in an effort to determine if the oil inclusion was sourced from the surrounding organics or migrated upward from another source stratigraphically beneath the debris flows.

Unfortunately, the abundance of organics in the matrix was <10 wt.%, which even with the higher sensitivity transmittance analysis, is below the minimum where FTIR analysis can resolve the composition of organic compounds. Only the organic-rich inclusions within the vein were concentrated enough for the spectrum of peaks of organic compounds to be registered (Figures 21 and 22). This result confirms that the dark mineral fill in sample 4 is indeed organic rich but failed to relate the source of the vein organic matter to the organics in the surrounding matrix.

Figure 21. FTIR results for both the oil inclusion as well as the matrix. The inclusion was concentrated enough to register on the absorption spectrum while the matrix was at too low of an organic concentration to be registered.

50 Texas Tech University, Austin D Bertoch, August 2020

Figure 22. A zoomed in view of the organic signature from the oil inclusion. Based on known values, certain peaks correspond to different compounds as well as different atomic bonding. This detail could be used to fingerprint hydrocarbons and then relate organics from different samples.

U-Pb Ages

Volcaniclastic Ash Bed Zircons

U-Pb zircon data are plotted in Figure 23 and tabulated in Appendix B. Of 25

zircons dated in the ash-bearing sample 8, 3 age populations were identified. Since this is

a volcaniclastic ash bed deposit the presence of various zircon age populations is expected and is commonly reported for other such deposits around the globe (Sato, 2016). One of the populations consists of concordant zircon analyses and provides the preferred depositional age of the First Bone Spring debris flows. The resulting age for the deposition of the debris flow is 275.0±1.7 Ma. This represents Late Kungurian age (or commonly known as the Leonardian). Another age population within the sampled zircons gives a

similar (within error), but less precise age at 278±17 Ma. This age population consists of

discordant analyses and is derived from a model 1 Discordia isochron that corrects for

51

Texas Tech University, Austin D Bertoch, August 2020

lead loss. The third population likely represents detrital zircons that were incorporated

into the volcaniclastic deposit during sedimentary reworking shortly after deposition of the ash material. These ages are much older than Leonardian (Grenville, mid to late

Mesoproterozoic). Detrital zircons from these older time periods are found in crystalline

basement rocks underlying West Texas and SE New Mexico and as recycled zircon grains

in sedimentary units overlying the basement rocks (Bickford et al., 2000; Amato

and Mack, 2012).

The age from the concordant magmatic zircons will be important for the later

discussions of fracture timing as this depositional age of 275.0±17 Ma sets the start clock

and subsequent ages from calcite fracture fill will therefore be related to this initial

depositional age.

52 Texas Tech University, Austin D Bertoch, August 2020

Figure 23. Wetherill plots for the three corresponding populations of volcaniclastic zircons. Population A represents the volcanic age at 274.99±1.73 Ma which also is interpreted as the depositional age of the host rock. Population B represents a similar U-Pb age (278.4±16.8 Ma) though this is plotted as a Discordia line – most likely due to lead loss. Population C represents the various detrital zircons which date back to mid to late Mesoproterozoic. Image D is a SEM-BSE image of the A volcanic population of zircons.

Calcite

Two calcite samples were initially tested to determine the ideal spot size needed for accurate and precise U-Pb measurements. As mentioned earlier in the methods section, the tested sizes were 80-micron spots, 40-micron spots, and line scans made using 40- micron spots. The result of this test showed that finding uranium-rich zones within the calcite was the most important factor in obtaining accurate and precise ages, and that the

53

Texas Tech University, Austin D Bertoch, August 2020

40-micron line scans were best at catching those uranium-rich zones. While the spot analyses occasionally captured the uranium-rich zones, the line scan was able to essentially sweep the calcite surface and capture a greater spread of uranium/lead ratios, and thus the most uranium-rich zones. The benefit of using a line scan versus a spot analysis can be equated to the benefit of fishing with a net versus as single hook.

The resulting Tera Wasserburg Discordia plots for the line scans had a much lower

MSWD than for the spot analyses (Figure 24).

Figure 24. Three Tera Wasserburg Discordia plots (A, B, and C) showing the three laser ablation methods (40-micron static spot, 80-micron static spot, and the line scans using 40-micron spots respectively). The lower image is an optical microscope image showing where the tests were performed as green circles and rectangles. Images A and B (40- and 80-micron spots) have markedly higher MSWD’s and age errors than the line scans. Line scans also showed smaller error ellipses.

54

Texas Tech University, Austin D Bertoch, August 2020

Another important factor is obtaining analyses that anchor the low 238U/206Pb, high

207Pb/206Pb end points of the Discordia lines in the Tera Wasserburg plot. This can be done

when analyses have a spread of 238U/206Pb ratios, including 238U/206Pb ratios approaching

0, which serve as an anchor point for the initial common lead ratio 207Pb/206Pb. It was

found that a majority of the samples analyzed had an anchor point on the y-axis

(207Pb/206Pb) of around 0.845. This is similar to the Stacey-Kramers (1975) model value

(~0.85) for the upper curst during the Permian. This became useful as some of the samples did not have analyses that firmly anchored the Discordia line, and in those cases a manual anchoring using the 0.845 value was used (Figure 25). This assumes that each of these samples have one shared common lead initial value. For other samples the analyses and subsequent Discordia line suggested that there was a different 207Pb/206Pb anchor, and for

these analyses the data remained unanchored.

Figure 25. Terra Wasserburg plots of two samples demonstrating situations where an anchored 207Pb/206Pb approach was not necessary (A) and where an anchored 207Pb/206Pb at the 0.84 value was beneficial (B). Image (A) had analyses that plotted near the 238U/206Pb 0 value that acted as an anchor leading to a precise age measurement. Image (B) did not have analyses that anchored the 207Pb/206Pb axis and therefore a manual anchor was needed to constrain the resulting U-Pb age. After the results for the initial testing, the data was then obtained for final U-Pb

ages for the eight dated calcite samples (Table 3). Complete results are tabulated in

55 Texas Tech University, Austin D Bertoch, August 2020

Appendix C. The final U-Pb ages for the eight sampled calcite features show three distinct age populations. The first U-Pb age population is from samples 3 and 8 and the resulting ages of the calcite-filled fractures are 274.5±1.8 Ma and 272.5±4.4 Ma respectively. These ages closely corresponds to the volcanic age reported from the volcaniclastic zircons. The second U-Pb calcite age population is the combination of 5 calcite features (samples 1, 2,

4, 12, 13) and the resulting combined average age is 263.2±1.0 Ma. The third age population derived from sample 9 is 249.4±4.8 Ma. These three U-Pb populations recorded MSWDs below 3 and therefore are considered to have remained closed systems after the initial isotopic systems were set.

207 206 Table 3. U-Pb Age results with ( Pb/ Pb)o ratios, MSWD, and whether the analysis was manually anchoreD

238 206 207 206 U/ Pb Age (Ma) ( Pb/ Pb)o MSWD Anchored?

Sample 1 268.22±6.17 0.845 2.5 Yes

Sample 2 260.95±1.33 0.8535±0.0041 1.7 No

Sample 3 274.45±1.81 0.845 1.6 Yes

Sample 4 265.32±1.64 0.845 1.2 Yes

Sample 8 272.46±4.35 0.845 2.3 Yes

Sample 9 249.44±4.79 0.845 2.3 Yes

Sample 12 265.4±12.7 0.896±0.0270 2.3 No

Sample 13 268.96±4.26 0.856±0.0061 2.7 No

Samples 3, 8 274.2±1.7 0.845 1.7 Yes

Samples 1, 2, 4, 12, 13 263.15±0.99 0.856±0.0032 1.9 No

Some analyses gave U-Pb calcite ages that were older than the U-Pb zircon ages.

These are summarized in Table 4 below. These are interpreted as the result of the

56 Texas Tech University, Austin D Bertoch, August 2020 incorporation of detrital carbonate in the fractures and/or open system U/Pb mobility following initial crystallization of fracture-fill carbonate.

Table 4. U-Pb calcite ages that pre-date the U-Pb zircon ages

238 206 207 206 U/ Pb Age (Ma) ( Pb/ Pb)o MSWD Anchored?

Sample 3 299.8±2.1 0.72±0.03 7.7 No

Sample 4 314.5±2.4 0.845 5.2 Yes

Sample 8 320.1±7.2 0.845 1.7 Yes

Sample 9 388.3±14.1 0.845 2.1 Yes

Sample 13 305.9±2.9 0.85±0.01 2.3 No

57 Texas Tech University, Austin D Bertoch, August 2020

CHAPTER V

DISCUSSION

Mechanisms of Fracture Formation

As stated in the Introduction, the goal of this research was to obtain U-Pb ages of calcite fracture fill (and bioclasts) via LA-ICP-MS and relate those ages to the five potential means of fracturing – disequilibrium compaction, aquathermal expansion, oil generation/expulsion, clay dehydration (illitization), and tectonic forces (most likely tensional stresses) and their respective estimated times of occurrence (Table 1). These potential mechanisms were evaluated either through analytical means performed by this research – such as HAWK rock pyrolysis for the possibility of oil generation, and XRD analysis to determine the presence of sufficient clays for clay dehydration – or by analytical results from previous research done on the Delaware Basin. Each of these five mechanisms will be briefly discussed and then the U-Pb calcite ages will be related to the mechanism and finally how these dates/mechanisms quantify significant geologic events in the Northern Delaware Basin.

Disequilibrium Compaction and Aquathermal Expansion

Disequilibrium compaction and aquathermal expansion are both extremely likely to have occurred shortly after the deposition of the carbonate-debris flows of the First

Bone Spring Formation. Both of the common conditions of disequilibrium compaction

(low permeability and rapid deposition in an actively subsiding basin) were met for the carbonate debris flows. As for aquathermal expansion and the role it played in over pressuring and subsequent fracturing, current geothermal gradient studies show that regions of the Delaware Basin have geothermal gradients of 25.1°C/km – while this most

58

Texas Tech University, Austin D Bertoch, August 2020

likely would be a different value during Permian deposition (Luo et al., 1994). Therefore,

conditions for aquathermal expansion are difficult to quantify, though as the First Bone

Spring was buried increasing temperatures likely added to internal fluid pressures rising

and must not be excluded from the possible mechanisms of fracturing.

While there were not analytical techniques performed, these conditions (high impermeability, rapid burial (at least 2km burial depth by 250 Ma), and modern-day

geothermal gradients) are well documented for this formation (Luo et al., 1994; Lee, 2000;

Stolz, 2014) and therefore the possibility of fracturing due to disequilibrium compaction

and aquathermal expansion are high. As mentioned in the background section, fractures

produced by these combined mechanism would be expected to be filled with calcite that

has a U-Pb age that shortly follows the age of deposition. According to the zircon age of

deposition, calcite U-Pb ages of formation would need to closely follow the U-Pb zircon

age of 275.0±1.7 Ma. Of the eight calcite features analyzed, two calcite filled fractures U-

Pb ages fit into this scenario – sample 3 and 8, with a U-Pb ages of 274.5±1.8 Ma and

272.5±4.4 Ma respectively.

Oil Generation

In order to validate oil generation (and consequent over pressuring) as a means of

fracturing, HAWK rock pyrolysis and FTIR analyses were done. The results from the

HAWK rock pyrolysis indicated TOC values ranging from 1.63 to 4.08 TOC wt. % - with

an average of 2.72 TOC wt. % from 17 samples representing each carbonate debris flow.

These values coupled with thermal maturity measurements indicate that the carbonate-

debris flows of the First Bone Spring have a high potential of oil generation and

subsequent over pressuring and fracturing. It is also worth mentioning that TOC values

59 Texas Tech University, Austin D Bertoch, August 2020

for the carbonate debris-flows have TOC values similar to the reported values of known source rocks – even though these debris flows are often considered to be lean. The

Miocene Monterey (average TOC 2.2 wt. %), the Lower Cretaceous Niobrara shale

(average TOC 2.69 wt. %), and the Lower Wolfcamp Shale (average TOC 2.99 wt. %)

(Jarvie, 2012; Shukla, 2013) all have reported TOC values that are comparable to the carbonate-debris flows of the First Bone Spring. Due to this similarity in organic content, it is likely that fractures associated with oil generation and expulsion in these shales

(Cobbold, 2013) also potentially represent similar mechanisms of fracturing in the carbonate-debris flows of the First Bone Spring.

FTIR results were intended to relate organic inclusions found in calcite fracture fill in sample 4 to the organics found in the matrix (Figure 15). Though the matrix analysis was not possible due to a <10 wt. % measurement detection limit, the calcite vein organic inclusion analysis did indeed confirm high enough concentrations of organics in the calcite vein. This confirms that the calcite fill in sample 4 did indeed form during active catagenesis where oil was mobilized and then able to be trapped by the calcite fill.

In order for the kerogen to undergo catagenesis, depth and temperatures must reach

~ 2 km in depth and approximately 60°C in temperature – which (as a reminder) are also the conditions for illitization to occur. According to multiple depositional models made of the Delaware Basin, the carbonate-debris flows of the First Bone Spring Formation most likely would have entered this window around 250 Ma (Hill, 1984; Luo et al., 1994;

Hansom and Lee, 2005; Kinley, 2008).

Results from the eight calcite U-Pb ages measured place one sample at the exact timing proposed by these models – sample 9 with a U-Pb calcite age of 249.4±4.8. There

60

Texas Tech University, Austin D Bertoch, August 2020

is, however, another population of U-Pb ages that present an alternative age for oil generation/illitization. The combined average age of samples 1, 2, 4, 12, and 13 (U-Pb calcite age of 263.2±1.0) potentially represents an older age when the carbonate-debris flows of the First Bone Spring underwent oil generation and illitization. This interpretation is supported by significant organic inclusions in the calcite fracture fill of sample 4 as well as quartz fill in samples 4 and 13, which is related to illitization and formed under similar temperature and pressure conditions as oil generation (Peletonen, 2009).

Clay dehydration

During illitization, waters released potentially contribute overpressured conditions and fracturing. In order to confirm this possibility, XRD analysis was performed on the bulk rock samples of the debris flows. Results measured illite-smectite whole-rock percentages from 10 % up to 30 %. These illite-smectite abundances do not reach traditional shale values (40% or greater clay abundance), though they do approach abundances where clay dehydration as a fracturing mechanism cannot be rejected (Bruce,

1984; Luo et al., 1994). Also, the presence of K-feldspar and muscovite (as indicated from

the XRD results) substantiates the possibility of illitization as potassium is needed in order

for the conversion of illite-smectite to pure illite.

Since clay dehydration and subsequent over pressuring occur at similar depths and

temperatures as oil generation, these two mechanisms most likely will have identical U-

Pb calcite fracture fill ages as briefly mentioned above. Therefore sample 9 (U-Pb calcite

age of 249.4±4.8), combined samples 1, 2, 4, 12 and 13 (U-Pb calcite age of 263.2±1.0)

both potentially represent ages of clay dehydration related fracturing events.

61

Texas Tech University, Austin D Bertoch, August 2020

Tectonic related fracturing

While there was no analytical work done on the fractures (such as fracture

orientation) that would support tensional tectonic stress regimes, basic correlation of U-

Pb calcite age to known age ranges of major tectonic events near the Delaware Basin

(using a depositional model) proved sufficient. Based on the measured U-Pb calcite ages, only one major tectonic event – the Ouachita orogeny – potentially induced fractures

within the debris flows. Samples 1, 2, 4, 12, and 13 (U-Pb calcite age of 263.2±1.0) had a

measured U-Pb age that places fracture fill right during the active Ouachita wrenching

phase and therefore this mechanism is a potential driver for fracturing based this

correlation. As was mentioned in the Introduction, due to the lack of visible fracturing in

the siliciclastic turbidites sandwiched between the carbonate debris flows, tensional

fracturing induced by tectonic stress regime changes is more difficult to support – yet it

cannot be ruled out. However, it is possible that due to mechanical differences between

the debris flows and turbidites that the debris flows would preferentially fracture due to

widespread tensional stress conditions and the turbidites be left relatively unaffected. This

interpretation therefore implies that the calcite fracture fillings and the corresponding

saturated fluids were derived solely from the carbonate units themselves

U-Pb ages and Fracturing Mechanisms

After obtaining the results from analytical methods such as HAWK rock pyrolysis,

XRD, FTIR, and LA-ICP-MS U-Pb ages of the calcite features, none of the five

mechanisms were ruled out. As was previously mentioned, three separate populations of

calcite-filled fracturing events were identified, and their positions are clarified in Figure

26. These populations were identified based on the calcite’s respective U-Pb ages and the

62

Texas Tech University, Austin D Bertoch, August 2020

timeline of potential mechanisms (Table1). In order to keep these U-Pb dates organized, a Delaware Basin model published by Sirius Exploration Geochemistry Inc. was modified and used to illustrate the calcite age populations and corresponding geologic events

(Figure 27). The three calcite U-Pb age populations will be discussed in chronological order (oldest to youngest).

63

Texas Tech University, Austin D Bertoch, August 2020

Figure 26. Simplified stratigraphic column representing the First Bone Spring Big Eddy Unit 14 Federal SWD No 1 well (modified from Figure 7). Included in the stratigraphic column are the three age populations identified, aligned with the sample belonging to the age population. Scale of the fractures and bioclasts are greatly exaggerated.

64

Texas Tech University, Austin D Bertoch, August 2020

Figure 27. Delaware Basin depositional model with ages. This model was built by using over 100 wells that penetrated through the Ellenburger Group (modified from Sirius Exploration Geochemistry Inc., 2015). Using the U-Pb calcite ages this model has been shifted slightly to more accurately represent the depositional and subsidence history interpreted from U-Pb calcite ages. This model is used to illustrate the relationship between the obtained U-Pb ages from zircons and calcite features and the corresponding basinal events that could induce fractures within the First Bone Spring debris flows. The four populations have corresponding colors to show where they occur on the model’s timeline. The base of the First Bone Spring is represented by the magenta line.

65

Texas Tech University, Austin D Bertoch, August 2020

Age Population One

The U-Pb age of Population One indicates that the initial fracturing and subsequent calcite-fill formed during the mid-late Kungurian shortly after deposition (ca. 274 Ma)

(Figure 28). The zircon volcaniclastic magmatic age of ca. 275 Ma is actually within the error of the calcite age Population One. With this age of formation and supporting fracture morphologies, the most likely mechanism for fracturing is disequilibrium compaction.

The process of disequilibrium compaction introduced conditions that likely lead to brittle deformation and then calcite fracture fill. Deposition of debris flows and turbidites in rapid succession is a likely recipe for overpressured conditions where the impermeable host rock is being too quickly buried to equilibrate via pore water expulsion. As was previously discussed in the Introduction, disequilibrium compaction is a known mechanism of fracturing where commonly rocks surpass the fracture gradient where mechanical failure ensues (Figure 2) – this is likely the case for the carbonate-debris flows of the First Bone

Spring Formation.

Disequilibrium compaction as the main driver is further supported by the morphology of the fractures comprising this U-Pb calcite age population. The “squiggly” morphology of the fractures found in samples 3 and 8 (Figure 14) is sometimes referred to as ptygmatic vein morphology. Ptygmatic veins occur when the host rock is locally less competent than the intruding fracture and calcite fill (Wilson, 1952). These fractures most likely propagated and buckled in a plastic type deformation – like squirting toothpaste into water. This also potentially indicates that the surrounding groundmass was not fully lithified at the time of fracturing. For sample 3 these ptygmatic veins are cut by planar veins that could possibly represent overpressure and/or tectonics in an elastic medium

66

Texas Tech University, Austin D Bertoch, August 2020

which is substantiated by the results of anomalous ages recorded in these planar veins

mentioned in the results section.

While this U-Pb age population places the calcite formation during the wrenching

phase of the Ouachita orogeny, the fracture morphology does not support traditional

fracturing associated with tensional fractures as the main mechanism – though fracturing

due to Ouachita wrench faulting cannot be ruled out. For mode I fractures, tensile stresses normal to the plane of the fracture would most likely incur more rigid vertical fracturing while these samples lack this morphology and instead support early onset fluid over pressuring that led to fracturing and subsequent calcite fill.

This age had further significance in that the carbonate-debris flows of the First

Bone Spring Formation are important economically as seals that halt oil migration and allow for oil pooling beneath these layers. With this age (ca. 274 Ma) comes the question of whether or not this fracturing event potentially compromised the sealing nature of the debris flows. This may influence subsequent interpretations of oil migration if predictions indicate oil migration from stratigraphically lower source beds could then potentially migrate through the now (ca. 274 Ma) fractured carbonate-debris flows of the First Bone

Spring Formation. Therefore, obtaining the age of the potential initial fracturing of the carbonate seals of the First Bone Spring could circumstantially be an important data point.

67

Texas Tech University, Austin D Bertoch, August 2020

Figure 28. The top illustration is a paleogeographic reconstruction of the greater Permian basin area during the Late Cisuralian Epoch (Kungurian Age) around 273 Ma (modified Colorado Plateau Geosystems, 2019). This is during active deposition of the First Bone Spring and during the wrenching phase of the Ouachita orogenic event. The bottom left image is the thin section for sample 3 showing the calcite filled fractures and the surrounding groundmass. The bottom right image shows the depositional model of the Delaware Basin with the U-Pb ages of samples 3 and 8 as a red star (ca. 274 Ma) which falls within error of the zircon depositional age (modified Sirius Exploration Geochemistry Inc, 2015).

Age Population Two

Of the four calcite age populations, population two consisting of samples 1, 2, 4,

12, and 13 represents the most complex age (ca. 263 Ma) to relate to a single mechanism.

In fact, it is likely that this population is the result of multiple events occurring relatively simultaneously contributing to the conditions necessary for mechanical failure and subsequent fracturing and calcite filling. The events that were potentially involved during

68

Texas Tech University, Austin D Bertoch, August 2020

this fracturing process are:1) disequilibrium compaction, 2) aquathermal expansion, 3)

hydrocarbon generation, 4) clay dehydration, and 5) tensional fracturing due tectonic

stresses. Due to the rapid subsidence during this time and the confirmed presence of TOC and illite-smectite, all five mechanisms can occur at relatively the same moment. This leads to the possibility of both mechanical and chemical compaction processes occurring simultaneously (Figure 29). Also, because this age population sits within the active wrenching phase of the Ouachita orogeny, tensional fracturing due to changing tectonic stresses is possibly and most likely controlled the orientation of the fractures comprising this U-Pb calcite age population – though orientation data was not possible.

As for mechanisms such as oil generation and clay dehydration, HAWK rock pyrolysis and XRD analysis confirmed that these fracturing mechanisms for the carbonate-debris flows of the First Bone Spring were indeed possible. While there is no inherent difference in HAWK and XRD results between this age population versus the other three age populations, age population two has other indications for oil generation and clay dehydration as the main mechanisms of fracture generation – indications such as oil inclusions and quartz (chalcedony) growth (Peletonen et al., 2009; Cobbold, 2013).

These two mechanisms would occur as soon as depths/temperatures reached the necessary values for these mechanisms to occur – 2 km burial depth and around 60°C respectively.

Based on the Sirius Exploration Geochemistry model as well as other models proposed

by Hill 1984, Luo et al. 1994, and Kinley 2008 these processes were estimated to occur

during the late Permian (Lopingian – around 250 Ma). There is reason to believe based on

the U-Pb ages of population two that oil generation and clay dehydration reached

sufficient levels at ca. 263 Ma (Middle Guadalupian) – predating the other model’s

69

Texas Tech University, Austin D Bertoch, August 2020

interpretations by roughly 10 Myr.

These results also have implications for the rate of subsidence during this time.

According to the depositional age obtained from the zircons (ca. 275 Ma) the First Bone

Spring reached the necessary depths (2 km) for oil generation close to 12 million years after deposition. Previous research had estimated that burial rate of this region ranged from 17 m/Myr upwards to 90 m/Myr. which (maintaining the 12 million years post deposition) would place the First Bone Spring at only approximately 1 km burial depth – not sufficient for oil generation (Luo et al., 1994). Assuming that the U-Pb date of this age

population marks the entrance into the oil window, and that this window commences at 2

km in depth, then the time it took from deposition to this depth would provide a linear

subsidence/burial rate of ~167m/Myr. Due to this rapid subsidence, these debris flows were passing through the mechanical compaction phase (0-2 km burial depth) and entering the chemical compaction (>2 km burial depth) phase at nearly the same interval in geologic time – leaving little time to differentiate fracture fill generated during mechanical compaction versus chemical compaction. This leads to the possible inability to resolve disequilibrium compaction versus oil generation/illitization as the most likely means of fracturing. Again because of indicators such as oil inclusions and quartz fill this research proposes that this age population (ca. 263 Ma) likely measures the U-Pb calcite age of oil generation/illitization.

With the assumption that this age population marks the entrance into the oil window, this then raises the question of how long an organic-rich rock must be exposed to depths/temperatures necessary to generate hydrocarbons and/or silica rich water during clay dehydration and contribute to host rock fracturing. These U-Pb dates seem to support

70

Texas Tech University, Austin D Bertoch, August 2020

the idea that this process occurs near instantaneously (geologically speaking) once

conditions are met – supporting the conclusion that temperature/burial depth is more important than time spent in these conditions (Robert, 1980; Barker, 1983; Price, 1983;

Kisch, 1987; Barker, 1988).

An interesting sample that is included in this U-Pb calcite age population is the shell fragment found within sample 12 (Figure 18). The U-Pb age result for this sample and its inclusion with age population two seems to indicate that the fluids produced during illitization, and catagenesis swept through various lithologic boundaries (from debris flow to debris flow) and set the uranium and lead isotopic conditions this shell fragment as well as the other three samples in this population. This is substantiated by the presence of quartz inclusions in the shell fragment – consistent with fluid infiltration (Figure 18). With this possibility of fluids sweeping the core during catagenesis and illitization, a possible reason as to why all the calcite features in the core do not reflect this could be due to different permeability and/or calcite crystal stabilities that may prevent resetting or replacement of the other calcite age populations. As for sample 12 it appears that this section of the core was infiltrated by the generated fluids during the fracturing event dated by age population two.

71

Texas Tech University, Austin D Bertoch, August 2020

Figure 29. The top illustration is a paleogeographic reconstruction of the greater Permian basin area during the Late Guadalupian Epoch (Capitanian Age) around 263 Ma (modified Colorado Plateau Geosystems, 2019). This is after the deposition of the First Bone Spring and during the wrenching phase of the Ouachita orogenic event where subsidence rates increase dramatically. The bottom left image is the thin section for sample 4 showing the calcite filled fracture with dark organic rich inclusions and quartz fill (both indicating oil generation and clay dehydration respectively). The bottom right image shows the depositional model of the Delaware Basin with the U-Pb age of the calcite veins of samples (1,2,4,12, and 13) as a green star (ca. 263 Ma) (modified Sirius Exploration Geochemistry Inc, 2015). Age Population Three

Age Population Three consists of one sample – sample 9. The U-Pb age of ca. 250

Ma places this age population after the wrenching phase of the Ouachita orogeny

(Olenekian) (Figures 30). Unlike population two, the possible mechanisms for this age population are most likely limited to two potential mechanism: 1) oil generation and 2)

72

Texas Tech University, Austin D Bertoch, August 2020

clay dehydration. This is because mechanical compaction at this point has mostly

terminated and the main driver for diagenetic events is due to chemical compaction.

With the assumption that Age Population Two represents the entrance and

commencement of catagenesis/illitization as previously discussed, then Age Population

Three would represent the ongoing process of oil generation/illitization. Since oil generation has been an ongoing process since the Late Permian continuing through the

Mesozoic, fracturing from later stages of oil generation is likely (Wiggins and Harris

1985; Mazzullo, 1986).

73

Figure 30. The top illustration is a paleogeographic reconstruction of the greater Permian basin area during the Early Triassic Period (Olenekian Age) around 249 Ma (modified Colorado Plateau Geosystems, 2019). This is after the deposition of the First Bone Spring and after wrenching phase of the Ouachita orogenic event where subsidence rates are drastically reduced. The bottom left image is the thin section for sample 9 showing the calcite filled fracture. The bottom right image shows the depositional model of the Delaware Basin with the U-Pb age of the calcite veins of sample 9 as a blue star (ca. 250 Ma) (modified Sirius Exploration Geochemistry Inc, 2015). Constraining the Delaware Basin Burial History Model

The fracturing mechanisms and the corresponding U-Pb dates help to constrain the timing of basin events that lead to more precise/constrained burial history models. The combination of U-Pb age populations (both zircon and calcite) and corresponding fracturing mechanisms help constrain information such as 1) time of deposition (ca. 275

Ma), 2) initial fracturing of the First Bone Spring Formation (ca. 274 Ma), 3) entrance

74 Texas Tech University, Austin D Bertoch, August 2020

into oil window conditions (ca. 263 Ma), 4) continuation of oil generation (ca. 250 Ma),

and 5) rates of subsidence (~ 167 m/Myr).

The timing of these events and subsequent calculations (i.e. subsidence rates) can

aid both scientific and economic inquiries. Many of these inquiries such as the timing of

deposition, initial brittle deformation, the onset of oil generation, and relative rates of

subsidence can be represented in burial history models. Burial history models, such as the one produced by Sirius Exploration Geochemistry for the Delaware Basin, act as tools

used by geologists in order to assess the previously mentioned inquiries. By adding U-Pb

zircon and calcite fracture-fill ages and then linking those ages to fracturing mechanisms,

these burial history models can be anchored by these dates – as seen for the burial history model of the Delaware Basin (Figure 31). Therefore, with a more precisely anchored burial history model, subsequent predictions utilizing these types of models can be considered less risky due to the further constraint to the model by the U-Pb age data points.

This method can be implemented in any basin of interest where similar calcite features are present, thus bringing heightened predictive capabilities to these burial history models.

75

Texas Tech University, Austin D Bertoch, August 2020

Figure 31. Sirius Exploration Geochemistry burial history models (A) showing the model unanchored by U-Pb zircon and calcite ages and (B) showing the model anchored by the depositional zircon age. For model B, anchoring the model with the depositional age (ca. 275 Ma) the base of the First Bone Spring (in magenta) indicated that the U-Pb calcite Age Population Two, which was interpreted to represent the entrance into the oil window, did likely occur when the First Bone Spring Formation reached ~2 km burial depth. Model A, on the contrary placed U-Pb calcite Age Population Two at ~1.5 km in depth, which likely is not at sufficient depths for oil generation to occur (precluding abnormally high geothermal gradients during the Late Permian). By anchoring the model with U-Pb ages more accurate interpretation can be made.

76

Texas Tech University, Austin D Bertoch, August 2020

CHAPTER VI

CONCLUSION

The carbonate-debris flows of the First Bone Spring Formation of the Delaware

Basin host a variety of calcite features such as fracture fill and bioclasts that when U-Pb

dated provide key information for the First Bone Spring deposition as well as the greater

Delaware Basin’s history as represented by burial history models. The possible mechanisms for fracture formation and later mineral fill were assessed using pre-imaging

techniques such as SEM-BSE-EDS, HAWK rock pyrolysis, XRD, FTIR, and standard optical microscopy. These analytical techniques defined the mineral assemblages,

confirmed the presence of organic carbon and illite-smectite clays, and were used to

distinguish possible fracture mechanisms that could then be related to U-Pb ages that were

obtained with LA-ICP-MS analysis. All five of the mechanisms considered

(disequilibrium compaction, aquathermal expansion, oil generation, clay dehydration, and

tensional fracturing due to tectonic stress regimes) were confirmed either using the

mentioned analytical techniques or by analyses performed in previous research on the

Delaware Basin. Thus, all five mechanisms were considered plausible sources of

fracturing of the First Bone Spring carbonate debris flows.

The resulting U-Pb calcite and zircon ages and relation to fracturing mechanisms

from this study quantified important events such as deposition (ca. 275 Ma), and the initial

fracturing event due to disequilibrium compaction (ca. 274 Ma) – shortly after deposition.

The time proposed for the First Bone Spring entering the oil window, based on the U-Pb ages obtained from 5 calcite features (ca. 263 Ma) pre-dates previously constructed models by Hill (1984), Luo et al. (1994), and Kinley (2008) (which place the First Bone

77

Texas Tech University, Austin D Bertoch, August 2020

Spring entering this window at 250 Ma) by over 10 million years. This result also implies

earlier rates of major subsidence during the Ouachita orogeny that buried the First Bone

Spring to depths near 2 km around 12 million years post deposition (~ 167m/Myr).

These findings add new, quantifiable means to further constrain and increase

predictive capabilities of burial history models – as demonstrated for the Delaware Basin burial history model. By anchoring burial history models with U-Pb ages, representing key geologic events, information such as the onset of oil migration, expulsion, seal integrity, and rates of subsidence can be more accurately represented and therefore aid in subsequent predictions of both economic and scientific importance not only for the

Delaware Basin but for any basin of interest where burial history models are implemented.

78

Texas Tech University, Austin D Bertoch, August 2020

REFERENCES

Amato, J. M., & Mack, G. H., 2012, Detrital zircon geochronology from the - Ordovician Bliss , New Mexico: Evidence for contrasting Grenville-age and Cambrian sources on opposite sides of the Transcontinental Arch. Bulletin, 124(11-12), 1826-1840.

Amerman, R., Nelson, E. P., Gardner, M. H., Trudgill, B., Shipp, R. C., Weimer, P., & Posamentier, H. W., 2011, Submarine mass transport deposits of the Permian Cutoff Formation, West Texas, USA: internal architecture and controls on overlying reservoir sand deposition. SEPM Special Publication, 96, 235-267.

Asmus J. J., and Grammar G. M., 2013, Characterization of Deepwater Cabonate Turbidites and Mass-Transport Deposits Utilizing High-Resolution Electrical Borehole Image logs: Upper Leonardian (Lower Permian) Upper Bone Spring Limestone, Delaware Basin, Southeast New Mexico and West Texas, Gulf Coast Association of Geological Societies Transactions. 63, pp. 27-65

Barker, C., 1972, Aquathermal pressuring—role of temperature in development of abnormal-pressure zones: AAPG Bulletin, v. 56, p. 2068–2071

Barker, C.E., 1983, The influence of time on metamorphism of sedimentary organic matter in selected geothermal systems, western North America: Geology, v. 11, p. 384-388.

Barker C.E., 1988, Geothermics of Petroleum Systems: Implications of the stabilization of Kerogen Thermal Maturation after a Geologically Brief Heating Duration at Peak Temperature Petroleum Systems of the United States. Vol. 1870. Washington, DC: US Geological Survey Bulletin 1870, 26-29.

Berry, F., 1973, High fluid potentials in California Coast Ranges and their tectonic significance: AAPG Bulletin, v. 57, p. 1219–1249.

Bickford, M. E., Soegaard, K., Nielsen, K. C., & McLelland, J. M., 2000, Geology and geochronology of Grenville-age rocks in the Van Horn and Franklin Mountains area, west Texas: Implications for the tectonic evolution of Laurentia during the Grenville. Geological Society of America Bulletin, 112(7), 1134-1148.

Boles, J.R., Franks, S.G., 1979, Clay diagenesis in Wilcox sandstones of Southwest Texas: implications of smectite diagenesis on sandstone cementation. Journal of Sedimentary Petrology 49 (1), 55–70.

Bradley, J., 1975, Abnormal formation pressure: AAPG Bulletin, v. 59, p. 957–973.

79

Texas Tech University, Austin D Bertoch, August 2020

Bruce C. H., 1984, Smectite Dehydration – Its Relation to Structural Development and Hydrocarbon Accumulation in Northern Gulf of Mexico Basin1, AAPG Bulletin 68 (6): 673-683 https://doi.org/10.1306/AD461363-16F7-11D7- 8645000102C1865D

Chen, Y., Zou, C., Mastalerz, M., Hu, S., Gasaway, C., & Tao, X., 2015, Applications of micro-fourier transform infrared spectroscopy (FTIR) in the geological sciences— a review. International journal of molecular sciences, 16(12), 30223-30250.

Chew, D. M., Petrus, J. A., & Kamber, B. S., 2014, U–Pb LA–ICPMS dating using accessory mineral standards with variable common Pb. Chemical Geology, 363, 185-199.

Cobbold P.R., Rodrigues N., 2007, Seepage forces, important factors in the formation of horizontal hydraulic fractures and bedding-parallel fibrous veins (‘beef’ and ‘cone-in-cone’), Geofluids 7, 313-322, doi: 10.1111/j.1468-8123.2007.00183.x

Cobbold P. R., Zanella A., Rodrigues N., and Loseth H., 2013, Bedding-parallel fibrous veins (beef and cone-in-cone): Worldwide occurrence and possible significance in terms of fluid overpressure, hydrocarbon generation and mineralization, El Sevier vol. 43, pp. 1- 20

Colorado Plateau Geosystems, 2013, Deep Time Maps: https://deeptimemaps.com/map- lists/ (accessed April 2020).

Colorado Plateau Geosystems, 2019, Deep Time Maps: https://deeptimemaps.com/map- lists/ (accessed April 2020).

Cosgrove J. W., 2001, Hydraulic Fracturing During the Formation and Deformation of a Basin: A Factor in the Dewatering of Low-Permeability Sediments. AAPG Bulletin ; 85 (4): 737–748. doi: https://doi.org/10.1306/8626C997-173B-11D7- 8645000102C1865D

Crain R., 2015, Total Organic Carbon (TOC), Crain’s Petrophysical Handbook, https://www.spec2000.net/17-totalcarbon.htm

Davis, M. D., 2015, Petroleum Geology Of The Leonardian Age, Harkey Mills Sandstone: A New Horizontal Target In The Permian Bone Spring Formation, Eddy And Lea Counties, Southeast New Mexico, MS Thesis, The University of Texas at Arlington, 118pp.

Denniston, R. F., Y. Asmerom, V. Y. Polyak, D. F. McNeill, J. S. Klaus, P. Cole, and A. F. Budd, 2008, Caribbean chronostratigraphy refined with U-Pb dating of a Miocene , Geology, 36, 151 – 154, doi:10.1130/G24280A.1.

80

Texas Tech University, Austin D Bertoch, August 2020

Dutton, S. P., M. H. Holtz, T. A. Tremblay, and H. H. Zirczy, 2000, Expansion of gas reservoir data base, Permian Basin, Texas, in The Permian Basin: Proving Ground for Tomorrow’s Technologies, Publ. 00-109, edited by W. D. DeMis et al., West Tex. Geol. Soc., Midland.

Dickinson, G., 1953, Geological aspects of abnormal reservoir pressures in Gulf Coast Louisiana: AAPG Bulletin, v. 37, p. 410–432.

Dickinson, W. R., & Lawton, T. F., 2001, to Cretaceous assembly and fragmentation of Mexico. Geological Society of America Bulletin, 113(9), 1142- 1160.

Forand, D., Heesakkers, V., & Schwartz, K., 2017, Constraints on natural fracture and in- situ stress trends of unconventional reservoirs in the Permian Basin, USA. In Unconventional Resources Technology Conference, Austin, Texas, 24-26 July 2017 (pp. 654-672). Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers.

Gawloski, T. F., 1987, Nature, distribution, and petroleum potential of Bone Spring detrital sediments along the northwest shelf of the Delaware Basin, in D. Cromwell and L. Mazzullo, eds., The Leonardian facies in W. Texas and SE New Mexico and guidebook to the Glass Mountains, west Texas: Permian Basin Section , SEPM Publication 87-27, p. 85–105.

Getty, S. R., Y. Asmerom, T. M. Quinn, and A. F. Budd, 2001, Accelerated coral extinctions in the Caribbean Basin shown by uranium-lead (U-Pb) dating, Geology, 29, 639 – 642, doi:10.1130/0091-7613(2001)0292.0.CO;2

Goodfellow, B. W., Viola, G., Bingen, B., Nuriel, P., & Kylander‐Clark, A. R., 2017, Palaeocene faulting in SE Sweden from U–Pb dating of slickenfibre calcite. Terra Nova, 29(5), 321-328.

Gretener, P. E., 1981, Pore pressure: fundamentals, general ramifications, and implications for structural geology (revised): AAPG Education Course Note Series 4, 131 p.

Hansom, J., & Lee, M. K., 2005, Effects of hydrocarbon generation, basal heat flow and sediment compaction on overpressure development: a numerical study. Petroleum Geoscience, 11(4), 353-360.

Hill, C. A., V. J. Polyak, Y. Asmerom, and P. P. Provencio, 2016, Constraints on a Late Cretaceous uplift, denudation, and incision of the Grand Canyon region, southwestern Colorado Plateau, USA, from U-Pb dating of lacustrine limestone, Tectonics, 35, 896–906, doi:10.1002/2016TC004166.

81

Texas Tech University, Austin D Bertoch, August 2020

Hills J.M., 1984, Sedimentation, Tectonism, and Hydrocarbon Generation in Delaware Basin, West Texas and Southeastern New Mexico, AAPG Bulletin, vol. 68, 250- 267

Hutcheon, I., 1986, The relationship of diagenetic mineral reactions to an overpressured zone of the Scotian Shelf (abs.), in Basins of eastern Canada and worldwide analogues: Atlantic Geoscience Society Program with Abstracts, p. 56.

Jarvie, D. M., 2012, Shale resource systems for oil and gas: Part 2—Shale-oil resource systems. Worldwide Geochemistry, LLC, Humble, Texas, U.S.A., DOI: 10.1306/13321447M973489

Jarvie, D. M., Jarvie, B. M., Weldon, W. D., & Maende, A., 2012, Components and processes impacting production success from unconventional shale resource systems. Energy & Fuels, 20(1), 295-300.

Kendall, C. G. S. C., & Schlager, W., 1981, Carbonates and relative changes in sea level. Marine geology, 44(1-2), 181-212.

Kerans, C., and Fitchen, W.M., 1995, Sequence hierarchy and facies architecture of a carbonate- ramp system: San Andres Formation of Algerita Escarpment and Western Guadalupe Mountains, West Texas and New Mexico: The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations 235, 86 p.

Kinley, T. J., Cook, L. W., Breyer, J. A., Jarvie, D. M., & Busbey, A. B., 2008, Hydrocarbon potential of the Barnett Shale (Mississippian), Delaware Basin, west Texas and southeastern New Mexico. AAPG bulletin, 92(8), 967-991.

Kisch, HJ., 1987, Correlation between indicators of very-low-grade metamorphism, in Frey, M., ed., Low temperature metamorphism: Glasgow, Blackie and Son, p. 228- 300.

Koshimizu, S., 1981, Fission track ages of pyroclastic flows in the Ashoro Formation and the Plio-Pleistocene Ikeda Formation developed in eastern Hokkaido, Japan. 北海道大学理学部紀要= Journal of the Faculty of Science, Hokkaido University. Series 4, Geology and mineralogy, 19(4), 505-518.

Law, B., and W. Dickinson, 1985, Conceptual model for origin of abnormally pressured gas accumulations in low-permeability reservoirs: AAPG Bulletin, v. 69, p. 1295– 1304

Luo, M., Baker, M. R., & LeMone, D. V., 1994, Distribution and generation of the overpressure system, eastern Delaware Basin, western Texas and southern New Mexico. AAPG bulletin, 78(9), 1386-1405.

82

Texas Tech University, Austin D Bertoch, August 2020

Luo, X., & Vasseur, G., 1992, Contributions of compaction and aquathermal pressuring to geopressure and the influence of environmental conditions (1). AAPG bulletin, 76(10), 1550-1559.

Lee M. K., and Williams D. D., 2000, Paleohydrology of the Delaware Basin, Western Texas: Overpressure Development, Hydrocarbon Migration, and Ore Genesis, AAPG Bulletin, 84 (7): 961-974

Lindsay R., 2019, Timing of Faulting/Fracturing, Permian Basin, Recollections by Robert F. Lindsay 10/2019

Lowe, D. R., & Guy, M., 2000, Slurry‐flow deposits in the Britannia Formation (Lower Cretaceous), North Sea: a new perspective on the turbidity current and debris flow problem. Sedimentology, 47(1), 31-70.

Magara, K., 1975, Reevaluation of montmorillonite dehydration as cause of abnormal pressure and hydrocarbon migration: AAPG Bulletin, v. 59, p. 292–302.

Mazzullo, S. J., 1986, Mississippi Valley-type sulfides in Lower Permian dolomites, Delaware Basin, Texas: implications for basin evolution. AAPG bulletin, 70(8), 943-952.

Meng Q., Hooker J., Cartwright J., 2017, Early overpressuring in organic-rich shales during burial: evidence from fibrous calcite veins in the Lower Shales- with-Beef Member in the Wessex Basin, UK. Journal of the Geological Society. Vol 174 pp. 869-882 https://doi.org/10.1144/jgs2016-146

Moorbath S., Taylor P.N., Orpen J.L., Treloar P., and Wilson J.F., 1987, First direct radiometric dating of Archaean stromatolitic limestone. Nature 326, 865-867

Montgomery, S. L., 1997, Permian Bone Spring formation: sandstone play in the Delaware Basin part I—slope. AAPG bulletin, 81(8), 1239-1258.

Mukherjee, P. K., Souders, A. K., & Sylvester, P. J., 2019, Accuracy and precision of U– Pb zircon geochronology at high spatial resolution (7–20 μm spots) by laser ablation-ICP-single-collector-sector-field-mass spectrometry. Journal of Analytical Atomic Spectrometry, 34(1), 180-192.

Noce, C. M., Zuccheti, M., Baltazar, O. F., Armstrong, R., Dantas, E., Renger, F. E., & Lobato, L. M., 2005, Age of felsic volcanism and the role of ancient continental crust in the evolution of the Neoarchean Rio das Velhas Greenstone belt (Quadrilátero Ferrífero, Brazil): U–Pb zircon dating of volcaniclastic graywackes. Precambrian Research, 141(1-2), 67-82.

83

Texas Tech University, Austin D Bertoch, August 2020

Nuriel, P., Weinberger, R., Kylander-Clark, A. R. C., Hacker, B. R., & Craddock, J. P., 2017, The onset of the Dead Sea transform based on calcite age-strain analyses. Geology, 45(7), 587-590.

Ogata K., Poganik Z., Pini G.A., Tunis G., Festa A., Camerlenghi A., Rebesco M., 2014, The carbonate mass transport deposits of the Paleogene Friuli Basin (Italy/Slovenia): internal anatomy and inferred genetic processes, Marine Geology, ISSN 0025-3227, Stampa pp. 88-110.

Osborne, M. J., and R. E. Swarbrick, 1997, Mechanisms for generating overpressure in sedimentary basins: a re-evaluation: AAPG Bulletin, v. 81, no. 6, p. 1023–1041.

Parrish, R. R., Parrish, C. M., & Lasalle, S., 2018, Vein calcite dating reveals Pyrenean orogen as cause of Paleogene deformation in southern England. Journal of the Geological Society, 175(3), 425-442.

Peltonen, C., Marcussen, Ø., Bjørlykke, K., & Jahren, J., 2009, Clay mineral diagenesis and quartz cementation in mudstones: The effects of smectite to illite reaction on rock properties. Marine and Petroleum Geology, 26(6), 887-898.

Plumley, W. J., 1980, Abnormally high fluid pressure: survey of some basic principles: AAPG Bulletin, v. 64, p. 414–430.

Powers, M. C., 1967, Fluid-release mechanisms in compacting marine mudrocks and their importance in oil exploration: AAPG Bulletin, v. 51, p. 1240–1254.

Price, L.C., 1983, Geologic time as a parameter in organic metamorphism and vitrinite reflectance as an absolute paleogeothermometer: Journal of Petroleum Geology, v. 6, p. 5-38.

Rigby J.K., 1958, Mass Movements in Permian Rocks of Trans-Pecos Texas, Journal of Sedimentary Petrology, Vol. 28, No. 3, pp. 298-315 Figs 1-14, September, 1958.

Ring, U., & Gerdes, A., 2016, Kinematics of the Alpenrhein‐Bodensee graben system in the Central Alps: Oligocene/Miocene transtension due to formation of the Western Alps arc. Tectonics, 35(6), 1367-1391.

Roberts N.M.W., Rasbury E.T., Parrish R.R., Smith C.J., Horstwood M.S.A., and Condon D.J., 2017, A calcite reference material for LA-ICP-MS U-Pb geochronology, Geochem. Geophys. Geosyst., 18, 2807-2814, doi:10.002/2016GC006784

84

Texas Tech University, Austin D Bertoch, August 2020

Roberts, N. M., & Walker, R. J., 2016, U-Pb geochronology of calcite-mineralized faults: Absolute timing of rift-related fault events on the northeast Atlantic margin. Geology, 44(7), 531-534.

Roberts, N. M. W., Drost, K., Horstwood, M. S. A., Condon, D. J., Chew, D., Drake, H., Milodowski, A. E., McLean, N. M., Smye, A. J., Walker, R. J., Haslam, R., Hodson, K., Imber, J., and Beaudoin, N.: LA-ICP-MS U-Pb carbonate geochronology: strategies, progress, and application to fracture-fill calcite, Geochronology Discuss., https://doi.org/10.5194/gchron-2019-15, in review, 2019.

Robert, P., 1980, The optical evolution of kerogen and geothermal histories applied to oil and gas exploration, in Durand, B., ed., Kerogen: Paris, Editions Technip, p. 385- 414.

Rasbury, E. T., and J. M. Cole, 2009, Directly dating geologic events: U-Pb dating of carbonates, Rev. Geophys., 47, RG3001, doi:10.1029/2007RG000246.

Rubey, W. W., and M. K. Hubbert, 1959, Role of fluid pressure in mechanics of overthrust faulting, II. Overthrust belt in geosynclinal area of western Wyoming in light of fluid pressure hypothesis: Geological Society of America Bulletin, v. 70, p. 167– 205.

Saller, A.H., Barton, J.W. and Barton, R.E., 1989, Slope sedimentation associated with a vertically building shelf. Bone Spring Formation, Mescalero Escarpe Field, southeastern New Mexico. In: P.D. Crevello, J.L. Wilson, J.F. Sarg and J.F. Read (Editors), Controls on Carbonate Platform and Basin Development. Soc. Econ. Paleontol. Mineral., Spec. Publ., 44: 275-28.

Sato, D., Matsuura, H., & Yamamoto, T., 2016, Timing of the Late Cretaceous ignimbrite flare-up at the eastern margin of the Eurasian Plate: New zircon U–Pb ages from the Aioi–Arima–Koto region of SW Japan. Journal of Volcanology and Geothermal Research, 310, 89-97.

Schmidt, G. W., 1973, Interstitial water composition and geochemistry of deep Gulf Coast shales and sandstones: AAPG Bulletin, v. 57, p. 321–337

Sharp, J. M., 1976, Momentum and energy balance equations for compacting sediments: Mathematical Geology, v. 8, p. 305–322

Shukla, P., Kumar, V., Curtis, M., Sondergeld, C. H., & Rai, C. S., 2013, Nanoindentation studies on shales. In 47th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association.

85

Texas Tech University, Austin D Bertoch, August 2020

Sirius Exploration Geochemisty Inc., 2015, Permian Basin Maturity Modeling Study, https://siriusdummy.wordpress.com/permian-basin-maturity-modeling-study/

Sinclair, T. D., 2007, The generation and continued existence of overpressure in the Delaware Basin, Texas (Doctoral dissertation, Durham University).

Smeraglia, L., Bernasconi, S. M., Berra, F., Billi, A., Boschi, C., Caracausi, A., Rizzo, A. L., 2018, Crustal-scale fluid circulation and co-seismic shallow comb-veining along the longest normal fault of the central Apennines, Italy. Earth and Planetary Science Letters, 498, 152-168.

Smith, P. E., Farquhar, R. M., & Hancock, R. G., 1991, Direct radiometric age determination of carbonate diagenesis using U-Pb in secondary calcite. Earth and Planetary Science Letters, 105(4), 474-491.

Spencer, C., 1987, Hydrocarbon generation as a mechanism for overpressure in Rocky Mountain region: AAPG Bulletin, v. 71, p. 368–388.

Srodon, J., 1999, Nature of mixed-layer clays and mechanisms of their formation and alteration. Annual Review of Earth and Planetary Sciences, 27 (1), 19-53.

Stolz, D., 2014, Reservoir character of the Avalon shale (Bone Spring Formation) of the Delaware Basin, West Texas and Southeast New Mexico: Effect of carbonate-rich sediment gravity flows (Doctoral dissertation, University of Kansas).

Timko, D. J., and W. H. Fertl, 1971, Relationship between hydrocarbon accumulation and geopressure and its economic significance: Journal of Petroleum Technology, v. 22, p. 923–930.

Towe, K.M., 1962, Clay mineral diagenesis as a possible source of silica cement in sedimentary rocks. Journal of Sedimentary Petrology 32 (1), 26–28.

Walker, R. G., 1978, Deep-water sandstone facies and ancient submarine fans: models for exploration for stratigraphic traps. AAPG Bulletin, 62(6), 932-966.

Wang, Z. S., Rasbury, E. T., Hanson, G. N., & Meyers, W. J., 1998, Using the U-Pb system of calcretes to date the time of sedimentation of clastic sedimentary rocks. Geochimica et Cosmochimica Acta, 62(16), 2823-2835.

Weaver, C.E., 1959, The clay petrology of sediments. In: Swineford, A. (Ed.), Claysand Clay Minerals. Pergamon Press, Oxford, United Kingdom, pp. 154–187.

Wendt, I., 1984, A three-dimensional U-Pb discordia plane to evaluate samples with common lead of unknown isotopic composition. Chemical geology, 46(1), 1-12.

86

Texas Tech University, Austin D Bertoch, August 2020

Wilson, G., 1952, Ptygmatic structures and their formation. Geological Magazine, 89(1), 1-21.

Wiggins, W. D., & Harris, P. M., 1985, Burial diagenetic sequence in deep-water allochthonous dolomites, Permian Bone Spring Formation, southeast New Mexico, The Society of Economic Paleontologists and Mineralogists (SEPM) Deep-Water Carbonates (CW6).

Yang, T., Cao, Y. C., Wang, Y. Z., Friis, H., Haile, B. G., Xi, K. L., & Zhang, H. N., 2016, The coupling of dynamics and permeability in the hydrocarbon accumulation period controls the oil-bearing potential of low permeability reservoirs: a case study of the low permeability turbidite reservoirs in the middle part of the third member of Shahejie Formation in Dongying Sag. Petroleum Science, 13(2), 204- 22.

Zhao, J., Li, J., & Xu, Z., 2018, Advances in the origin of overpressures in sedimentary basins. Petroleum Research, 3(1), 1-24.

Zheng, Y. F., 1992, The three-dimensional U-Pb method: Generalized models and implications for U-Pb two-stage systematics. Chemical Geology, 100(1-2), 3-18.

87

Texas Tech University, Austin D Bertoch, August 2020

APPENDIX A

HAWK PYROLYSIS

88 Texas Tech University, Austin D Bertoch, August 2020

S2- PI- S1-Free S0 Kerogen S3 Production Tmax- S3CO Weight Oil (S1/TOC)10 Sample # Depth (ft) mgHC/g Yield (mgCO2/ Index Maturity mgCO/g (mg) (mgHC/g 0 rock (mgHC/g g rock) (S1/(S1+S2) (°C) rock rock) rock) ) 1 8531 55.2 0 2.48 112.2 2.36 0.28 0.51 458 0.66 2 8531.65 41.2 0 1.49 40.7 2.68 0.54 0.36 457 0.59 3 8532.8 49.8 0 2.25 72.6 3.67 0.18 0.38 460 0.61 4 8534.65 45.3 0 2.76 107.4 3.21 0.45 0.46 460 0.53 5 8557.7 56.1 0 5.31 198.1 4.1 0.3 0.56 437 0.39 6 8562.65 58.2 0 1.16 60.4 1.15 0.39 0.5 447 0.62 7 8624.9 49.9 0 0.55 20.4 0.86 0.46 0.39 452 0.72 8 8628.4 59.7 0 0.47 28.8 1.22 0.32 0.28 453 0.47 9 8632.1 46.5 0 0.35 15.8 0.39 0.63 0.47 450 0.68 10 8635.65 53.2 0 1.46 35.8 2.35 0.66 0.38 449 0.33 11 8689.25 46.5 0 0.52 18.8 2.43 0.61 0.18 450 0.45 12 8691.4 47.8 0 0.56 18.9 0.51 0.67 0.52 447 0.44 13 8735.3 54.4 0 1.41 42.6 9.61 0.43 0.13 452 0.51 14 8735.5 55.8 0 0.14 4.4 0.25 0.49 0.36 449 0.57 15 8737 53 0 1.24 40.8 6.13 0.45 0.17 453 0.4 16 8766.25 49.7 0 0.62 32.5 1.08 0.41 0.36 452 0.61 17 8793.05 54.6 0 0.11 4.8 0.07 0.77 0.62 337 0.37

89 Texas Tech University, Austin D Bertoch, August 2020

TOC-Total S3' S3'CO S4CO S5 GOC- NGOC-Non- AI-Adsorption S4CO2 Organic mgCO2/g mgCO/g mgCO/g mgCO2/g Generative OC generative OC Index Weight mgCO2/g rock Carbon rock rock rock rock Weight % Weight % % Weight % 0.35 0.16 37.95 16.87 23.28 0.45 1.76 2.21 1.81 0.75 0.29 83.04 23.21 25.16 0.4 3.26 3.66 3 0.5 0.26 71.53 14.16 67.5 0.54 2.56 3.1 2.54 0.55 0.23 45.3 18.43 32.17 0.55 2.03 2.57 2.11 0.45 0.18 46.27 13.77 21.94 0.83 1.85 2.68 2.2 0.49 0.17 36.28 16.15 32.14 0.24 1.68 1.92 1.57 0.62 0.18 66.96 16.55 32.37 0.17 2.54 2.7 2.22 0.48 0.21 37.83 9.82 23.17 0.18 1.45 1.63 1.34 0.65 0.32 62.14 9.44 39.75 0.12 2.1 2.21 1.82 0.73 0.14 115.84 13.15 65.8 0.36 3.72 4.08 3.35 1.2 0.39 69 13.77 53.33 0.3 2.47 2.77 2.27 0.98 0.18 84.91 11.93 37.65 0.13 2.83 2.96 2.43 1.1 0.18 64.02 13.78 63.45 0.97 2.34 3.31 2.72 1.04 0.15 94.34 11.65 62.21 0.07 3.07 3.15 2.58 0.55 0.22 68.84 11.71 58.8 0.66 2.38 3.04 2.49 0.53 0.16 47.12 10.22 60.26 0.19 1.72 1.91 1.56 1.1 0.14 66.42 10.4 75.64 0.06 2.26 2.31 1.9

90 Texas Tech University, Austin D Bertoch, August 2020

HI- OI- OI`- CaCO3- OSI-Oil CC- Hydrogen Oxygen Oxygen Calcium Sat.Index TOC(-S1) Carbonat Index Index index Carbonat mgHC/gT Weight % e Carbon mgHC/gT mgCO2/g mgCO2+ e eq. OC Weight % OC TOC CO/gTOC Weight % 112 1.99 106 12 42 0.65 5.4 40 3.53 73 14 30 0.71 5.94 72 2.9 118 5 25 1.86 15.5 107 2.33 124 17 38 0.9 7.48 198 2.23 152 11 25 0.61 5.12 60 1.82 59 20 52 0.89 7.45 20 2.65 31 17 43 0.9 7.53 28 1.59 74 19 48 0.65 5.41 15 2.18 17 28 59 1.11 9.24 35 3.95 57 16 24 1.82 15.15 18 2.71 87 22 38 1.5 12.46 18 2.91 17 22 37 1.06 8.81 42 3.19 290 13 28 1.76 14.7 4 3.13 7 15 33 1.73 14.4 40 2.93 201 14 27 1.62 13.53 32 1.85 56 21 53 1.66 13.84 4 2.3 3 33 49 2.1 17.47

91 Texas Tech University, Austin D Bertoch, August 2020

APPENDIX B

LA-ICP- MS U-Pb ZIRCON GEOCHRONOL OGY

92 Texas Tech University, Austin D Bertoch, August 2020 Table 1. U-Pb Isotope Data for Zircon, Ash Bed (c8), First Bone Spring Formation (HH-103564 8628), Delaware Basin

2 2 26/01/2020 Mineral Isotope Laser Laboratory (MILL), Texas Tech University, 7 µm spots, 30 sec total ablation times Data for Tera-Wasserburg plot Data for Wetherill plot 206 1 1 206 204 238 206 207 206 207 235 206 238 207 235  Analysis Number Grain-Spot No. Source File Date/Time Duration (s) #points Pb cps U ppm Th ppm Th/U Pb/ Pb 2SE U/ Pb 2SE Pb/ Pb 2SE Pb/ U 2SE Pb/ U 2SE Rho Pb/ U 

Ash Bed Magmatic Zircons ‐ used for Concordia Age Output_1_2 1‐2. 10967c_TRA_Data 26/01/2020 (1) 21:06:51.75 2.43 12 76200 483 321 0.66 544 22 22.9885 0.8456 0.05180 0.00230 0.3070 0.0140 0.04350 0.00160 0.49035 271 11 Output_1_12 11‐1. 10981c_TRA_Data 26/01/2020 (1) 21:36:09.25 12.26 62 43200 323 342 1.06 445 41 22.5734 1.0701 0.05400 0.00200 0.3220 0.0110 0.04430 0.00210 0.48757 283 8 Output_1_14 11‐3. 10987c_TRA_Data 26/01/2020 (1) 21:46:26.23 7.37 37 29600 202 185 0.92 370 26 23.0947 1.0667 0.05420 0.00310 0.3050 0.0170 0.04330 0.00200 0.20277 269 13 Output_1_15 11‐4. 10988c_TRA_Data 26/01/2020 (1) 21:47:46.04 1.25 7 106000 1189 1770 1.49 5300 330 22.8833 0.8378 0.05170 0.00230 0.3080 0.0130 0.04370 0.00160 0.06406 272 10 Output_1_18 15‐1. 10991c_TRA_Data 26/01/2020 (1) 21:53:02.91 3.12 16 201000 2169 48 0.02 2233 92 23.3100 0.8150 0.05120 0.00130 0.3089 0.0078 0.04290 0.00150 0.63841 273 6 Ash Bed Magmatic Zircons ‐ included for Discordia model age Output_1_1 1‐1. 10966c_TRA_Data 26/01/2020 (1) 21:05:16.98 7.55 38 68700 470 360 0.77 1145 28 27.1739 1.1815 0.05240 0.00230 0.2640 0.0140 0.03680 0.00160 0.67998 238 11 Output_1_3 2‐1. 10968c_TRA_Data 26/01/2020 (1) 21:08:22.50 6.38 32 121000 807 561 0.70 605 21 26.1643 0.9584 0.05180 0.00180 0.2721 0.0072 0.03822 0.00140 0.42086 244 6 Output_1_9 8‐1. 10978c_TRA_Data 26/01/2020 (1) 21:30:11.50 14.52 73 20800 166 127 0.77 260 16 28.8850 2.3362 0.05550 0.00510 0.2520 0.0260 0.03462 0.00280 0.32940 228 20 Output_1_10 8‐2. 10979c_TRA_Data 26/01/2020 (1) 21:31:37.10 7.91 40 24650 227 163 0.72 411 15 31.6456 3.1045 0.05550 0.00680 0.2320 0.0440 0.03160 0.00310 0.40269 212 33 Output_1_13 11‐2. 10986c_TRA_Data 26/01/2020 (1) 21:44:30.80 10.78 54 22400 231 193 0.83 2240 57 27.0270 1.3879 0.05330 0.00540 0.2670 0.0290 0.03700 0.00190 0.54227 239 22 Output_1_19 17‐1. 10996c_TRA_Data 26/01/2020 (1) 22:01:02.53 7.55 38 112000 1110 368 0.33 2800 275 29.8954 2.0556 0.05130 0.00350 0.2452 0.0230 0.03345 0.00230 0.70089 223 18

Ash Bed Inherited/Detrital Zircons ‐ Concordant Grains Output_1_11 10‐1. 10980_TRA_Data 26/01/2020 (1) 21:34:08.11 1.25 6 92800 770 30 0.04 387 20 19.2678 1.3365 0.05590 0.00260 0.3830 0.0270 0.05190 0.00360 0.40192 329 21 Output_1_16 12‐1. 10989c_TRA_Data 26/01/2020 (1) 21:49:24.80 1.42 7 659000 1660 658 0.40 1883 109 4.9975 0.2747 0.07890 0.00390 2.1580 0.0390 0.20010 0.01100 0.27993 1167 12

Ash Bed Inherited/Detrital Zircons ‐ Discordant Grains Output_1_6 5‐1. 10971c_TRA_Data 26/01/2020 (1) 21:17:10.24 5.89 30 162000 231 44 0.19 1620 100 5.1840 0.2472 0.10410 0.00280 2.7600 0.0910 0.19290 0.00920 0.89630 1341 24 Output_1_8 6‐1. 10977c_TRA_Data 26/01/2020 (1) 21:26:14.94 7.70 39 245000 449 251 0.56 2450 390 6.4516 0.2622 0.07940 0.00140 1.6500 0.0480 0.15500 0.00630 0.82694 988 18 Output_1_20 18‐1. 10997c_TRA_Data 26/01/2020 (1) 22:03:36.76 8.93 45 352900 987 920 0.93 35290 810 8.6281 0.3276 0.06950 0.00100 1.1350 0.0270 0.11590 0.00440 0.84069 769 13 Output_1_21 18‐2. 10998c_TRA_Data 26/01/2020 (1) 22:04:46.91 5.03 25 296000 1127 585 0.52 1233 88 10.8814 0.4618 0.08050 0.00510 1.0300 0.0500 0.09190 0.00390 0.05072 717 24 Output_1_24 23‐1. 11005c_TRA_Data 26/01/2020 (1) 22:14:02.17 6.66 34 286300 1575 119 0.08 2202 63 12.6103 0.4612 0.06840 0.00190 0.7520 0.0310 0.07930 0.00290 0.55678 569 18 Output_1_25 23‐2. 11006c_TRA_Data 26/01/2020 (1) 22:15:09.29 7.91 40 380000 1700 58 0.03 1000 39 10.1112 0.3169 0.07900 0.00170 1.0860 0.0290 0.09890 0.00310 0.41981 746 14

Zircon Secondary Reference Materials Temora2_1 Temora2‐1 10962c_TRA_Data 26/01/2020 (1) 20:57:34.35 2.07 10 26200 124 52 0.42 655 35 14.4509 0.8562 0.05420 0.00500 0.5070 0.0540 0.06920 0.00410 0.59707 415 37 Temora2_2 Temora2‐2 10974c_TRA_Data 26/01/2020 (1) 21:21:40.38 2.54 13 22710 112 43 0.38 252 11 14.8810 1.0629 0.05710 0.00480 0.5220 0.0590 0.06720 0.00480 0.70645 424 40 Temora2_3 Temora2‐3 10992c_TRA_Data 26/01/2020 (1) 21:55:00.89 4.77 24 18120 107 40 0.37 18120 570 13.7931 0.8561 0.05110 0.00530 0.5230 0.0560 0.07250 0.00450 0.44983 424 37 Temora2_4 Temora2‐4 11002c_TRA_Data 26/01/2020 (1) 22:10:20.77 4.68 24 21600 130 56 0.43 144 8 14.9925 0.7193 0.05530 0.00450 0.5100 0.0430 0.06670 0.00320 0.34552 416 30 Temora2_5 Temora2‐5 11009c_TRA_Data 26/01/2020 (1) 22:22:46.71 4.97 25 23960 171 55 0.32 599 25 15.7729 0.8459 0.05490 0.00370 0.4860 0.0430 0.06340 0.00340 0.69528 400 29

PL_1 Plesovice‐1 10961c_TRA_Data 26/01/2020 (1) 20:55:57.98 4.73 24 267000 1650 168 0.10 5340 260 18.3486 0.6060 0.05370 0.00120 0.3983 0.0097 0.05450 0.00180 0.45806 340 7 PL_2 Plesovice‐2 10973c_TRA_Data 26/01/2020 (1) 21:20:23.50 4.28 21 174900 1042 105 0.10 8745 415 18.5874 0.6910 0.05420 0.00180 0.3960 0.0140 0.05380 0.00200 0.43491 338 10 PL_3 Plesovice‐3 10983c_TRA_Data 26/01/2020 (1) 21:40:46.60 5.16 26 213000 1640 171 0.10 21300 1100 18.3857 0.5747 0.05410 0.00100 0.3986 0.0099 0.05439 0.00170 0.63701 341 7 PL_4 Plesovice‐4 11001c_TRA_Data 26/01/2020 (1) 22:09:07.06 4.35 22 217000 1620 176 0.11 2713 150 19.1205 0.7312 0.05330 0.00140 0.3870 0.0140 0.05230 0.00200 0.70392 332 11

FCT_1 FCT‐1 10963c_TRA_Data 26/01/2020 (1) 20:58:46.21 2.54 13 12130 843 623 0.74 121 7 228.8330 11.5202 0.04940 0.00770 0.0291 0.0043 0.00437 0.00022 0.07860 29.1 4.2 FCT_2 FCT‐2 10982c_TRA_Data 26/01/2020 (1) 21:39:43.26 3.04 15 11720 1229 846 0.69 1172 70 260.4167 16.2760 0.05210 0.00710 0.0268 0.0032 0.00384 0.00024 0.17970 26.9 3.1 FCT_3 FCT‐3 10993c_TRA_Data 26/01/2020 (1) 21:56:08.30 1.01 5 15100 1767 1109 0.63 137 8 243.9024 18.4414 0.04860 0.00680 0.0278 0.0037 0.00410 0.00031 0.24184 27.8 3.7 FCT_4 FCT‐4 11010c_TRA_Data 26/01/2020 (1) 22:23:55.79 1.00 5 8710 1036 1293 1.25 40 2 242.1308 22.2784 0.04930 0.00500 0.0278 0.0049 0.00413 0.00038 0.96416 27.9 4.8

Zircon Calibration Standard Z_91500_1 91500‐1 10956c_TRA_data 26/01/2020 (1) 20:44:53.81 9.67 49 43500 78 30 0.38 640 28 5.5402 0.2486 0.07470 0.00230 1.9440 0.0960 0.18050 0.00810 0.78495 1090 32 Z_91500_2 91500‐2 10957c_TRA_Data 26/01/2020 (1) 20:46:20.09 3.13 15 45300 90 34 0.38 348 48 5.9524 0.3897 0.07580 0.00360 1.8000 0.1400 0.16800 0.01100 0.79566 1040 48 Z_91500_3 91500‐3 10958c_TRA_Data 26/01/2020 (1) 20:52:15.43 6.61 34 42400 81 31 0.38 1413 87 5.5340 0.2603 0.07480 0.00250 1.8530 0.0800 0.18070 0.00850 0.68598 1061 28 Z_91500_4 91500‐4 10959c_TRA_Data 26/01/2020 (1) 20:53:16.89 8.42 42 41200 78 29 0.37 1030 53 5.5991 0.2445 0.07350 0.00270 1.7940 0.0820 0.17860 0.00780 0.67025 1039 29 Z_91500_5 91500‐5 10960c_TRA_Data 26/01/2020 (1) 20:54:22.11 4.38 22 40900 81 30 0.37 1023 83 5.5556 0.4012 0.07760 0.00410 1.9100 0.1800 0.18000 0.01300 0.83521 1075 60 Z_91500_6 91500‐6 10964c_TRA_Data 26/01/2020 (1) 21:00:34.22 1.54 8 52700 82 32 0.39 479 20 5.2632 0.3047 0.07370 0.00620 1.8900 0.1900 0.19000 0.01100 0.63828 1075 68 Z_91500_7 91500‐7 10965c_TRA_Data 26/01/2020 (1) 21:01:36.10 5.66 28 52100 78 30 0.38 5210 230 5.6561 0.2879 0.07510 0.00230 1.8200 0.1000 0.17680 0.00900 0.81750 1050 36 Z_91500_8 91500‐8 10975c_TRA_Data 26/01/2020 (1) 21:22:54.48 7.69 38 45100 80 29 0.37 4510 210 5.6243 0.2626 0.07510 0.00260 1.8170 0.0830 0.17780 0.00830 0.67892 1047 31 Z_91500_9 91500‐9 10976c_TRA_Data 26/01/2020 (1) 21:23:57.44 5.38 28 45200 80 31 0.38 4520 190 5.4645 0.3285 0.07450 0.00320 1.8500 0.1200 0.18300 0.01100 0.73784 1058 42 Z_91500_10 91500‐10 10984c_TRA_Data 26/01/2020 (1) 21:41:53.95 6.94 35 36720 80 30 0.38 1224 33 5.6148 0.3153 0.07460 0.00240 1.8100 0.1000 0.17810 0.01000 0.79364 1045 36 Z_91500_11 91500‐11 10985c_TRA_Data 26/01/2020 (1) 21:42:55.63 6.92 35 36300 81 30 0.37 1815 80 5.4259 0.2826 0.07530 0.00310 1.8880 0.0930 0.18430 0.00960 0.56909 1072 32 Z_91500_12 91500‐12 10994c_TRA_Data 26/01/2020 (1) 21:57:24.42 10.09 51 36100 79 30 0.38 2579 100 5.5463 0.2522 0.07500 0.00240 1.9180 0.0920 0.18030 0.00820 0.72265 1081 32 Z_91500_13 91500‐13 10995c_TRA_Data 26/01/2020 (1) 21:58:32.05 8.96 46 38200 82 30 0.37 38200 1600 5.7670 0.2960 0.07480 0.00230 1.8160 0.0790 0.17340 0.00890 0.71747 1053 30 Z_91500_14 91500‐14 11003c_TRA_Data 26/01/2020 (1) 22:11:28.95 10.20 51 37400 80 30 0.37 935 40 5.5310 0.2600 0.07520 0.00230 1.9000 0.1000 0.18080 0.00850 0.80807 1072 35 Z_91500_15 91500‐15 11004c_TRA_Data 26/01/2020 (1) 22:12:33.91 6.83 34 37900 80 30 0.37 37900 1300 5.6529 0.3100 0.07420 0.00290 1.8300 0.1100 0.17690 0.00970 0.75968 1050 38 Z_91500_16 91500‐16 11011c_TRA_Data 26/01/2020 (1) 22:25:05.73 9.40 47 36600 81 30 0.38 407 16 5.5866 0.2497 0.07600 0.00240 1.8730 0.0770 0.17900 0.00800 0.62312 1068 27 Z_91500_17 91500‐17 11012c_TRA_Data 26/01/2020 (1) 22:26:08.85 10.39 53 37400 77 29 0.37 340 16 5.6022 0.2605 0.07400 0.00230 1.8160 0.0900 0.17850 0.00830 0.77490 1045 32 Z_91500_18 91500‐18 11013c_TRA_Data 26/01/2020 (1) 22:27:09.99 3.49 18 42200 87 33 0.38 248 23 5.5249 0.3358 0.07490 0.00340 1.8300 0.0960 0.18100 0.01100 0.61493 1054 33

Notes 1 Concentration uncertainty c.20%. Calibration standard: 91500m zircon (U=80 ppm, Th=30 ppm) ( Wiedenbeck et al. 2004) 2 Data corrected for downhole U/Pb fractionation using Iolite v.3.1 and 91500 zircon as calibration standard 3 Decay constants of Jaffey et al . (1971, Physical Reviews, C 4: 1889-1906) Precision measurement of half-lives and specific activities of 235U and 238U 4 Uncertainties quoted are Iolite output of 2SE for isotopic ratios, including all propagated random errors (Internal error + Calculated excess uncertainity) and expressed as 2prop for age (Paton et al . (2010) G3, 11, Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction, doi: 10.1029/2009GC002618.) 5 206 238 207 206 Uncertainties including systematic errors expressed for age as 2sys ( Pb/ U = 1%, Pb/ Pb = 0.5%) 6 Concordence calculated as (206Pb-238U age/207Pb-235U age)*100 7 Concordance calculated as (206Pb-238U age/207Pb-206Pb age)*100

93 Texas Tech University, Austin D Bertoch, August 2020

3 Dates (Ma) 6/38 - 7/35 6/38 - 7/6  206 238 207 206 6 7 sys Pb/ U  sys Pb/ Pb  sys % Conc % Conc

13 275 10 13 256 59 60 101 107 11 279 13 16 389 42 44 99 72 16 273 13 15 409 60 62 101 67 12 276 10 13 289 61 62 101 95 8 271 9 12 265 41 42 99 102

13 233 10 12 295 69 70 98 79 8 242 9 11 274 46 47 99 88 23 219 17 20 467 100 102 96 47 38 200 19 21 488 180 182 95 41 25 234 12 14 363 140 142 98 65 21 212 14 16 270 35 36 95 79

23 326 22 25 438 72 74 99 74 19 1176 58 70 1189 46 52 101 99

32 1136 49 60 1699 25 33 85 67 25 929 35 44 1183 22 28 94 79 18 707 26 32 912 16 21 92 78 30 567 23 28 1180 100 106 79 48 22 492 17 22 877 32 36 86 56 19 608 18 24 1167 38 44 82 52

40 431 25 29 375 80 82 104 115 43 419 29 33 516 93 96 99 81 41 451 27 31 330 120 122 106 137 32 416 19 23 450 120 122 100 92 33 396 21 24 415 86 88 99 95

10 342 11 14 351 23 25 101 98 13 338 12 16 390 41 43 100 87 10 341 10 14 377 30 32 100 91 13 329 12 15 346 46 48 99 95

4.5 28.1 1.4 1.7 265 86 87 97 11 3.4 24.7 1.6 1.8 400 140 142 92 6 3.9 26.4 2.0 2.3 430 570 572 95 6 5.1 26.6 2.4 2.7 190 110 111 95 14

40 1068 44 54 1050 34 39 98 102 57 1000 58 70 1073 39 44 96 93 35 1070 46 56 1058 41 46 101 101 36 1059 43 52 1026 31 36 102 103 69 1064 72 81 1119 45 51 99 95 73 1121 62 70 1042 80 85 104 108 43 1049 49 59 1070 32 37 100 98 36 1054 45 55 1065 50 55 101 99 49 1082 58 70 1044 47 52 102 104 43 1055 56 64 1052 47 52 101 100 39 1089 52 62 1075 43 48 102 101 39 1068 45 55 1064 40 45 99 100 35 1029 48 58 1056 32 37 98 97 42 1070 46 56 1071 26 31 100 100 46 1049 53 63 1041 40 45 100 101 34 1061 44 54 1089 44 49 99 97 39 1058 45 55 1033 34 39 101 102 41 1072 62 70 1061 57 62 102 101

94 Texas Tech University, Austin D Bertoch, August 2020

APPENDIX C

LA-ICP-MS U-Pb CALCITE GEOCHRONOL OGY

95 Texas Tech University, Austin D Bertoch, August 2020

Table 1. LA‐ICP‐MS U‐Pb Results for S1 Bone Spring Carbonate Veins

Mea

Pb206_CPS_ Sequence Grain‐Analysis No. Source file DateTime Durations Total points Pb206_CPS Int2SE Pb207_CPS

Crystallization Age Population (268 +/‐6 Ma, n=11) Sample_1_1 S1‐1 11141c_TRA_Data 14/03/2020 (7) 16:11:14.36 9.1503 47 1240 220 960 Sample_1_2 S1‐2 11141c_TRA_Data 14/03/2020 (7) 16:12:16.57 9.7445 49 1030 140 455 Sample_1_3 S1‐3 11141c_TRA_Data 14/03/2020 (7) 16:12:47.76 9.8633 50 1390 130 251 Sample_1_4 S1‐4 11141c_TRA_Data 14/03/2020 (7) 16:13:45.28 14.854 75 3080 120 826 Sample_1_5 S1‐5 11141c_TRA_Data 14/03/2020 (7) 16:14:44.93 10.042 50 446 69 328 Sample_1_6 S1‐6 11141c_TRA_Data 14/03/2020 (7) 16:15:15.77 6.3577 32 1060 260 740 Sample_1_7 S1‐7 11142c_TRA_Data 14/03/2020 (7) 16:32:33.02 13.428 68 576 61 340 Sample_1_8 S1‐8 11142c_TRA_Data 14/03/2020 (7) 16:33:23.05 6.2389 32 240 56 168 Sample_1_9 S1‐9 11142c_TRA_Data 14/03/2020 (7) 16:34:13.68 11.527 58 484 52 228 Sample_1_10 S1‐10 11142c_TRA_Data 14/03/2020 (7) 16:34:47.01 6.5359 33 414 85 194 Sample_1_11 S1‐12 11142c_TRA_Data 14/03/2020 (7) 16:36:25.59 10.339 53 211 41 165 Mean SD %RSD 1 Raw intensity count rate data processed in Iolite (Paton et al., 2011) using the VisualAge_UcomPbine data reduction schemes (DRS; Chew et al., 2014) for base 2 Measured U and Th intensities calibrated against NIST SRM 614 concentrations in MS Excel spreadsheet

96 Texas Tech University, Austin D Bertoch, August 2020

asured Isotope Intensities Corrected Isotope Ratios1 Element Concentrations2 ErrorCorrela Pb207_CPS_ Th232_CPS_ U238_CPS_I Final238_20 Final207_20 tion_38_6vs Int2SE Th232_CPS Int2SE U238_CPS nt2SE Final238_206 6_Prop2SE Final207_206 6_Prop2SE 7_6 Th, ppm U, ppm Th/U

220 93 35.6 5390 450 5.291005 1 0.754 0.081 0.08854 0.02 0.06 0.28 81 44 74 11300 1000 13.28021 1.8 0.52 0.12 ‐0.017467 0.01 0.13 0.06 44 78 155 23200 1800 19.72387 1.6 0.201 0.037 0.14815 0.02 0.27 0.06 67 200 316 43600 2300 16.44737 0.78 0.273 0.024 ‐0.30982 0.06 0.50 0.12 51 83 19.3 2300 190 5.235602 1.6 0.93 0.22 0.67593 0.01 0.03 0.21 170 44 17.4 2570 380 2.97619 0.7 0.79 0.13 0.48591 0.00 0.03 0.14 34 45 22.1 3600 210 6.944444 0.99 0.64 0.085 0.91428 0.01 0.04 0.14 36 30 14.4 1550 140 7.29927 7.5 1.07 0.4 0.78664 0.00 0.02 0.09 27 29 34.8 4680 290 10.10101 1.9 0.53 0.12 0.73781 0.00 0.05 0.04 45 37 30.4 3910 400 10 4.8 0.58 0.18 0.87673 0.00 0.04 0.05 24 21 10.4 1510 130 6.944444 5.2 1.18 0.43 0.90097 0.00 0.02 0.10 0.01 0.11 0.12 0.02 0.15 0.07 154% 138% 63% eline, drift and U/Pb downhole fractionation corrections and normalization to a primary standard material WC‐1 calcite

97 Texas Tech University, Austin D Bertoch, August 2020

Table 2. LA‐ICP‐MS U‐Pb Results for S2 Bone Spring Carbonate Veins

Measured Isotope Intensiti

Pb206_CPS_ Pb207_CPS_ Sequence Grain‐Analysis No. Source file DateTime Durations Total points Pb206_CPS Int2SE Pb207_CPS Int2SE Th232_CPS

Crystallization Age Population (261 +/‐1 Ma, n=24) Sample_2_24 S2‐24 11146c_TRA_Data 14/03/2020 (7) 18:05:39.06 24.955 126 35600 2100 30200 1800 5850 Sample_2_23 S2‐23 11146c_TRA_Data 14/03/2020 (7) 18:04:53.52 21.711 109 37300 2600 31500 2100 5960 Sample_2_22 S2‐22 11146c_TRA_Data 14/03/2020 (7) 18:04:05.11 7.9857 40 1200 110 460 100 407 Sample_2_21 S2‐21 11146c_TRA_Data 14/03/2020 (7) 18:03:13.07 23.957 121 2640 200 401 24 1110 Sample_2_20 S2‐20 11146c_TRA_Data 14/03/2020 (7) 18:02:24.91 22.834 115 1203 61 346 23 463 Sample_2_19 S2‐19 11146c_TRA_Data 14/03/2020 (7) 18:01:32.50 25.33 127 1945 78 402 26 898 Sample_2_18 S2‐18 11145c_TRA_Data 14/03/2020 (7) 17:44:36.57 2.8699 15 815 99 540 170 470 Sample_2_17 S2‐17 11145c_TRA_Data 14/03/2020 (7) 17:44:07.62 6.1141 31 1840 360 1140 230 710 Sample_2_16 S2‐16 11145c_TRA_Data 14/03/2020 (7) 17:43:03.73 19.59 99 704 53 273 29 1130 Sample_2_15 S2‐15 11145c_TRA_Data 14/03/2020 (7) 17:42:11.20 15.847 79 1264 88 316 29 2020 Sample_2_14 S2‐14 11145c_TRA_Data 14/03/2020 (7) 17:41:16.55 27.576 139 2170 110 365 22 2260 Sample_2_13 S2‐13 11145c_TRA_Data 14/03/2020 (7) 17:40:32.13 10.98 56 1438 81 348 36 1710 Sample_2_12 S2‐12 11144c_TRA_Data 14/03/2020 (7) 17:23:30.95 27.451 139 2510 150 401 36 797 Sample_2_11 S2‐11 11144c_TRA_Data 14/03/2020 (7) 17:22:45.91 22.959 116 949 52 261 21 220 Sample_2_10 S2‐10 11144c_TRA_Data 14/03/2020 (7) 17:21:50.26 28.324 143 6010 320 504 25 5940 Sample_2_9 S2‐9 11144c_TRA_Data 14/03/2020 (7) 17:21:17.57 11.854 60 1407 84 325 30 360 Sample_2_8 S2‐8 11144c_TRA_Data 14/03/2020 (7) 17:20:11.68 26.952 136 2600 150 611 65 4030 Sample_2_7 S2‐7 11144c_TRA_Data 14/03/2020 (7) 17:19:22.27 13.351 67 1830 140 496 62 2160 Sample_2_6 S2‐6 11143c_TRA_Data 14/03/2020 (7) 17:02:42.81 18.966 96 729 55 456 34 116 Sample_2_5 S2‐5 11143c_TRA_Data 14/03/2020 (7) 17:01:45.03 11.729 59 1160 110 397 36 213 Sample_2_4 S2‐4 11143c_TRA_Data 14/03/2020 (7) 17:00:56.37 26.453 134 4560 380 578 34 3730 Sample_2_3 S2‐3 11143c_TRA_Data 14/03/2020 (7) 17:00:17.19 18.217 92 2390 210 391 28 670 Sample_2_2 S2‐2 11143c_TRA_Data 14/03/2020 (7) 16:59:17.55 18.592 94 8470 310 871 62 12000 Sample_2_1 S2‐1 11143c_TRA_Data 14/03/2020 (7) 16:58:29.88 17.219 87 3420 150 551 47 800 Mean SD %RSD 1 Raw intensity count rate data processed in Iolite (Paton et al., 2011) using the VisualAge_UcomPbine data reduction schemes (DRS; Chew et al., 2014) for baseline, drift and U/Pb downho 2 Measured U and Th intensities calibrated against NIST SRM 614 concentrations in MS Excel spreadsheet

98 Texas Tech University, Austin D Bertoch, August 2020

ies Corrected Isotope Ratios1 Element Concentrations2 ErrorCorrela Th232_CPS_ U238_CPS_I Final238_20 Final207_20 tion_38_6vs Int2SE U238_CPS nt2SE Final238_206 6_Prop2SE Final207_206 6_Prop2SE 7_6 Th, ppm U, ppm Th/U

310 7400 1000 0.2040816 0.017 0.847 0.012 ‐0.10775 0.22 0.08 2.74 310 9770 720 0.280112 0.022 0.846 0.011 0.063076 0.22 0.11 2.11 65 15000 1200 14.14427 1.2 0.42 0.1 ‐0.13646 0.02 0.16 0.09 160 48800 4200 19.68504 0.79 0.174 0.017 ‐0.0039932 0.04 0.53 0.08 63 17580 500 15.84786 1 0.305 0.024 0.45175 0.02 0.19 0.09 79 34000 1200 19.30502 0.73 0.212 0.015 0.30028 0.03 0.37 0.09 150 5040 650 6.756757 1.6 0.71 0.2 ‐0.09023 0.02 0.05 0.32 150 14400 2200 8.333333 1.3 0.636 0.075 0.11241 0.03 0.15 0.17 130 6120 350 9.416196 0.97 0.455 0.075 0.35322 0.04 0.06 0.63 150 20900 1100 18.55288 1.2 0.278 0.033 0.5079 0.07 0.22 0.33 150 37500 2100 19.15709 0.67 0.182 0.012 0.30278 0.08 0.40 0.20 150 23190 880 18.38235 1.1 0.254 0.032 0.36968 0.06 0.25 0.25 91 47700 2600 21.59827 0.73 0.176 0.017 0.25681 0.03 0.49 0.05 31 13180 560 15.10574 1.1 0.289 0.026 0.23903 0.01 0.14 0.05 680 125400 6900 23.49072 0.45 0.0887 0.0047 0.13859 0.20 1.29 0.15 49 23500 920 18.41621 1.1 0.231 0.022 0.099804 0.01 0.24 0.05 410 43000 2400 18.93939 0.91 0.236 0.019 ‐0.3906 0.14 0.44 0.31 210 28000 2200 17.09402 1.1 0.282 0.036 0.17005 0.07 0.29 0.25 26 2680 150 3.846154 0.51 0.65 0.061 0.78714 0.00 0.03 0.14 42 14390 630 14.1844 1.4 0.366 0.05 0.54501 0.01 0.15 0.05 740 88000 8100 21.32196 0.55 0.1381 0.009 0.1455 0.12 0.91 0.13 150 43900 4100 20.53388 0.95 0.181 0.019 0.23915 0.02 0.45 0.05 1500 166900 5600 22.60398 0.46 0.1025 0.0062 ‐0.036949 0.39 1.73 0.23 110 62900 2500 20.96436 0.69 0.158 0.011 ‐0.058572 0.03 0.65 0.04 0.08 0.39 0.36 0.10 0.41 0.66 122% 105% 183% ole fractionation corrections and normalization to a primary standard material WC‐1 calcite

99 Texas Tech University, Austin D Bertoch, August 2020

Table 3. LA‐ICP‐MS U‐Pb Results for S3 Bone Spring Carbonate Veins

Measured Isotope Intensities

Pb206_CPS_ Pb207_CPS_ Th232_CPS_ U238_CPS_I Sequence Grain‐Analysis No. Source file DateTime Durations Total points Pb206_CPS Int2SE Pb207_CPS Int2SE Th232_CPS Int2SE U238_CPS nt2SE

Crystallization Age Population (275 +/‐2 Ma, n=20) Sample_3_29 S3‐29 11160c_TRA_Data 17/03/2020 (3) 22:43:47.43 7.5336 38 4510 570 1160 180 1570 220 70000 11000 Sample_3_28 S3‐28 11160c_TRA_Data 17/03/2020 (3) 22:43:04.92 9.7891 50 1170 140 454 77 157 44 15800 1100 Sample_3_27 S3‐27 11160c_TRA_Data 17/03/2020 (3) 22:42:05.72 8.7799 44 3200 240 600 240 1660 200 63000 6100 Sample_3_24 S3‐24 11159c_TRA_Data 17/03/2020 (3) 22:23:25.06 9.7445 49 1600 130 334 50 379 65 24700 1000 Sample_3_23 S3‐23 11159c_TRA_Data 17/03/2020 (3) 22:22:34.87 8.8609 45 1810 140 443 53 603 99 28000 1200 Sample_3_20 S3‐20 11159c_TRA_Data 17/03/2020 (3) 22:20:29.15 9.0579 46 2370 190 493 54 251 65 41900 3800 Sample_3_19 S3‐19 11159c_TRA_Data 17/03/2020 (3) 22:19:18.81 20.489 103 5160 340 515 34 1560 190 107800 7500 Sample_3_18 S3‐18 11158c_TRA_Data 17/03/2020 (3) 22:02:17.56 13.225 66 3970 160 470 40 437 57 76900 2100 Sample_3_15 S3‐15 11158c_TRA_Data 17/03/2020 (3) 21:59:44.02 9.4527 48 3090 280 514 78 700 120 57100 3700 Sample_3_13 S3‐13 11158c_TRA_Data 17/03/2020 (3) 21:58:03.40 15.491 78 2500 160 461 67 731 87 44200 2200 Sample_3_12 S3‐12 11157c_TRA_Data 17/03/2020 (3) 21:41:10.77 6.1218 31 690 150 210 50 42 33 9900 1600 Sample_3_10 S3‐10 11157c_TRA_Data 17/03/2020 (3) 21:39:48.35 10.25 52 2680 140 427 47 820 130 52300 2800 Sample_3_9 S3‐9 11157c_TRA_Data 17/03/2020 (3) 21:38:58.69 13.548 68 2920 170 481 64 670 100 53100 2000 Sample_3_8 S3‐8 11157c_TRA_Data 17/03/2020 (3) 21:37:53.83 12.707 64 2720 230 540 180 403 88 47700 3500 Sample_3_7 S3‐7 11157c_TRA_Data 17/03/2020 (3) 21:37:06.56 14.932 75 1000 120 353 51 84 26 15200 1400 Sample_3_6 S3‐6 11156c_TRA_Data 17/03/2020 (3) 21:20:29.98 24.505 124 3310 240 423 39 820 110 65700 4600 Sample_3_5 S3‐5 11156c_TRA_Data 17/03/2020 (3) 21:19:39.76 28.697 145 1140 120 711 92 137 30 8090 520 Sample_3_3 S3‐3 11156c_TRA_Data 17/03/2020 (3) 21:18:01.26 10.449 52 1430 150 547 79 159 32 16180 710 Sample_3_2 S3‐2 11156c_TRA_Data 17/03/2020 (3) 21:17:23.24 16.86 85 2240 120 439 40 262 45 39300 2000 Sample_3_1 S3‐1 11156c_TRA_Data 17/03/2020 (3) 21:16:24.34 15.083 76 733 81 315 44 124 34 7230 530 Mean SD %RSD Pre‐Depositional Age Population (300 +/‐2 Ma, n=10) Sample_3_30 S3‐30 11160c_TRA_Data 17/03/2020 (3) 22:44:36.67 10.376 52 3890 200 934 93 1420 190 67100 2800 Sample_3_26 S3‐26 11160c_TRA_Data 17/03/2020 (3) 22:41:26.88 4.361 22 1360 170 232 60 196 88 22900 1600 Sample_3_25 S3‐25 11160c_TRA_Data 17/03/2020 (3) 22:40:27.46 12.174 61 1130 120 193 26 311 89 20700 2300 Sample_3_22 S3‐22 11159c_TRA_Data 17/03/2020 (3) 22:21:51.21 12.297 62 2290 140 492 63 585 75 39700 1200 Sample_3_21 S3‐21 11159c_TRA_Data 17/03/2020 (3) 22:21:18.34 7.7904 40 2210 190 484 70 543 74 33300 2000 Sample_3_17 S3‐17 11158c_TRA_Data 17/03/2020 (3) 22:01:20.03 28.549 144 699 47 341 24 155 25 4400 230 Sample_3_16 S3‐16 11158c_TRA_Data 17/03/2020 (3) 22:00:32.31 9.9141 50 7160 630 1810 390 2670 260 100400 4400 Sample_3_14 S3‐14 11158c_TRA_Data 17/03/2020 (3) 21:58:52.52 13.357 68 2920 160 466 59 697 94 50300 1900 Sample_3_11 S3‐11 11157c_TRA_Data 17/03/2020 (3) 21:40:28.17 10.849 55 4350 170 651 95 1060 100 77400 3400 Sample_3_4 S3‐4 11156c_TRA_Data 17/03/2020 (3) 21:19:01.46 9.4437 48 4620 280 592 56 1810 310 91000 4500 Mean SD %RSD 1 Raw intensity count rate data processed in Iolite (Paton et al., 2011) using the VisualAge_UcomPbine data reduction schemes (DRS; Chew et al., 2014) for baseline, drift and U/Pb downhole fractionation corrections and normal 2 Measured U and Th intensities calibrated against NIST SRM 614 concentrations in MS Excel spreadsheet

100 Texas Tech University, Austin D Bertoch, August 2020

Corrected Isotope Ratios1 Element Concentrations2 ErrorCorrela Final238_20 Final207_20 tion_38_6vs Final238_206 6_Prop2SE Final207_206 6_Prop2SE 7_6 Th, ppm U, ppm Th/U

15.92357 1.7 0.25 0.036 0.040906 0.05 0.84 0.06 14.7929 1.7 0.41 0.081 0.049702 0.00 0.19 0.02 20.9205 0.94 0.184 0.069 0.18093 0.05 0.76 0.07 16.75042 1.2 0.204 0.029 ‐0.0079247 0.01 0.29 0.04 16.89189 1.4 0.228 0.028 0.39216 0.02 0.33 0.05 17.69912 1 0.216 0.033 0.12871 0.01 0.49 0.01 22.27171 0.59 0.0992 0.0062 0.2693 0.05 1.27 0.04 20.4918 0.74 0.119 0.011 ‐0.18057 0.01 0.89 0.01 20.08032 1.3 0.165 0.023 ‐0.093201 0.02 0.66 0.03 19.34236 0.96 0.176 0.023 0.128 0.02 0.51 0.04 16.63894 1.9 0.313 0.073 0.38197 0.00 0.11 0.01 20.04008 1.1 0.161 0.02 0.015842 0.02 0.60 0.04 18.79699 1 0.167 0.021 ‐0.08381 0.02 0.61 0.03 19.49318 1 0.159 0.025 0.053642 0.01 0.55 0.02 16.33987 1.9 0.403 0.082 0.13258 0.00 0.17 0.01 20.61856 0.74 0.131 0.011 0.19433 0.02 0.75 0.03 7.142857 0.8 0.632 0.057 0.0051155 0.00 0.09 0.04 12.83697 1.2 0.396 0.05 0.35462 0.00 0.19 0.02 17.95332 0.86 0.201 0.017 0.047227 0.01 0.45 0.02 10.41667 1.2 0.458 0.067 0.76589 0.00 0.08 0.04 0.02 0.49 0.03 0.02 0.32 0.02 90% 64% 48%

18.58736 0.8 0.232 0.023 ‐0.1436 0.04 0.81 0.05 17.85714 2.2 0.177 0.05 0.087815 0.01 0.28 0.02 18.97533 1.4 0.173 0.022 0.22892 0.01 0.25 0.04 18.58736 1.1 0.207 0.023 ‐0.099093 0.02 0.47 0.04 15.40832 1.4 0.213 0.028 ‐0.064514 0.02 0.39 0.04 6.329114 0.56 0.496 0.037 0.55867 0.00 0.05 0.09 15.33742 1 0.224 0.028 ‐0.3383 0.08 1.17 0.07 18.97533 0.97 0.153 0.019 0.034622 0.02 0.58 0.03 18.62197 0.84 0.147 0.021 ‐0.18848 0.03 0.89 0.03 20.53388 1 0.128 0.01 ‐0.010134 0.05 1.04 0.05 0.03 0.59 0.05 0.02 0.37 0.02 85% 63% 41% ization to a primary standard material WC‐1 calcite

101 Texas Tech University, Austin D Bertoch, August 2020

Table 4. LA‐ICP‐MS U‐Pb Results for S4 Bone Spring Carbonate Veins

Measured Isotope Intensities Correct

Pb206_CPS_ Pb207_CPS_ Th232_CPS_ U238_CPS_I Final238_20 Sequence Grain‐Analysis No. Source file DateTime Durations Total points Pb206_CPS Int2SE Pb207_CPS Int2SE Th232_CPS Int2SE U238_CPS nt2SE Final238_206 6_Prop2SE

Crystallization Age Population (265 +/‐2 Ma, n=28) Sample_4_36 S4‐36 11140c_TRA_Data 06/03/2020 (6) 20:09:54.25 10.85 55 210 33 169 30 64 28 2340 280 10.6383 3.6 Sample_4_35 S4‐35 11140c_TRA_Data 06/03/2020 (6) 20:09:05.99 25.043 126 596 63 224 36 216 31 9160 590 16.05136 2.3 Sample_4_34 S4‐34 11139c_TRA_Data 06/03/2020 (6) 20:08:13.28 28.296 142 308 30 174 26 38 13 3010 120 9.708738 2.2 Sample_4_33 S4‐33 11139c_TRA_Data 06/03/2020 (6) 20:07:24.40 25.937 130 338 30 220 27 32 13 3440 130 10 1.7 Sample_4_32 S4‐32 11139c_TRA_Data 06/03/2020 (6) 20:06:34.73 24.387 123 5640 150 668 71 2210 110 115800 2900 21.09705 0.59 Sample_4_31 S4‐31 11139c_TRA_Data 06/03/2020 (6) 20:05:49.60 22.317 112 7440 160 542 30 2980 150 156400 3000 21.55172 0.44 Sample_4_30 S4‐30 11139c_TRA_Data 06/03/2020 (6) 19:48:59.08 13.83 70 736 66 179 21 154 34 12590 760 18.31502 1.8 Sample_4_29 S4‐29 11139c_TRA_Data 06/03/2020 (6) 19:48:05.36 19.125 96 1541 74 346 27 394 54 27140 760 19.41748 1 Sample_4_28 S4‐28 11139c_TRA_Data 06/03/2020 (6) 19:47:10.56 24.319 123 763 92 338 42 390 65 7230 970 9.009009 1.3 Sample_4_27 S4‐27 11139c_TRA_Data 06/03/2020 (6) 19:46:19.62 26.648 134 707 71 489 47 80 22 1730 110 2.5 0.74 Sample_4_26 S4‐26 11139c_TRA_Data 06/03/2020 (6) 19:45:28.02 17.417 87 1229 85 321 32 249 67 19670 960 18.18182 1.4 Sample_4_25 S4‐25 11139c_TRA_Data 06/03/2020 (6) 19:44:42.27 19.883 100 1510 110 552 53 550 110 17970 820 12.98701 1.1 Sample_4_24 S4‐24 11138c_TRA_Data 06/03/2020 (6) 19:27:58.21 28.968 146 30240 560 24980 400 91 23 323 64 no value NAN Sample_4_23 S4‐23 11138c_TRA_Data 06/03/2020 (6) 19:27:09.65 28.597 144 31200 560 25890 450 61 19 254 52 no value NAN Sample_4_22 S4‐22 11138c_TRA_Data 06/03/2020 (6) 19:26:19.68 28.956 146 2833 92 380 27 140 23 60000 1100 21.14165 0.6 Sample_4_21 S4‐21 11138c_TRA_Data 06/03/2020 (6) 19:25:33.32 26.294 133 3080 100 358 19 121 22 66200 1600 21.41328 0.69 Sample_4_20 S4‐20 11138c_TRA_Data 06/03/2020 (6) 19:24:44.20 26.083 131 4771 92 435 24 368 40 108440 940 22.65519 0.47 Sample_4_19 S4‐19 11138c_TRA_Data 06/03/2020 (6) 19:23:55.08 14.922 75 6040 280 640 59 596 82 134800 5200 22.62443 0.56 Sample_4_17 S4‐18 11137c_TRA_Data 06/03/2020 (6) 19:06:42.65 25.653 130 3540 100 350 22 60 18 76700 1200 22.93578 0.57 Sample_4_18 S4‐17 11137c_TRA_Data 06/03/2020 (6) 19:07:30.81 26.549 134 4280 120 386 21 204 29 92700 1500 22.8833 0.65 Sample_4_15 S4‐16 11137c_TRA_Data 06/03/2020 (6) 19:05:05.20 25.07 127 3305 93 326 23 61 18 68160 910 21.92982 0.62 Sample_4_16 S4‐15 11137c_TRA_Data 06/03/2020 (6) 19:05:53.34 25.677 129 1351 98 267 22 77 19 24700 1700 18.83239 0.86 Sample_4_14 S4‐14 11137c_TRA_Data 06/03/2020 (6) 19:04:14.62 26.191 132 1454 93 400 30 324 41 29500 1600 21.59827 1.2 Sample_4_13 S4‐13 11137c_TRA_Data 06/03/2020 (6) 19:03:24.37 9.9627 50 1240 160 352 67 248 68 23800 2700 19.23077 2.3 Sample_4_8 S4‐8 11137c_TRA_Data 06/03/2020 (6) 18:43:36.14 25.398 128 1103 50 170 15 470 43 21400 460 20.3252 0.99 Sample_4_6 S4‐6 11136c_TRA_Data 06/03/2020 (6) 18:26:17.77 4.3698 22 353 88 129 25 156 67 7250 600 20.83333 14 Sample_4_5 S4‐5 11136c_TRA_Data 06/03/2020 (6) 18:25:05.80 25.533 128 1870 380 1460 280 36000 18000 2230 280 1.333333 0.86 Sample_4_4 S4‐4 11136c_TRA_Data 06/03/2020 (6) 18:24:18.61 24.49 123 1057 47 146 15 481 45 22060 550 21.18644 0.93 Mean SD %RSD Pre‐Depositional Age Population (315 +/‐2 Ma, n=8) Sample_4_12 S4‐12 11137c_TRA_Data 06/03/2020 (6) 18:46:53.25 25.292 128 2652 87 209 16 1041 67 48890 720 19.12046 0.62 Sample_4_11 S4‐11 11137c_TRA_Data 06/03/2020 (6) 18:46:05.16 24.628 124 2521 93 278 32 1023 82 45420 760 18.69159 0.67 Sample_4_10 S4‐10 11137c_TRA_Data 06/03/2020 (6) 18:45:16.30 24.196 122 2388 79 245 21 843 64 42440 560 18.51852 0.68 Sample_4_9 S4‐9 11137c_TRA_Data 06/03/2020 (6) 18:44:26.47 25.111 126 1561 83 188 16 658 56 28800 1200 19.26782 0.95 Sample_4_7 S4‐7 11137c_TRA_Data 06/03/2020 (6) 18:42:46.55 26.275 132 1848 73 191 15 791 58 34370 660 19.45525 0.78 Sample_4_3 S4‐3 11136c_TRA_Data 06/03/2020 (6) 18:23:28.68 25.842 130 2471 88 241 17 957 61 47760 820 19.88072 0.6 Sample_4_2 S4‐2 11136c_TRA_Data 06/03/2020 (6) 18:22:40.49 24.748 125 4480 100 336 19 1548 70 82900 1000 18.90359 0.43 Sample_4_1 S4‐1 11136c_TRA_Data 06/03/2020 (6) 18:21:50.48 26.108 132 4300 130 346 24 1526 70 72890 850 17.36111 0.52 Mean SD %RSD 1 Raw intensity count rate data processed in Iolite (Paton et al., 2011) using the VisualAge_UcomPbine data reduction schemes (DRS; Chew et al., 2014) for baseline, drift and U/Pb downhole fractionation corrections and normalization to a primary standard 2 Measured U and Th intensities calibrated against NIST SRM 614 concentrations in MS Excel spreadsheet

102 Texas Tech University, Austin D Bertoch, August 2020

ted Isotope Ratios1 Element Concentrations2 ErrorCorrela Final207_20 tion_38_6vs Final207_206 6_Prop2SE 7_6 Th, ppm U, ppm Th/U

0.57 0.66 0.67267 0.00 0.03 0.09 0.441 0.088 0.85408 0.01 0.10 0.08 0.51 0.32 0.54344 0.00 0.03 0.04 0.87 0.17 0.93488 0.00 0.04 0.03 0.117 0.012 ‐0.28465 0.08 1.33 0.06 0.0706 0.0042 0.33338 0.11 1.80 0.06 0.273 0.044 0.70449 0.01 0.14 0.04 0.23 0.022 0.46869 0.01 0.31 0.05 0.537 0.071 0.99785 0.01 0.08 0.17 0.87 0.16 0.99763 0.00 0.02 0.15 0.279 0.034 0.037346 0.01 0.23 0.04 0.368 0.034 0.29269 0.02 0.21 0.10 no value NAN NaN 0.00 0.00 0.89 no value NAN NaN 0.00 0.00 0.76 0.129 0.0078 0.3053 0.01 0.70 0.01 0.1187 0.0081 0.021047 0.00 0.77 0.01 0.0887 0.0047 0.26981 0.01 1.26 0.01 0.101 0.0075 0.22767 0.02 1.57 0.01 0.0982 0.0062 0.25719 0.01 1.09 0.01 0.0902 0.0055 0.40322 0.00 0.90 0.00 0.0998 0.0082 0.41055 0.00 0.29 0.01 0.211 0.019 0.18913 0.00 0.80 0.00 0.292 0.022 0.069572 0.01 0.35 0.03 0.263 0.032 0.012998 0.01 0.28 0.03 0.161 0.015 0.40152 0.02 0.25 0.07 0.5 0.19 0.76448 0.01 0.09 0.07 0.845 0.083 0.75333 1.40 0.03 52.31 0.139 0.015 0.32565 0.02 0.26 0.07 0.06 0.46 1.97 0.26 0.52 9.87 408% 113% 500%

0.0778 0.0063 0.39067 0.04 0.58 0.07 0.109 0.01 ‐0.057011 0.04 0.54 0.07 0.1003 0.008 0.10354 0.03 0.50 0.06 0.125 0.011 0.29084 0.02 0.34 0.07 0.1038 0.0082 0.29683 0.03 0.41 0.07 0.0982 0.007 0.33573 0.04 0.57 0.06 0.0742 0.0044 0.2313 0.06 0.99 0.06 0.08 0.0056 0.23931 0.06 0.87 0.07 0.04 0.60 0.07 0.01 0.22 0.00 33% 37% 7% material WC‐1 calcite

103 Texas Tech University, Austin D Bertoch, August 2020

Table 5. LA‐ICP‐MS U‐Pb Results for S8 Bone Spring Carbonate Veins

Mea

Pb206_CPS_ Sequence Grain‐Analysis No. Source file DateTime Durations Total points Pb206_CPS Int2SE Pb207_CPS

Crystallization Age Population (273 +/‐4 Ma, n=8) Sample_8_12 S8‐12 11155c_TRA_Data 17/03/2020 (3) 20:47:23.71 10.893 55 1940 280 680 Sample_8_11 S8‐11 11155c_TRA_Data 17/03/2020 (3) 20:46:36.45 24.97 126 1184 77 336 Sample_8_9 S8‐9 11155c_TRA_Data 17/03/2020 (3) 20:44:57.05 26.746 135 972 52 166 Sample_8_8 S8‐8 11155c_TRA_Data 17/03/2020 (3) 20:44:10.18 24.319 122 1060 57 216 Sample_8_7 S8‐7 11155c_TRA_Data 17/03/2020 (3) 20:43:19.64 26.053 131 923 48 165 Sample_8_5 S8‐5 11154c_TRA_Data 17/03/2020 (3) 20:25:19.77 26.199 132 959 49 214 Sample_8_3 S8‐3 11154c_TRA_Data 17/03/2020 (3) 20:23:41.65 26.46 134 1075 60 234 Sample_8_1 S8‐1 11154c_TRA_Data 17/03/2020 (3) 20:22:03.86 21.349 108 1042 74 327 Mean SD %RSD Pre‐Depositional Age Population (320 +/‐7 Ma, n=4) Sample_8_10 S8‐10 11155c_TRA_Data 17/03/2020 (3) 20:45:53.02 19.521 98 1171 59 217 Sample_8_6 S8‐6 11154c_TRA_Data 17/03/2020 (3) 20:26:08.95 19.508 98 1533 95 373 Sample_8_4 S8‐4 11154c_TRA_Data 17/03/2020 (3) 20:24:30.53 11.754 59 2140 280 720 Sample_8_2 S8‐2 11154c_TRA_Data 17/03/2020 (3) 20:23:05.38 15.503 79 1000 98 296 Mean SD %RSD 1 Raw intensity count rate data processed in Iolite (Paton et al., 2011) using the VisualAge_UcomPbine data reduction schemes (DRS; Chew et al., 2014) for base 2 Measured U and Th intensities calibrated against NIST SRM 614 concentrations in MS Excel spreadsheet

104 Texas Tech University, Austin D Bertoch, August 2020

asured Isotope Intensities Corrected Isotope Ratios1 Element Concentrations2 ErrorCorrela Pb207_CPS_ Th232_CPS_ U238_CPS_I Final238_20 Final207_20 tion_38_6vs Int2SE Th232_CPS Int2SE U238_CPS nt2SE Final238_206 6_Prop2SE Final207_206 6_Prop2SE 7_6 Th, ppm U, ppm Th/U

170 24890 890 14900 930 1.2 102 0.327 0.044 0.044772 0.72 0.18 4.02 58 25190 670 17780 380 1.1 79 0.26 0.031 0.1037 0.73 0.21 3.41 16 20880 400 18450 320 1.2 61.9 0.189 0.021 0.36801 0.61 0.22 2.72 21 20200 550 17140 590 1.1 67.9 0.216 0.024 ‐0.0025241 0.59 0.21 2.83 17 19790 460 17420 360 1.4 64.6 0.192 0.023 ‐0.017912 0.57 0.21 2.73 21 17150 420 15970 380 1.2 74.8 0.242 0.027 0.16449 0.48 0.19 2.54 19 28000 1400 17910 540 1 78.4 0.236 0.023 0.13227 0.78 0.21 3.69 54 36400 690 15880 680 1.4 93.6 0.351 0.094 0.38381 1.02 0.19 5.41 0.69 0.20 3.42 0.17 0.02 0.96 24% 7% 28%

23 22510 370 18980 410 0.93 61.3 0.192 0.022 0.43073 0.65 0.23 2.85 30 43600 1600 20570 740 0.84 84.2 0.251 0.02 0.31023 1.22 0.24 5.01 130 60900 2800 25900 3400 0.99 101 0.317 0.028 0.34909 1.71 0.31 5.55 36 34400 1000 11380 950 1.1 98 0.308 0.037 0.52671 0.96 0.13 7.14 1.14 0.23 5.14 0.45 0.07 1.77 39% 31% 34% line, drift and U/Pb downhole fractionation corrections and normalization to a primary standard material WC‐1 calcite

105 Texas Tech University, Austin D Bertoch, August 2020

Table 6. LA‐ICP‐MS U‐Pb Results for S9 Bone Spring Carbonate Veins

Measured Isotope Intensiti

Pb206_CPS_ Pb207_CPS_ Sequence Grain‐Analysis No. Source file DateTime Durations Total points Pb206_CPS Int2SE Pb207_CPS Int2SE Th232_CPS

Crystallization Age Population (249 +/‐5 Ma, n=14) Sample_9_18 S9‐18 11153c_TRA_Data 17/03/2020 (3) 20:01:44.36 19.142 96 1440 240 229 30 4410 Sample_9_15 S9‐15 11153c_TRA_Data 17/03/2020 (3) 19:59:08.65 14.05 71 1650 160 449 85 6610 Sample_9_12 S9‐12 11152c_TRA_Data 17/03/2020 (3) 19:40:37.28 21.477 108 519 42 239 27 587 Sample_9_11 S9‐11 11152c_TRA_Data 17/03/2020 (3) 19:39:49.97 24.228 123 601 42 236 22 513 Sample_9_10 S9‐10 11152c_TRA_Data 17/03/2020 (3) 19:38:59.47 25.768 130 566 39 280 25 450 Sample_9_9 S9‐9 11152c_TRA_Data 17/03/2020 (3) 19:38:15.70 20.714 105 575 42 291 30 281 Sample_9_8 S9‐8 11152c_TRA_Data 17/03/2020 (3) 19:37:11.70 26.631 134 537 37 186 20 588 Sample_9_7 S9‐7 11152c_TRA_Data 17/03/2020 (3) 19:36:22.79 26.693 135 536 39 139 16 109 Sample_9_6 S9‐6 11151c_TRA_Data 17/03/2020 (3) 19:19:36.92 24.719 124 632 45 287 58 613 Sample_9_5 S9‐5 11151c_TRA_Data 17/03/2020 (3) 19:18:48.46 24.4 123 574 40 173 18 577 Sample_9_4 S9‐4 11151c_TRA_Data 17/03/2020 (3) 19:17:56.13 25.564 129 697 51 154 14 605 Sample_9_3 S9‐3 11151c_TRA_Data 17/03/2020 (3) 19:17:09.20 23.794 120 662 46 175 21 631 Sample_9_2 S9‐2 11151c_TRA_Data 17/03/2020 (3) 19:16:16.24 26.652 135 574 33 164 15 723 Sample_9_1 S9‐1 11151c_TRA_Data 17/03/2020 (3) 19:15:26.90 27.284 137 595 41 187 21 1271 Mean SD %RSD Pre‐Depositional Age Population (388 +/‐14 Ma, n=4) Sample_9_17 S9‐17 11153c_TRA_Data 17/03/2020 (3) 20:00:48.03 26.73 134 685 53 171 18 941 Sample_9_16 S9‐16 11153c_TRA_Data 17/03/2020 (3) 20:00:00.08 25.413 128 573 37 126 15 917 Sample_9_14 S9‐14 11153c_TRA_Data 17/03/2020 (3) 19:58:11.98 15.735 79 1540 200 463 54 6500 Sample_9_13 S9‐13 11153c_TRA_Data 17/03/2020 (3) 19:57:22.79 6.6581 34 727 87 430 76 730 Mean SD %RSD

1 Raw intensity count rate data processed in Iolite (Paton et al., 2011) using the VisualAge_UcomPbine data reduction schemes (DRS; Chew et al., 2014) for baseline, drift and U/Pb downho 2 Measured U and Th intensities calibrated against NIST SRM 614 concentrations in MS Excel spreadsheet

106 Texas Tech University, Austin D Bertoch, August 2020

ies Corrected Isotope Ratios1 Element Concentrations2 ErrorCorrela Th232_CPS_ U238_CPS_I Final238_20 Final207_20 tion_38_6vs Int2SE U238_CPS nt2SE Final238_206 6_Prop2SE Final207_206 6_Prop2SE 7_6 Th, ppm U, ppm Th/U

620 29000 5500 18.55288 1.6 0.239 0.038 0.19234 0.13 0.35 0.37 770 31400 3800 17.85714 1.7 0.288 0.052 ‐0.19244 0.19 0.38 0.52 54 5650 170 12.8041 1.6 0.508 0.057 ‐0.0093746 0.02 0.07 0.25 55 6430 220 12.56281 1.1 0.433 0.047 0.6384 0.01 0.08 0.20 47 6070 200 12.42236 1.2 0.528 0.055 0.44467 0.01 0.07 0.18 46 5580 210 11.37656 1 0.547 0.055 0.20534 0.01 0.07 0.12 50 8230 250 18.31502 1.5 0.376 0.047 0.33313 0.02 0.10 0.18 22 8110 220 17.60563 1.6 0.29 0.038 0.3827 0.00 0.10 0.03 55 8580 230 12.73885 1.2 0.465 0.077 0.8755 0.02 0.10 0.18 51 9350 240 15.40832 1.5 0.344 0.047 0.069658 0.02 0.11 0.16 60 12430 510 16.97793 1.6 0.262 0.037 0.079105 0.02 0.14 0.12 55 11510 550 16.52893 1.2 0.292 0.043 0.11008 0.02 0.13 0.14 57 9280 240 15.2439 1.1 0.292 0.031 0.55091 0.02 0.11 0.20 71 9400 210 15.38462 1.4 0.334 0.042 0.6985 0.04 0.11 0.34 0.04 0.13 0.21 0.05 0.10 0.12 146% 74% 58%

76 8630 480 12.4533 1.3 0.266 0.029 0.3858 0.03 0.10 0.27 66 6530 210 11.41553 1 0.234 0.031 0.25693 0.03 0.08 0.34 1300 18600 3000 9.52381 1.2 0.373 0.049 ‐0.10634 0.19 0.22 0.86 150 5940 250 8.130081 1.3 0.554 0.092 0.37471 0.02 0.07 0.30 0.07 0.12 0.44 0.08 0.07 0.28 124% 59% 63% ole fractionation corrections and normalization to a primary standard material WC‐1 calcite

107 Texas Tech University, Austin D Bertoch, August 2020

Table 7. LA‐ICP‐MS U‐Pb Results for S12 Bone Spring Carbonate Veins

Measured Isotope Intensiti

Pb206_CPS_ Pb207_CPS_ Sequence Grain‐Analysis No. Source file DateTime Durations Total points Pb206_CPS Int2SE Pb207_CPS Int2SE Th232_CPS

Crystallization Age Population (265 +/‐13 Ma, n=24) Sample_12_24 S12‐24 11150c_TRA_Data 14/03/2020 (7) 20:03:19.64 20.615 104 805 62 560 51 206 Sample_12_23 S12‐23 11150c_TRA_Data 14/03/2020 (7) 20:02:44.19 6.7128 34 820 160 550 120 294 Sample_12_22 S12‐22 11150c_TRA_Data 14/03/2020 (7) 20:01:35.27 9.9348 50 754 91 591 61 186 Sample_12_21 S12‐21 11150c_TRA_Data 14/03/2020 (7) 20:01:03.06 6.181 31 710 100 1430 920 223 Sample_12_20 S12‐20 11150c_TRA_Data 14/03/2020 (7) 19:59:52.63 14.532 74 870 170 420 100 1110 Sample_12_19 S12‐19 11150c_TRA_Data 14/03/2020 (7) 19:59:03.05 5.4741 28 1210 210 630 150 4040 Sample_12_18 S12‐18 11149_TRA_Data 14/03/2020 (7) 19:42:03.71 16.17 81 2050 140 859 80 5070 Sample_12_17 S12‐17 11149_TRA_Data 14/03/2020 (7) 19:41:08.43 21.858 110 2000 190 950 97 3620 Sample_12_16 S12‐16 11149_TRA_Data 14/03/2020 (7) 19:40:21.25 18.539 94 622 70 361 45 239 Sample_12_15 S12‐15 11149_TRA_Data 14/03/2020 (7) 19:39:23.85 26.696 134 865 75 647 58 242 Sample_12_14 S12‐14 11149_TRA_Data 14/03/2020 (7) 19:38:50.58 5.0172 25 800 180 313 92 330 Sample_12_13 S12‐13 11149_TRA_Data 14/03/2020 (7) 19:37:49.16 13.165 66 217 31 130 30 52 Sample_12_12 S12‐12 11148c_TRA_Data 14/03/2020 (7) 19:20:44.69 13.105 66 453 38 112 21 2060 Sample_12_11 S12‐11 11148c_TRA_Data 14/03/2020 (7) 19:19:58.69 23.66 119 409 36 103 16 1830 Sample_12_10 S12‐10 11148c_TRA_Data 14/03/2020 (7) 19:19:04.62 20.98 105 2400 160 1230 140 3190 Sample_12_9 S12‐9 11148c_TRA_Data 14/03/2020 (7) 19:18:16.69 27.457 138 1593 89 990 55 1550 Sample_12_8 S12‐8 11148c_TRA_Data 14/03/2020 (7) 19:17:36.46 17.703 89 1120 100 621 72 1540 Sample_12_7 S12‐7 11148c_TRA_Data 14/03/2020 (7) 19:16:36.58 18.472 94 1600 150 1300 440 1560 Sample_12_6 S12‐6 11147c_TRA_Data 14/03/2020 (7) 18:59:37.24 17.624 89 1080 140 658 70 1058 Sample_12_5 S12‐5 11147c_TRA_Data 14/03/2020 (7) 18:58:46.61 17.915 90 1590 140 970 130 2970 Sample_12_4 S12‐4 11147c_TRA_Data 14/03/2020 (7) 18:58:08.37 15.896 80 1670 110 1120 100 1149 Sample_12_3 S12‐3 11147c_TRA_Data 14/03/2020 (7) 18:57:16.13 9.7318 49 1690 190 970 160 4160 Sample_12_2 S12‐2 11147c_TRA_Data 14/03/2020 (7) 18:56:32.36 10.556 54 2590 230 1630 170 3880 Sample_12_1 S12‐1 11147c_TRA_Data 14/03/2020 (7) 18:55:50.37 7.1555 36 1640 190 1020 99 1620 Mean SD %RSD

1 Raw intensity count rate data processed in Iolite (Paton et al., 2011) using the VisualAge_UcomPbine data reduction schemes (DRS; Chew et al., 2014) for baseline, drift and U/Pb downho 2 Measured U and Th intensities calibrated against NIST SRM 614 concentrations in MS Excel spreadsheet

108 Texas Tech University, Austin D Bertoch, August 2020

ies Corrected Isotope Ratios1 Element Concentrations2 ErrorCorrela Th232_CPS_ U238_CPS_I Final238_20 Final207_20 tion_38_6vs Int2SE U238_CPS nt2SE Final238_206 6_Prop2SE Final207_206 6_Prop2SE 7_6 Th, ppm U, ppm Th/U

34 6330 510 8 1 0.739 0.072 0.22432 0.01 0.07 0.11 90 2760 350 3.623188 1.3 0.85 0.22 0.18596 0.01 0.03 0.35 56 2230 280 2.949853 0.53 0.85 0.11 0.64877 0.01 0.02 0.27 82 1250 170 1.923077 3.5 2.2 1.4 0.88188 0.01 0.01 0.59 150 7810 760 9.90099 2.3 0.63 0.13 0.73926 0.04 0.08 0.47 360 6900 430 6.993007 1.2 0.524 0.099 0.58874 0.14 0.07 1.92 460 23000 1200 12.64223 1.1 0.408 0.035 ‐0.025653 0.17 0.24 0.72 590 16500 1400 8.920607 0.71 0.499 0.042 0.41893 0.12 0.17 0.71 45 3890 160 6.993007 1.4 0.653 0.083 0.95427 0.01 0.04 0.20 39 3170 160 3.90625 0.49 0.85 0.1 0.15102 0.01 0.03 0.25 110 6900 1000 9.803922 1.9 0.48 0.16 0.46575 0.01 0.07 0.16 24 2170 130 11.11111 3.2 0.67 0.23 0.58447 0.00 0.02 0.08 140 8010 290 20.40816 2.3 0.255 0.047 0.22224 0.07 0.08 0.82 130 6710 380 18.48429 2.6 0.349 0.077 0.68838 0.06 0.07 0.87 190 22710 830 11.14827 0.78 0.514 0.066 0.12109 0.11 0.24 0.45 110 9310 240 6.622517 0.45 0.637 0.047 0.31124 0.05 0.10 0.53 120 8590 410 9.082652 0.87 0.552 0.053 0.16431 0.05 0.09 0.57 190 9450 340 6.993007 0.75 0.83 0.29 0.015898 0.05 0.10 0.53 93 6170 270 6.622517 0.97 0.648 0.068 0.64693 0.04 0.07 0.54 180 11660 270 8.688097 0.77 0.595 0.06 0.11836 0.10 0.12 0.80 94 8620 380 5.813953 0.49 0.663 0.062 0.061831 0.04 0.09 0.42 650 13100 1200 9.107468 0.99 0.73 0.32 0.4384 0.14 0.14 1.00 460 13900 1000 5.747126 0.65 0.583 0.045 0.011775 0.13 0.15 0.88 190 11180 690 7.633588 1.1 0.603 0.084 0.66307 0.05 0.12 0.46 0.06 0.09 0.57 0.05 0.06 0.39 88% 65% 68% ole fractionation corrections and normalization to a primary standard material WC‐1 calcite

109 Texas Tech University, Austin D Bertoch, August 2020

Table 8. LA‐ICP‐MS U‐Pb Results for S13 Bone Spring Carbonate Veins

Measured Isotope Intensities

Pb206_CPS_ Pb207_CPS_ Th232_CPS_ Sequence Grain‐Analysis No. Source file DateTime Durations Total points Pb206_CPS Int2SE Pb207_CPS Int2SE Th232_CPS Int2SE U238_CPS

Crystallization Age Population (268 +/‐4 Ma, n=16) Sample_13_8 S13‐Inclusion 11133c_TRA_Data 06/03/2020 (6) 15:16:43.57 11.472 58 2480 270 458 73 265 57 53900 Sample_13_26 S13‐24 11135c_TRA_Data 06/03/2020 (6) 16:19:52.24 26.348 133 2400 120 611 36 1740 250 37500 Sample_13_23 S13‐21 11135c_TRA_Data 06/03/2020 (6) 16:17:24.67 25.691 129 1805 68 669 36 11930 380 24850 Sample_13_22 S13‐20 11135c_TRA_Data 06/03/2020 (6) 16:16:38.28 22.154 112 32700 2200 28000 1900 7500 2400 5700 Sample_13_21 S13‐19 11135c_TRA_Data 06/03/2020 (6) 16:16:08.82 5.4346 28 1970 150 645 98 11130 610 25830 Sample_13_19 S13‐17 11134c_TRA_Data 06/03/2020 (6) 15:57:57.51 23.322 118 1694 86 542 39 15930 400 23970 Sample_13_18 S13‐16 11134c_TRA_Data 06/03/2020 (6) 15:57:12.85 20.888 105 27400 4700 23700 4000 4120 660 5690 Sample_13_17 S13‐15 11134c_TRA_Data 06/03/2020 (6) 15:56:27.77 18 91 1777 95 760 57 13460 460 22670 Sample_13_16 S13‐14 11134c_TRA_Data 06/03/2020 (6) 15:55:32.35 24.039 121 1356 77 537 41 453 62 14390 Sample_13_14 S13‐12 11133c_TRA_Data 06/03/2020 (6) 15:37:40.47 18.139 91 2320 110 918 56 910 150 25940 Sample_13_13 S13‐11 11133c_TRA_Data 06/03/2020 (6) 15:36:51.50 13.187 67 1540 140 719 96 256 78 18680 Sample_13_12 S13‐10 11133c_TRA_Data 06/03/2020 (6) 15:36:13.66 9.2249 47 1830 150 557 78 2280 220 23900 Sample_13_11 S13‐9 11133c_TRA_Data 06/03/2020 (6) 15:35:06.18 6.4652 33 2180 140 805 75 6120 390 26200 Sample_13_7 S13‐6 11133c_TRA_Data 06/03/2020 (6) 15:15:37.77 6.8999 35 3140 270 1140 550 11120 710 42200 Sample_13_3 S13‐2 11133c_TRA_Data 06/03/2020 (6) 15:12:22.79 25.985 131 1416 75 685 42 304 53 15260 Sample_13_2 S13‐1_1 11133c_TRA_Data 06/03/2020 (6) 15:11:32.44 11.652 58 681 79 159 30 33 20 13490 Mean SD %RSD Pre‐Depositional Age Population (306 +/‐3 Ma, n=10) Sample_13_25 S13‐23 11135c_TRA_Data 06/03/2020 (6) 16:19:03.40 25.865 131 2310 94 661 41 5690 210 30760 Sample_13_24 S13‐22 11135c_TRA_Data 06/03/2020 (6) 16:18:13.25 18.868 96 3500 110 873 59 19470 780 48200 Sample_13_20 S13‐18 11134c_TRA_Data 06/03/2020 (6) 15:58:46.81 26.413 133 2180 110 479 34 9800 510 32300 Sample_13_15 S13‐13 11134c_TRA_Data 06/03/2020 (6) 15:54:41.87 25.394 128 2435 95 533 34 6660 440 38200 Sample_13_10 S13‐8 11133c_TRA_Data 06/03/2020 (6) 15:34:26.15 8.1523 41 2300 140 664 65 3200 390 26170 Sample_13_9 S13‐7 11133c_TRA_Data 06/03/2020 (6) 15:33:28.50 25.044 126 2980 120 751 48 9170 300 41900 Sample_13_6 S13‐5 11133c_TRA_Data 06/03/2020 (6) 15:14:50.31 25.793 130 2380 140 864 52 714 72 26600 Sample_13_5 S13‐4 11133c_TRA_Data 06/03/2020 (6) 15:14:00.81 26.449 134 2479 86 682 49 1630 110 37480 Sample_13_4 S13‐3 11133c_TRA_Data 06/03/2020 (6) 15:13:13.23 21.056 106 3120 140 916 58 10900 1000 42800 Sample_13_1 S13‐1 11132c_TRA_Data 06/03/2020 (6) 14:54:43.27 9.9841 50 4370 200 2300 130 2510 560 29400 Mean SD %RSD 1 Raw intensity count rate data processed in Iolite (Paton et al., 2011) using the VisualAge_UcomPbine data reduction schemes (DRS; Chew et al., 2014) for baseline, drift and U/Pb downhole fractionation correction 2 Measured U and Th intensities calibrated against NIST SRM 614 concentrations in MS Excel spreadsheet

110 Texas Tech University, Austin D Bertoch, August 2020

Corrected Isotope Ratios1 Element Concentrations2 ErrorCorrela U238_CPS_I Final238_20 Final207_20 tion_38_6vs nt2SE Final238_206 6_Prop2SE Final207_206 6_Prop2SE 7_6 Th, ppm U, ppm Th/U

3600 1.8 56.2 0.184 0.025 0.19602 0.07 0.45 0.15 1200 0.68 80.9 0.263 0.018 0.53252 0.22 0.37 0.59 440 0.6 108.2 0.377 0.024 0.46356 0.29 0.07 4.19 390 0.011 92.54 0.849 0.012 0.040829 0.43 0.31 1.37 650 1.3 97 0.334 0.058 0.55157 0.39 0.39 0.98 580 0.79 109.1 0.335 0.023 0.35324 0.16 0.07 2.35 750 0.025 81.2 0.837 0.023 0.23921 0.53 0.28 1.93 710 0.88 129.3 0.445 0.038 0.10997 0.02 0.18 0.10 480 0.75 125 0.42 0.032 0.17677 0.26 0.46 0.57 980 0.6 115.8 0.4 0.029 0.27871 0.01 0.23 0.04 860 1.3 126.5 0.475 0.055 0.012846 0.09 0.29 0.30 1200 1.2 88 0.298 0.038 0.067217 0.24 0.32 0.74 1100 1.2 114.4 0.361 0.037 0.4478 0.12 0.32 0.39 1800 1 97 0.33 0.13 0.016363 0.43 0.52 0.84 310 0.61 134.1 0.496 0.034 0.45684 0.01 0.19 0.06 370 4 87 0.26 0.054 0.99096 0.09 0.33 0.26 0.21 0.30 0.93 0.17 0.13 1.10 80% 44% 118%

630 0.65 87.2 0.286 0.018 0.13319 0.74 0.58 1.29 1200 0.64 83.6 0.253 0.017 ‐0.071116 0.46 0.30 1.53 1500 0.56 79.7 0.231 0.018 0.18683 0.63 0.29 2.16 1600 0.69 79.1 0.23 0.019 0.06335 0.04 0.32 0.11 610 0.78 89.4 0.289 0.031 0.36921 0.36 0.51 0.69 1200 0.48 78.6 0.244 0.014 0.30204 0.01 0.66 0.02 1200 0.45 107.8 0.361 0.017 0.49342 0.03 0.32 0.09 410 0.65 82 0.26 0.018 0.17468 0.06 0.46 0.14 1800 0.63 90.7 0.292 0.021 0.089242 0.42 0.52 0.81 2900 0.92 157.9 0.521 0.035 ‐0.24788 0.00 0.15 0.01 0.27 0.41 0.68 0.28 0.16 0.76 103% 38% 111% ns and normalization to a primary standard material WC‐1 calcite

111 Texas Tech University, Austin D Bertoch, August 2020

Table 9. LA‐ICP‐MS U‐Pb Results for Walnut Canyon WC‐1, marine calcite cement that filled a fault‐related discordant neptunian dyke in Permian (Capitanian) Reef Complex, G 254.4+/‐6.4Ma; 207/206=0.051911; 207/206initial=0.85; 238/206=24.8830)

Measured Isotope Intensities

Pb206_CPS_ Pb207_CPS_ Th232_CPS_ Sequence Comments Source file DateTime Durations Total points Pb206_CPS Int2SE Pb207_CPS Int2SE Th232_CPS Int2SE

WC‐1 for Sample 1 Analysis

C_WC_1_1 WC‐1 11141c_TRA_Data 14/03/2020 (7) 16:01:49.06 27.257 138 20830 710 1090 130 161 28 C_WC_1_2 WC‐2 11141c_TRA_Data 14/03/2020 (7) 16:02:38.93 26.883 135 19270 450 1001 54 105 22 C_WC_1_3 WC‐3 11141c_TRA_Data 14/03/2020 (7) 16:03:27.95 27.23 137 19340 440 1004 71 105 22 C_WC_1_4 WC‐4 11142c_TRA_Data 14/03/2020 (7) 16:23:09.37 17.425 88 18610 440 970 130 185 34 C_WC_1_5 WC‐5 11142c_TRA_Data 14/03/2020 (7) 16:23:48.28 28.31 143 18730 370 972 86 107 20 C_WC_1_6 WC‐6 11142c_TRA_Data 14/03/2020 (7) 16:24:37.99 28.021 141 16530 300 860 83 88 18 C_WC_1_7 WC‐7 11142c_TRA_Data 14/03/2020 (7) 16:44:10.88 28.084 141 15680 360 829 64 41 13 C_WC_1_8 WC‐8 11142c_TRA_Data 14/03/2020 (7) 16:45:00.88 26.083 131 16420 420 865 87 135 24 C_WC_1_9 WC‐9 11142c_TRA_Data 14/03/2020 (7) 16:45:50.28 27.369 138 18220 420 950 90 69 17 Mean SD %RSD

WC‐1 for Sample 2 Analysis C_WC_1_3 WC‐3 11143c_TRA_Data 14/03/2020 (7) 16:50:52.63 28.01 142 18990 570 991 59 114 23 C_WC_1_2 WC‐2 11143c_TRA_Data 14/03/2020 (7) 16:50:02.47 28.699 144 19760 550 1036 68 114 22 C_WC_1_1 WC‐1 11143c_TRA_Data 14/03/2020 (7) 16:49:13.74 27.471 138 17210 720 890 100 64 15 C_WC_1_9 WC‐9 11144c_TRA_Data 14/03/2020 (7) 17:32:47.67 28.543 144 21440 540 1110 100 112 19 C_WC_1_8 WC‐8 11144c_TRA_Data 14/03/2020 (7) 17:31:58.56 15.217 77 22780 510 1190 130 103 26 C_WC_1_7 WC‐7 11144c_TRA_Data 14/03/2020 (7) 17:31:08.75 28.542 144 23590 370 1217 61 91 17 C_WC_1_6 WC‐6 11144c_TRA_Data 14/03/2020 (7) 17:11:45.68 27.949 141 21260 460 1104 64 96 18 C_WC_1_5 WC‐5 11144c_TRA_Data 14/03/2020 (7) 17:10:56.24 28.602 144 24200 410 1257 81 129 21 C_WC_1_4 WC‐4 11144c_TRA_Data 14/03/2020 (7) 17:10:06.89 28.483 143 19930 470 1026 60 84 17 C_WC_1_12 WC‐12 11145c_TRA_Data 14/03/2020 (7) 17:53:51.55 28.802 145 19680 450 1020 140 80 16 C_WC_1_11 WC‐11 11145c_TRA_Data 14/03/2020 (7) 17:53:01.94 29.23 147 19080 830 990 160 55 15 C_WC_1_10 WC‐10 11145c_TRA_Data 14/03/2020 (7) 17:52:12.79 28.545 144 19600 500 1035 99 76 17 C_WC_1_15 WC‐15 11146c_TRA_Data 14/03/2020 (7) 18:14:52.74 28.519 144 19730 600 1030 110 94 18 C_WC_1_14 WC‐14 11146c_TRA_Data 14/03/2020 (7) 18:14:03.56 22.821 115 20360 830 1070 100 84 20 C_WC_1_13 WC‐13 11146c_TRA_Data 14/03/2020 (7) 18:13:13.60 28.491 144 21880 410 1142 88 152 25 Mean SD %RSD

WC‐1 for Sample 3 Analysis C_WC_1_6 WC‐6 11156c_TRA_Data 17/03/2020 (3) 21:29:36.77 28.647 145 14290 270 749 85 122 23 C_WC_1_5 WC‐5 11156c_TRA_Data 17/03/2020 (3) 21:28:47.74 28.365 143 14970 310 770 150 119 22 C_WC_1_4 WC‐4 11156c_TRA_Data 17/03/2020 (3) 21:27:58.42 28.682 145 12220 310 634 60 41 13 C_WC_1_3 WC‐3 11156c_TRA_Data 17/03/2020 (3) 21:08:52.57 28.699 145 10230 560 531 74 47 14 C_WC_1_2 WC‐2 11156c_TRA_Data 17/03/2020 (3) 21:08:03.65 28.376 143 13480 430 702 56 85 20 C_WC_1_1 WC‐1 11156c_TRA_Data 17/03/2020 (3) 21:07:14.69 28.6 144 14200 320 738 95 37 13 C_WC_1_9 WC‐9 11157c_TRA_Data 17/03/2020 (3) 21:50:17.83 28.718 145 12400 270 644 67 68 17 C_WC_1_8 WC‐8 11157c_TRA_Data 17/03/2020 (3) 21:49:28.92 28.418 143 13840 310 730 100 56 15 C_WC_1_7 WC‐7 11157c_TRA_Data 17/03/2020 (3) 21:48:39.89 28.63 145 13750 290 714 42 90 19 C_WC_1_12 WC‐12 11159c_TRA_Data 17/03/2020 (3) 22:11:34.23 28.844 146 11980 270 621 57 50 12 C_WC_1_11 WC‐11 11159c_TRA_Data 17/03/2020 (3) 22:10:45.25 28.669 145 11950 240 606 76 75 17 C_WC_1_10 WC‐10 11159c_TRA_Data 17/03/2020 (3) 22:09:56.41 28.546 144 14070 280 739 71 61 14 C_WC_1_18 WC‐18 11160c_TRA_Data 17/03/2020 (3) 22:53:46.51 28.702 145 8480 380 460 110 143 30 C_WC_1_17 WC‐17 11160c_TRA_Data 17/03/2020 (3) 22:52:57.46 28.714 145 11820 710 619 74 56 15 C_WC_1_16 WC‐16 11160c_TRA_Data 17/03/2020 (3) 22:52:08.56 28.479 143 13000 280 675 53 51 14 C_WC_1_15 WC‐15 11160c_TRA_Data 17/03/2020 (3) 22:32:48.62 28.698 145 9660 590 514 62 54 18 C_WC_1_14 WC‐14 11160c_TRA_Data 17/03/2020 (3) 22:31:59.63 28.628 144 9510 420 495 52 38 12 C_WC_1_13 WC‐13 11160c_TRA_Data 17/03/2020 (3) 22:31:10.87 28.367 143 9130 420 474 81 37 13 C_WC_1_6 WC‐6 11161c_TRA_Data 17/03/2020 (3) 23:32:15.40 28.577 145 19900 1100 1020 120 227 34 C_WC_1_5 WC‐5 11161c_TRA_Data 17/03/2020 (3) 23:31:26.30 28.697 145 11850 470 623 43 58 15 C_WC_1_4 WC‐4 11161c_TRA_Data 17/03/2020 (3) 23:30:37.32 28.656 145 9900 400 498 74 35 12 C_WC_1_3 WC‐3 11161c_TRA_Data 17/03/2020 (3) 23:11:00.48 28.451 144 10170 310 532 70 70 15 C_WC_1_2 WC‐2 11161c_TRA_Data 17/03/2020 (3) 23:10:11.50 28.689 144 7620 460 384 40 45 13 C_WC_1_1 WC‐1 11161c_TRA_Data 17/03/2020 (3) 23:09:22.50 28.62 144 8630 290 457 44 31 12 C_WC_1_9 WC‐9 11162c_TRA_Data 17/03/2020 (3) 23:53:30.14 28.617 144 14710 320 765 63 178 30 C_WC_1_8 WC‐8 11162c_TRA_Data 17/03/2020 (3) 23:52:41.33 28.467 143 15630 450 799 67 148 25 C_WC_1_7 WC‐7 11162c_TRA_Data 17/03/2020 (3) 23:51:52.51 28.429 143 24400 1200 1280 110 260 36 Mean SD %RSD 1 Raw intensity count rate data processed in Iolite (Paton et al., 2011) using the VisualAge_UcomPbine data reduction schemes (DRS; Chew et al., 2014) for baseline, drift and U/Pb downhole fractionation corre 2 Measured U and Th intensities calibrated against NIST SRM 614 concentrations in MS Excel spreadsheet

112 Texas Tech University, Austin D Bertoch, August 2020

Guadalupe Mountains, western side of Delaware Basin of West Texas (Roberts et al. 2017, ID‐TIMS (Pb)/MC‐ICPMS (U) =

Corrected Isotope Ratios1 Element Concentrations2

U238_CPS_I Final238_206_ Final207_206_ ErrorCorrelation U238_CPS nt2SE Final238_206 Prop2SE Final207_206 Prop2SE _38_6vs7_6 Th, ppm U, ppm Th/U

443000 15000 24.7832 0.5835 0.0520 0.0055 0.0348 0.006 5.1 0.0011 412000 10000 24.9750 0.5177 0.0520 0.0031 0.2285 0.004 4.8 0.0008 411000 9700 24.8324 0.5365 0.0518 0.0041 ‐0.0214 0.004 4.7 0.0008 395000 8000 24.7832 0.6081 0.0511 0.0066 0.0013 0.007 4.5 0.0014 404000 7100 24.9252 0.5281 0.0522 0.0045 0.0467 0.004 4.6 0.0008 357000 4400 24.8880 0.5389 0.0520 0.0049 ‐0.0936 0.003 4.1 0.0008 338000 7500 24.8633 0.5440 0.0517 0.0042 0.0064 0.001 3.9 0.0004 353000 7500 24.9190 0.5527 0.0538 0.0057 ‐0.0459 0.005 4.0 0.0012 388000 6900 24.8633 0.5749 0.0510 0.0046 ‐0.3891 0.002 4.4 0.0005 24.8703 0.051956 0.004 4.462 0.001 0.0646 0.000806 0.002 0.406 0.000 0.3% 1.55% 40.2% 9.1% 37.9%

413000 12000 24.75248 0.4288795 0.052 0.0035 0.088506 0.004 4.3 0.0009 427000 11000 24.76474 0.4415703 0.0532 0.004 0.070764 0.004 4.4 0.0008 378000 15000 25.01876 0.4444164 0.0494 0.0058 ‐0.071484 0.002 3.9 0.0005 469500 9600 24.86325 0.4141815 0.0509 0.0045 ‐0.011322 0.004 4.8 0.0008 483700 7900 24.46782 0.4669661 0.0529 0.0055 0.091714 0.003 5.0 0.0007 517300 7900 24.82622 0.3944583 0.0524 0.0028 0.44629 0.003 5.3 0.0006 464500 9500 24.83855 0.3948503 0.0521 0.0032 0.3352 0.003 4.8 0.0007 534200 6200 25.1004 0.4032193 0.0525 0.0036 0.11591 0.004 5.5 0.0008 441000 12000 25.05638 0.4206408 0.0515 0.0031 0.041322 0.003 4.5 0.0006 428000 7300 24.5038 0.4563315 0.0503 0.0068 ‐0.3746 0.003 4.5 0.0006 420000 14000 25.03129 0.488721 0.0444 0.007 ‐0.53862 0.002 4.4 0.0004 433700 9000 25.05638 0.4394754 0.0517 0.0045 ‐0.14604 0.003 4.6 0.0006 442000 11000 25.1004 0.5103244 0.0555 0.0065 ‐0.29855 0.004 4.8 0.0007 446000 13000 24.9004 0.5518266 0.0523 0.0044 ‐0.22683 0.003 4.8 0.0007 482900 6400 24.85707 0.451048 0.0521 0.0037 ‐0.077303 0.006 5.2 0.0011 24.8759 0.051547 0.003 4.721 0.001 0.1979 0.002404 0.001 0.412 0.000 0.8% 4.66% 27.0% 8.7% 22.5%

333000 3600 24.52182 0.7817158 0.0526 0.0054 ‐0.41288 0.003 3.8 0.0009 355000 5700 24.77701 0.7980701 0.0489 0.0079 ‐0.55036 0.003 4.1 0.0008 288000 5900 24.70966 0.7326808 0.0525 0.0048 0.042853 0.001 3.3 0.0004 239000 12000 24.64268 0.7287141 0.0497 0.0067 ‐0.11708 0.001 2.7 0.0005 319000 8600 24.77087 0.7363152 0.0523 0.0039 0.27108 0.002 3.7 0.0007 345000 6300 25.41942 0.7107616 0.0527 0.0068 ‐0.087642 0.001 4.0 0.0003 283000 6600 23.99808 0.7486802 0.0534 0.0058 ‐0.25715 0.002 3.2 0.0006 323000 5800 24.71577 0.79413 0.0518 0.0066 ‐0.45094 0.002 3.7 0.0004 333000 6100 25.56891 0.719146 0.0517 0.0032 0.18184 0.003 3.8 0.0007 279000 6500 24.69136 0.7315958 0.0518 0.0049 ‐0.094018 0.001 3.3 0.0004 282000 5300 24.82622 0.7396092 0.0515 0.0067 0.12551 0.002 3.3 0.0007 328000 5500 24.67308 0.7305132 0.0519 0.0052 0.31084 0.002 3.9 0.0005 200000 9300 24.82622 0.8628774 0.059 0.012 ‐0.23592 0.004 2.4 0.0018 263000 12000 25.19526 0.7617616 0.0525 0.0055 ‐0.50738 0.002 3.2 0.0005 305000 5900 24.96879 0.7481285 0.0507 0.0044 0.49041 0.002 3.7 0.0004 226000 13000 24.95633 0.7473819 0.0521 0.0055 ‐0.107 0.002 2.7 0.0006 222000 11000 24.51581 0.7212301 0.054 0.0063 ‐0.20513 0.001 2.7 0.0004 217000 9600 25.25253 0.765228 0.0487 0.0067 ‐0.51832 0.001 2.6 0.0004 465000 29000 24.03846 1.386834 0.0566 0.0081 ‐0.40942 0.007 5.5 0.0012 289000 11000 25.5102 1.431695 0.0531 0.0059 0.41567 0.002 3.4 0.0005 236300 9100 25.35497 1.478611 0.048 0.0077 ‐0.57297 0.001 2.8 0.0004 244900 6100 25.22068 1.526599 0.0495 0.0071 ‐0.53476 0.002 2.9 0.0007 177000 10000 24.2483 1.411152 0.0536 0.0072 0.38542 0.001 2.1 0.0006 205700 6200 24.98126 1.435346 0.0513 0.0066 0.246 0.001 2.4 0.0004 349200 7700 25.03129 1.378444 0.053 0.0063 ‐0.26155 0.005 4.1 0.0012 372200 9600 25.01876 1.377065 0.0497 0.0054 ‐0.041784 0.004 4.4 0.0010 563000 28000 24.43196 1.372917 0.053 0.0057 ‐0.40143 0.007 6.6 0.0011 24.8469 0.052059 0.002 3.493 0.001 0.4088 0.002314 0.002 0.961 0.000 1.6% 4.44% 70.0% 27.5% 51.8% ections and normalization to a primary standard material WC‐1 calcite

113 Texas Tech University, Austin D Bertoch, August 2020

Table 10. LA‐ICP‐MS U‐Pb Results for Walnut Canyon WC‐1, marine calcite cement that filled a fault‐related discordant neptunian dyke in Permian (Capitanian) Reef Complex, Guadalupe Mountains, western side of Delaware Basin of West T 254.4+/‐6.4Ma; 207/206=0.051911; 207/206initial=0.85; 238/206=24.8830)

Measured Isotope Intensities Corrected Isotope R

Pb206_CPS_ Pb207_CPS_ Th232_CPS_ U238_CPS_I Final238_206_ Sequence Comments Source file DateTime Durations Total points Pb206_CPS Int2SE Pb207_CPS Int2SE Th232_CPS Int2SE U238_CPS nt2SE Final238_206 Prop2SE Final207_206

WC‐1 for Sample 4 Analysis

C_WC_1_6 WC‐6 11136c_TRA_Data 06/03/2020 (6) 18:35:09.27 28.048 142 11330 350 597 53 47 18 266200 8100 24.8942 0.7436654 0.057 C_WC_1_5 WC‐5 11136c_TRA_Data 06/03/2020 (6) 18:34:20.76 26.953 136 12590 210 656 66 85 19 295300 5000 24.83855 0.7403442 0.0527 C_WC_1_4 WC‐4 11136c_TRA_Data 06/03/2020 (6) 18:33:30.93 29.698 149 11820 270 606 61 65 16 276700 5500 24.91901 0.7451487 0.0531 C_WC_1_3 WC‐3 11136c_TRA_Data 06/03/2020 (6) 18:14:12.27 29.838 150 11360 600 590 140 56 14 271000 12000 24.95633 0.7473819 0.0474 C_WC_1_2 WC‐2 11136c_TRA_Data 06/03/2020 (6) 18:13:25.96 25.263 128 12110 290 626 45 68 17 287000 6700 24.79544 0.7377765 0.0519 C_WC_1_1 WC‐1 11136c_TRA_Data 06/03/2020 (6) 18:12:35.13 24.563 124 11620 270 607 89 42 14 273900 4600 24.91901 0.7451487 0.0524 C_WC_1_9 WC‐9 11137c_TRA_Data 06/03/2020 (6) 18:56:03.88 28.093 141 13230 310 684 58 178 25 314000 7600 24.9066 0.7444065 0.0504 C_WC_1_8 WC‐8 11137c_TRA_Data 06/03/2020 (6) 18:55:15.05 28.399 143 11340 270 590 39 87 19 267700 5300 24.79544 0.7377765 0.0523 C_WC_1_7 WC‐7 11137c_TRA_Data 06/03/2020 (6) 18:54:26.11 28.178 142 11020 190 573 47 33 13 263500 2900 24.93766 0.6840753 0.0513 C_WC_1_15 WC‐15 11138c_TRA_Data 06/03/2020 (6) 19:37:01.01 28.823 146 14210 690 739 51 91 19 332000 18000 24.69746 0.7319572 0.0579 C_WC_1_14 WC‐14 11138c_TRA_Data 06/03/2020 (6) 19:36:11.86 29.096 146 15410 680 811 47 122 22 365000 16000 24.99375 0.6871564 0.0523 C_WC_1_13 WC‐13 11138c_TRA_Data 06/03/2020 (6) 19:35:23.72 27.574 139 14200 400 738 55 87 17 339300 9100 24.8942 0.6816933 0.0523 C_WC_1_12 WC‐12 11138c_TRA_Data 06/03/2020 (6) 19:16:29.43 27.18 137 13580 340 707 80 83 18 321400 6700 24.77087 0.7363152 0.053 C_WC_1_11 WC‐11 11138c_TRA_Data 06/03/2020 (6) 19:15:40.60 27.096 136 14030 230 730 56 113 26 336000 3500 25.03129 0.7518785 0.051 C_WC_1_10 WC‐10 11138c_TRA_Data 06/03/2020 (6) 19:14:52.55 27.963 141 13980 300 726 38 59 14 331800 6000 24.8139 0.7388753 0.0508 C_WC_1_18 WC‐18 11139c_TRA_Data 06/03/2020 (6) 19:58:04.71 26.802 136 13140 520 690 45 65 16 316000 15000 24.88181 0.7429254 0.0537 C_WC_1_17 WC‐17 11139c_TRA_Data 06/03/2020 (6) 19:57:14.85 28.254 143 15710 400 804 67 105 19 372000 10000 24.83238 0.7399766 0.0493 C_WC_1_16 WC‐16 11139c_TRA_Data 06/03/2020 (6) 19:56:25.64 28.579 144 14900 550 774 52 112 20 354000 15000 24.8942 0.7436654 0.0534 C_WC_1_21 WC‐21 11140c_TRA_Data 06/03/2020 (6) 20:19:13.93 28.053 142 14020 300 730 54 63 15 337800 6400 24.92522 0.6833935 0.0513 C_WC_1_20 WC‐20 11140c_TRA_Data 06/03/2020 (6) 20:18:25.34 27.926 141 11690 260 623 44 52 14 280400 5400 24.75248 0.735222 0.0526 C_WC_1_19 WC‐19 11140c_TRA_Data 06/03/2020 (6) 20:17:36.98 26.65 134 15880 590 824 40 85 19 382000 14000 24.93766 0.746264 0.0512 Mean 24.8756 0.052252 SD 0.0832 0.002257 %RSD 0.3% 4.32%

WC‐1 for Sample 8 Analysis C_WC_1_3 WC‐3 11154c_TRA_Data 17/03/2020 (3) 20:14:15.79 28.692 145 14120 340 736 57 62 15 331100 8100 24.95633 0.47957 0.0534 C_WC_1_2 WC‐2 11154c_TRA_Data 17/03/2020 (3) 20:13:26.92 28.57 144 14720 240 764 45 79 18 343500 5000 24.88181 0.4581374 0.0512 C_WC_1_1 WC‐1 11154c_TRA_Data 17/03/2020 (3) 20:12:37.62 28.83 146 12780 390 655 53 48 14 297600 9100 24.82005 0.4435453 0.0522 C_WC_1_9 WC‐9 11155c_TRA_Data 17/03/2020 (3) 20:56:46.82 28.629 145 16450 450 854 62 67 16 383000 11000 24.64876 0.4435196 0.0526 C_WC_1_8 WC‐8 11155c_TRA_Data 17/03/2020 (3) 20:55:57.79 28.69 145 12360 320 635 42 40 13 292500 7000 25.21432 0.4450334 0.0517 C_WC_1_7 WC‐7 11155c_TRA_Data 17/03/2020 (3) 20:55:08.79 28.773 145 17720 630 921 51 59 14 412000 14000 24.72188 0.4522668 0.0518 C_WC_1_6 WC‐6 11155c_TRA_Data 17/03/2020 (3) 20:35:32.57 28.565 144 14950 500 772 46 42 13 353000 12000 24.96256 0.4424217 0.0519 C_WC_1_5 WC‐5 11155c_TRA_Data 17/03/2020 (3) 20:34:43.44 28.776 145 14090 280 737 81 59 15 329100 5300 24.8139 0.5356846 0.0517 C_WC_1_4 WC‐4 11155c_TRA_Data 17/03/2020 (3) 20:33:54.47 28.602 144 14650 280 771 65 77 18 342800 5300 24.86944 0.445312 0.0517 Mean 24.8766 0.052022 SD 0.1623 0.000644 %RSD 0.7% 1.24%

WC‐1 for Sample 9 C_WC_1_3 WC‐3 11151c_TRA_Data 17/03/2020 (3) 19:07:51.36 28.554 143 18660 390 977 74 99 22 432400 7000 24.93144 1.05668 0.0513 C_WC_1_2 WC‐2 11151c_TRA_Data 17/03/2020 (3) 19:07:02.24 28.591 144 17200 200 894 60 77 17 391200 3300 24.79544 1.045183 0.0511 C_WC_1_1 WC‐1 11151c_TRA_Data 17/03/2020 (3) 19:06:13.05 28.844 145 14420 410 770 140 54 15 324500 9000 25 1.1875 0.0538 C_WC_1_6 WC‐6 11152c_TRA_Data 17/03/2020 (3) 19:28:47.87 28.669 145 14390 520 752 59 56 15 327000 12000 24.80159 1.107214 0.0535 C_WC_1_5 WC‐5 11152c_TRA_Data 17/03/2020 (3) 19:27:59.04 29.78 150 14660 310 770 110 79 17 342400 5300 25.1004 1.134054 0.0512 C_WC_1_4 WC‐4 11152c_TRA_Data 17/03/2020 (3) 19:27:09.88 28.742 145 18020 390 937 56 91 18 425900 9500 24.86325 1.112726 0.052 C_WC_1_12 WC‐12 11153c_TRA_Data 17/03/2020 (3) 20:10:49.75 28.773 145 18030 630 940 440 102 18 423100 5800 25.06266 1.256274 0.034 C_WC_1_11 WC‐11 11153c_TRA_Data 17/03/2020 (3) 20:10:00.75 28.684 144 15750 390 817 66 89 19 367800 7800 24.8139 1.108313 0.0529 C_WC_1_10 WC‐10 11153c_TRA_Data 17/03/2020 (3) 20:09:11.93 28.524 144 19480 580 1000 62 113 20 456000 11000 24.91281 1.117166 0.0516 C_WC_1_9 WC‐9 11153c_TRA_Data 17/03/2020 (3) 19:49:48.35 28.615 144 17630 630 908 59 51 14 416000 13000 24.92522 1.11828 0.0513 C_WC_1_8 WC‐8 11153c_TRA_Data 17/03/2020 (3) 19:48:59.36 28.678 144 17280 720 895 53 95 20 405000 18000 24.84472 1.111068 0.0535 C_WC_1_7 WC‐7 11153c_TRA_Data 17/03/2020 (3) 19:48:10.29 28.767 145 16150 260 840 51 51 14 369700 5200 24.88181 1.114388 0.0524 Mean 24.9111 0.050717 SD 0.0999 0.005356 %RSD 0.4% 10.56% 1 Raw intensity count rate data processed in Iolite (Paton et al., 2011) using the VisualAge_UcomPbine data reduction schemes (DRS; Chew et al., 2014) for baseline, drift and U/Pb downhole fractionation corrections and normalization to a primary standard material WC‐1 calcite 2 Measured U and Th intensities calibrated against NIST SRM 614 concentrations in MS Excel spreadsheet

114 Texas Tech University, Austin D Bertoch, August 2020

Texas (Roberts et al. 2017, ID‐TIMS (Pb)/MC‐ICPMS (U) =

Ratios1 Element Concentrations2

Final207_206_ ErrorCorrelation Prop2SE _38_6vs7_6 Th, ppm U, ppm Th/U

0.0057 0.082662 0.002 3.2 0.0006 0.0054 ‐0.22901 0.003 3.5 0.0009 0.0053 ‐0.33855 0.003 3.3 0.0008 0.0065 ‐0.58976 0.002 3.3 0.0007 0.004 0.22354 0.003 3.4 0.0008 0.0056 0.042202 0.002 3.3 0.0007 0.0038 ‐0.40111 0.007 3.7 0.0018 0.0035 0.36666 0.003 3.2 0.0010 0.0042 0.074299 0.001 3.1 0.0004 0.0059 ‐0.43886 0.003 3.9 0.0009 0.0028 0.2739 0.004 4.2 0.0011 0.0041 0.038323 0.003 3.9 0.0008 0.0061 ‐0.3751 0.003 3.7 0.0008 0.0038 ‐0.0086402 0.004 3.9 0.0011 0.0024 0.25172 0.002 3.9 0.0006 0.0042 ‐0.26211 0.002 3.6 0.0007 0.0043 ‐0.35044 0.004 4.3 0.0009 0.0046 ‐0.29363 0.004 4.1 0.0010 0.004 ‐0.34532 0.002 3.8 0.0006 0.0038 0.009691 0.002 3.2 0.0006 0.0028 0.11495 0.003 4.3 0.0008 0.003 3.662 0.001 0.001 0.392 0.000 38.4% 10.7% 34.4%

0.0046 ‐0.081267 0.002 3.9 0.0004 0.0032 0.24712 0.002 4.1 0.0005 0.0047 0.31381 0.001 3.5 0.0004 0.0036 0.10331 0.002 0.0 1.9890 0.0033 ‐0.10929 0.001 0.0 1.5768 0.0023 ‐0.15661 0.002 0.0 1.1823 0.0032 0.21619 0.001 0.0 1.0860 0.0055 ‐0.30717 0.002 0.0 3.2244 0.004 ‐0.042329 0.002 0.0 3.9395 0.002 1.282 1.444 0.000 1.927 1.421 23.4% 150.3% 98.4%

0.0043 0.065579 0.003 4.9 0.0006 0.0038 ‐0.12699 0.002 4.5 0.0005 0.0094 ‐0.64785 0.002 3.7 0.0004 0.0045 ‐0.068029 0.002 3.8 0.0004 0.0066 ‐0.55495 0.002 4.0 0.0006 0.0038 0.079924 0.003 5.0 0.0005 0.012 ‐0.89802 0.003 5.1 0.0006 0.0047 ‐0.066375 0.003 4.4 0.0006 0.0036 ‐0.11281 0.003 5.5 0.0006 0.0036 0.010167 0.002 5.0 0.0003 0.0041 ‐0.069659 0.003 4.9 0.0006 0.004 ‐0.0032659 0.002 4.4 0.0003 0.002 4.600 0.001 0.001 0.548 0.000 27.9% 11.9% 21.2%

115 Texas Tech University, Austin D Bertoch, August 2020

Table 11. LA‐ICP‐MS U‐Pb Results for Walnut Canyon WC‐1, marine calcite cement that filled a fault‐related discordant neptunian dyke in Permian (Capitanian) Reef Complex, 254.4+/‐6.4Ma; 207/206=0.051911; 207/206initial=0.85; 238/206=24.8830)

Measured Isotope Intensities

Pb206_CPS_ Pb207_CPS_ Th232_CPS_ Sequence Comments Source file DateTime Durations Total points Pb206_CPS Int2SE Pb207_CPS Int2SE Th232_CPS Int2SE

WC‐1 for Sample 12 Analysis

C_WC_1_3 WC‐3 11147c_TRA_Data 14/03/2020 (7) 18:47:46.44 23.325 117 18540 580 963 66 103 23 C_WC_1_2 WC‐2 11147c_TRA_Data 14/03/2020 (7) 18:47:00.12 26.732 135 14980 720 779 62 79 18 C_WC_1_1 WC‐1 11147c_TRA_Data 14/03/2020 (7) 18:46:16.13 21.481 109 16440 420 854 64 91 21 C_WC_1_6 WC‐6 11148c_TRA_Data 14/03/2020 (7) 19:08:54.74 29.828 150 24710 600 1320 110 100 16 C_WC_1_5 WC‐5 11148c_TRA_Data 14/03/2020 (7) 19:08:05.44 23.444 118 19350 880 1050 130 65 16 C_WC_1_4 WC‐4 11148c_TRA_Data 14/03/2020 (7) 19:07:22.66 23.22 117 17400 890 903 76 46 14 C_WC_1_9 WC‐9 11149_TRA_Data 14/03/2020 (7) 19:30:04.41 26.916 136 18440 530 935 56 42 14 C_WC_1_8 WC‐8 11149_TRA_Data 14/03/2020 (7) 19:29:14.99 27.843 140 20170 610 1051 72 79 16 C_WC_1_7 WC‐7 11149_TRA_Data 14/03/2020 (7) 19:28:32.41 21.555 109 21800 1100 1115 80 81 20 C_WC_1_15 WC‐15 11150c_TRA_Data 14/03/2020 (7) 20:12:45.48 26.939 135 19580 420 1016 97 99 22 C_WC_1_14 WC‐14 11150c_TRA_Data 14/03/2020 (7) 20:11:55.38 29.662 150 18470 480 960 140 72 16 C_WC_1_13 WC‐13 11150c_TRA_Data 14/03/2020 (7) 20:11:21.40 13.054 66 18340 480 950 110 102 25 C_WC_1_12 WC‐12 11150c_TRA_Data 14/03/2020 (7) 19:51:09.28 23.418 119 19270 550 1000 76 116 21 C_WC_1_11 WC‐11 11150c_TRA_Data 14/03/2020 (7) 19:50:19.83 29.571 149 21210 470 1110 170 138 21 C_WC_1_10 WC‐10 11150c_TRA_Data 14/03/2020 (7) 19:49:30.31 29.614 149 16990 350 891 62 40 12 Mean SD %RSD

WC‐1 for Sample 13 Analysis C_WC_1_3 WC‐3 11132c_TRA_Data 06/03/2020 (6) 14:47:04.13 23.523 119 11180 340 590 59 33 14 C_WC_1_2 WC‐2 11132c_TRA_Data 06/03/2020 (6) 14:46:18.70 19.671 99 11840 280 620 70 7 8.6 C_WC_1_1 WC‐1 11132c_TRA_Data 06/03/2020 (6) 14:45:26.53 13.008 66 15770 320 816 92 62 21 C_WC_1_6 WC‐6 11133c_TRA_Data 06/03/2020 (6) 15:25:42.16 22.039 112 12990 310 680 100 105 24 C_WC_1_5 WC‐5 11133c_TRA_Data 06/03/2020 (6) 15:24:53.04 21.312 107 11310 470 590 96 141 29 C_WC_1_4 WC‐4 11133c_TRA_Data 06/03/2020 (6) 15:24:05.66 26.837 135 6540 410 345 57 40 14 C_WC_1_9 WC‐9 11134c_TRA_Data 06/03/2020 (6) 15:46:56.11 27.995 141 10880 370 573 64 74 18 C_WC_1_8 WC‐8 11134c_TRA_Data 06/03/2020 (6) 15:46:07.34 26.868 135 12500 190 646 57 72 16 C_WC_1_7 WC‐7 11134c_TRA_Data 06/03/2020 (6) 15:45:18.30 11.024 55 10650 490 553 76 56 22 C_WC_1_15 WC‐15 11135c_TRA_Data 06/03/2020 (6) 16:29:11.33 24.107 122 10110 240 525 55 69 16 C_WC_1_14 WC‐14 11135c_TRA_Data 06/03/2020 (6) 16:28:20.47 27.476 139 12860 330 669 74 60 14 C_WC_1_13 WC‐13 11135c_TRA_Data 06/03/2020 (6) 16:27:31.73 26.521 134 12590 350 690 100 78 19 C_WC_1_12 WC‐12 11135c_TRA_Data 06/03/2020 (6) 16:08:14.96 17.037 86 12080 330 615 61 62 17 C_WC_1_11 WC‐11 11135c_TRA_Data 06/03/2020 (6) 16:07:20.39 23.719 119 13680 220 710 49 85 20 C_WC_1_10 WC‐10 11135c_TRA_Data 06/03/2020 (6) 16:06:26.07 28.901 146 11830 230 611 53 77 16 Mean SD %RSD

1 Raw intensity count rate data processed in Iolite (Paton et al., 2011) using the VisualAge_UcomPbine data reduction schemes (DRS; Chew et al., 2014) for baseline, drift and U/Pb downhole fractionation cor 2 Measured U and Th intensities calibrated against NIST SRM 614 concentrations in MS Excel spreadsheet

116 Texas Tech University, Austin D Bertoch, August 2020

Guadalupe Mountains, western side of Delaware Basin of West Texas (Roberts et al. 2017, ID‐TIMS (Pb)/MC‐ICPMS (U) =

Corrected Isotope Ratios1 Element Concentrations2

U238_CPS_I Final238_206 Final207_206_ ErrorCorrelation U238_CPS nt2SE Final238_206 _Prop2SE Final207_206 Prop2SE _38_6vs7_6 Th, ppm U, ppm Th/U

404000 13000 24.46184 1.077087 0.051 0.004 ‐0.13725 0.003 4.3 0.0008 335000 16000 25.15723 1.139195 0.0559 0.0054 0.084651 0.003 3.6 0.0007 368700 7900 25.13194 1.136906 0.0494 0.0036 ‐0.038117 0.003 3.9 0.0008 521000 12000 24.76474 1.103926 0.0517 0.0042 ‐0.26262 0.003 5.5 0.0006 409000 19000 24.72188 1.161225 0.0535 0.0058 ‐0.29343 0.002 4.3 0.0005 376000 21000 25.15091 1.138622 0.0563 0.0057 ‐0.15191 0.002 3.9 0.0004 414000 12000 25.68713 1.121709 0.0508 0.0033 0.19569 0.001 4.4 0.0003 422000 12000 24.17211 1.051723 0.0525 0.0039 0.17856 0.003 4.5 0.0006 457000 24000 24.58815 1.088239 0.0542 0.0046 ‐0.20633 0.003 4.8 0.0006 432900 8100 24.98751 1.061438 0.0525 0.005 ‐0.052248 0.004 4.7 0.0008 410400 8700 25.03129 1.127818 0.0517 0.0072 ‐0.42729 0.003 4.4 0.0006 393800 9200 24.31907 1.123692 0.053 0.0063 ‐0.18442 0.004 4.3 0.0009 417000 12000 24.4918 1.079726 0.052 0.0039 ‐0.4192 0.004 4.5 0.0009 461800 9000 24.82005 1.108863 0.0492 0.0061 ‐0.6383 0.005 5.0 0.0010 376600 6500 25.18257 1.141492 0.051 0.0033 0.23032 0.001 4.1 0.0003 24.8445 0.052313 0.003 4.408 0.001 0.4001 0.002054 0.001 0.467 0.000 1.6% 3.93% 34.5% 10.6% 31.1%

252000 7100 24.9004 0.7440358 0.0516 0.0048 0.49151 0.001 2.8 0.0004 265000 5500 24.667 0.7909989 0.0537 0.0066 ‐0.13667 0.000 3.0 0.0001 370000 5200 25.07523 0.817397 0.0502 0.0061 0.21989 0.002 4.2 0.0005 288000 7300 24.53988 0.7828673 0.0521 0.0078 ‐0.34007 0.004 3.5 0.0012 260000 12000 25.06266 0.8165778 0.061 0.011 ‐0.35143 0.005 3.2 0.0017 150000 9300 24.98126 0.7488763 0.0518 0.0081 0.081222 0.002 1.8 0.0008 248000 6700 24.84472 0.7407122 0.0519 0.0054 ‐0.28286 0.003 3.0 0.0010 288000 3300 24.91281 0.7447774 0.0512 0.0044 0.31294 0.003 3.5 0.0008 246000 11000 24.87562 0.9281948 0.0527 0.0082 0.32204 0.002 3.0 0.0007 232000 4800 24.93766 0.746264 0.0508 0.0054 ‐0.0077702 0.003 2.8 0.0009 293000 7600 24.79544 0.7377765 0.0533 0.0061 ‐0.17232 0.002 3.5 0.0007 286000 7400 24.93144 0.8080496 0.0552 0.0078 ‐0.48605 0.003 3.4 0.0009 277000 6200 24.79544 0.7992578 0.0511 0.005 0.13862 0.002 3.3 0.0007 318000 3100 24.99375 0.7496251 0.0526 0.0038 0.25936 0.003 3.8 0.0009 275000 4400 24.80774 0.7385088 0.0502 0.0041 ‐0.28701 0.003 3.3 0.0009 24.8747 0.052627 0.003 3.215 0.001 0.1423 0.002678 0.001 0.535 0.000 0.6% 5.09% 46.6% 16.6% 44.8% rrections and normalization to a primary standard material WC‐1 calcite

117 Texas Tech University, Austin D Bertoch, August 2020

Table 15. LA‐ICP‐MS U‐Pb Results for NIST SRM 614 Soda‐Lime Silicate Glass (Woodhead and Hergt 2001, ID‐TIMS 207/206=0.8710) (Jochum et al 2011, U=0.823+/‐0.002ppm, Th=0.748+/‐0.006p

Measured Isotope Intensities

Pb206_CPS_ Pb207_CPS_ Th232_CPS_ Sequence Comments Source file DateTime Durations Total points Pb206_CPS Int2SE Pb207_CPS Int2SE Th232_CPS Int2SE U238_CPS

NIST SRM 614 for Sample 1 Analysis

G_NIST614_1 NIST‐1 11141c_TRA_Data 14/03/2020 (7) 16:04:42.95 26.144 131 56030 740 49180 590 21030 330 72800 G_NIST614_2 NIST‐2 11141c_TRA_Data 14/03/2020 (7) 16:05:32.51 26.381 133 54510 820 47690 680 21150 350 71100 G_NIST614_3 NIST‐3 11141c_TRA_Data 14/03/2020 (7) 16:20:55.62 25.787 130 54580 730 47930 570 20770 300 70900 G_NIST614_4 NIST‐4 11141c_TRA_Data 14/03/2020 (7) 16:21:43.33 27.807 140 53310 760 47060 710 20850 370 70200 G_NIST614_5 NIST‐5 11142c_TRA_Data 14/03/2020 (7) 16:25:53.01 27.154 137 55240 830 48330 650 20810 360 70900 G_NIST614_6 NIST‐6 11142c_TRA_Data 14/03/2020 (7) 16:26:42.92 27.035 136 55890 800 49380 660 21340 350 72000 G_NIST614_7 NIST‐7 11142c_TRA_Data 14/03/2020 (7) 16:42:06.03 27.748 140 56060 730 49200 580 20910 300 71900 G_NIST614_8 NIST‐8 11142c_TRA_Data 14/03/2020 (7) 16:42:55.64 27.451 138 56230 670 49400 540 21720 310 73300 Mean SD %RSD

NIST SRM 614 for Sample 2 Analysis G_NIST614_4 NIST‐4 11143c_TRA_Data 14/03/2020 (7) 17:08:49.92 28.58 144 60210 630 52710 490 22660 310 79770 G_NIST614_3 NIST‐3 11143c_TRA_Data 14/03/2020 (7) 17:08:00.35 28.096 142 60080 600 52270 420 22340 330 79570 G_NIST614_2 NIST‐2 11143c_TRA_Data 14/03/2020 (7) 16:52:58.36 28.232 142 60190 620 52900 450 22900 320 80680 G_NIST614_1 NIST‐1 11143c_TRA_Data 14/03/2020 (7) 16:52:08.90 28.449 143 58230 590 51020 420 23260 330 78320 G_NIST614_8 NIST‐8 11144c_TRA_Data 14/03/2020 (7) 17:29:51.11 28.508 144 59940 650 52460 490 21570 370 79280 G_NIST614_7 NIST‐7 11144c_TRA_Data 14/03/2020 (7) 17:29:01.42 28.685 145 60390 600 52940 430 22030 350 80240 G_NIST614_6 NIST‐6 11144c_TRA_Data 14/03/2020 (7) 17:13:51.08 28.748 144 60640 550 53470 450 23040 370 80620 G_NIST614_5 NIST‐5 11144c_TRA_Data 14/03/2020 (7) 17:13:02.04 28.581 144 61060 690 53550 460 22530 320 80700 G_NIST614_12 NIST‐12 11145c_TRA_Data 14/03/2020 (7) 17:50:56.07 28.331 143 58830 680 51410 480 20830 370 77200 G_NIST614_11 NIST‐11 11145c_TRA_Data 14/03/2020 (7) 17:50:07.07 28.005 141 58940 740 51970 510 20120 390 76600 G_NIST614_10 NIST‐10 11145c_TRA_Data 14/03/2020 (7) 17:34:54.51 27.835 140 58950 670 51950 500 21140 380 78500 G_NIST614_9 NIST‐9 11145c_TRA_Data 14/03/2020 (7) 17:34:04.71 27.968 141 59640 640 52690 480 21180 370 79000 G_NIST614_16 NIST‐16 11146c_TRA_Data 14/03/2020 (7) 18:11:56.91 28.038 141 57600 840 50550 530 20110 450 75000 G_NIST614_15 NIST‐15 11146c_TRA_Data 14/03/2020 (7) 18:11:07.64 27.522 139 58270 780 51210 490 20070 390 76500 G_NIST614_14 NIST‐14 11146c_TRA_Data 14/03/2020 (7) 17:55:57.96 28.137 142 58190 710 50970 480 19780 400 76400 G_NIST614_13 NIST‐13 11146c_TRA_Data 14/03/2020 (7) 17:55:07.97 28.375 143 58240 730 51560 520 19930 400 76800 Mean SD %RSD

NIST SRM 614 for Sample 3 Analysis G_NIST614_4 NIST‐4 11156c_TRA_Data 17/03/2020 (3) 21:26:43.06 28.436 143 54570 490 48030 370 27320 410 72280 G_NIST614_3 NIST‐3 11156c_TRA_Data 17/03/2020 (3) 21:25:54.22 28.468 144 52850 460 46320 300 25450 380 70630 G_NIST614_2 NIST‐2 11156c_TRA_Data 17/03/2020 (3) 21:10:56.71 28.343 143 55680 540 48970 390 27030 390 73390 G_NIST614_1 NIST‐1 11156c_TRA_Data 17/03/2020 (3) 21:10:07.71 28.554 144 52430 490 45640 370 25570 370 70410 G_NIST614_8 NIST‐8 11157c_TRA_Data 17/03/2020 (3) 21:47:24.08 28.632 145 54730 590 47590 410 26880 380 72560 G_NIST614_7 NIST‐7 11157c_TRA_Data 17/03/2020 (3) 21:46:34.82 28.692 145 52450 460 46060 410 25480 380 69730 G_NIST614_6 NIST‐6 11157c_TRA_Data 17/03/2020 (3) 21:31:40.71 28.62 145 54980 500 48320 400 27190 370 73700 G_NIST614_5 NIST‐5 11157c_TRA_Data 17/03/2020 (3) 21:30:51.82 28.472 144 53400 550 46730 380 26180 400 70500 G_NIST614_12 NIST‐12 11158c_TRA_Data 17/03/2020 (3) 22:08:40.80 28.436 144 53830 580 47280 400 26670 380 72030 G_NIST614_11 NIST‐11 11158c_TRA_Data 17/03/2020 (3) 22:07:51.58 28.791 146 51570 540 45210 370 25290 400 67880 G_NIST614_10 NIST‐10 11158c_TRA_Data 17/03/2020 (3) 21:52:22.43 28.733 145 55090 550 47970 400 27550 370 73250 G_NIST614_9 NIST‐9 11158c_TRA_Data 17/03/2020 (3) 21:51:33.32 28.531 143 52460 540 45920 400 25640 340 70020 G_NIST614_16 NIST‐16 11159c_TRA_Data 17/03/2020 (3) 22:29:54.83 28.577 144 53070 530 46190 380 26150 340 70300 G_NIST614_15 NIST‐15 11159c_TRA_Data 17/03/2020 (3) 22:29:05.63 28.659 144 51060 580 44460 380 25130 400 68090 G_NIST614_14 NIST‐14 11159c_TRA_Data 17/03/2020 (3) 22:13:38.67 28.471 144 53700 520 46890 370 26690 390 71870 G_NIST614_13 NIST‐13 11159c_TRA_Data 17/03/2020 (3) 22:12:49.94 28.34 143 51600 500 45080 380 25360 380 69000 G_NIST614_20 NIST‐20 11160c_TRA_Data 17/03/2020 (3) 22:50:52.50 28.482 144 52120 500 45750 360 25300 370 69580 G_NIST614_19 NIST‐19 11160c_TRA_Data 17/03/2020 (3) 22:50:03.34 28.757 145 50390 510 44150 350 24080 360 67150 G_NIST614_18 NIST‐18 11160c_TRA_Data 17/03/2020 (3) 22:34:53.75 28.493 143 52430 460 46040 370 25630 320 70210 G_NIST614_17 NIST‐17 11160c_TRA_Data 17/03/2020 (3) 22:34:04.57 28.616 144 50360 490 44110 370 24320 380 67020 G_NIST614_4 NIST‐4 11161c_TRA_Data 17/03/2020 (3) 23:29:21.74 28.707 145 52420 490 45680 350 26250 380 69860 G_NIST614_3 NIST‐3 11161c_TRA_Data 17/03/2020 (3) 23:28:32.93 28.517 144 50710 530 44630 330 25080 350 68490 G_NIST614_2 NIST‐2 11161c_TRA_Data 17/03/2020 (3) 23:13:04.15 28.449 143 52980 440 46810 360 26650 390 71390 G_NIST614_1 NIST‐1 11161c_TRA_Data 17/03/2020 (3) 23:12:15.38 28.428 143 49870 380 43470 300 25610 350 68240 G_NIST614_8 NIST‐8 11162c_TRA_Data 17/03/2020 (3) 23:50:36.87 28.728 145 53080 470 46400 390 26930 420 70820 G_NIST614_7 NIST‐7 11162c_TRA_Data 17/03/2020 (3) 23:49:48.04 28.512 144 50970 520 44740 420 25640 380 68800 G_NIST614_6 NIST‐6 11162c_TRA_Data 17/03/2020 (3) 23:34:19.46 28.797 145 52960 460 46350 370 27110 330 71080 G_NIST614_5 NIST‐5 11162c_TRA_Data 17/03/2020 (3) 23:33:30.47 28.516 144 51450 550 45060 380 26260 400 69250 Mean SD %RSD 1 Raw intensity count rate data processed in Iolite (Paton et al., 2011) using the VisualAge_UcomPbine data reduction schemes (DRS; Chew et al., 2014) for baseline, drift and U/Pb downhole fractionation corrections and normal 2 Measured U and Th intensities calibrated against NIST SRM 614 concentrations in MS Excel spreadsheet

118 Texas Tech University, Austin D Bertoch, August 2020 ppm)

Corrected Isotope Ratios1 Element Concentrations2

U238_CPS_I Final238_206_ Final207_206_ ErrorCorrelation nt2SE Final238_206 Prop2SE Final207_206 Prop2SE _38_6vs7_6 Th, ppm U, ppm Th/U

1200 1.5191 0.0323 0.8752 0.0074 0.4843 0.751 0.8 0.8929 1100 1.5354 0.0330 0.8790 0.0080 0.4166 0.755 0.8 0.9195 1000 1.5427 0.0333 0.9074 0.0084 0.5304 0.742 0.8 0.9055 1300 1.5449 0.0334 0.8998 0.0078 0.5361 0.744 0.8 0.9181 1000 1.4535 0.0317 0.8651 0.0068 0.4506 0.734 0.8 0.9065 1100 1.4503 0.0316 0.8688 0.0073 0.4931 0.753 0.8 0.9154 1100 1.4611 0.0320 0.8282 0.0070 0.4402 0.738 0.8 0.8982 1000 1.4910 0.0311 0.8323 0.0073 0.4693 0.767 0.8 0.9152 1.4997 0.8695 0.748 0.823 0.909 0.0408 0.0283 0.010 0.011 0.010 2.7% 3.25% 1.4% 1.4% 1.1%

970 1.505344 0.02492667 0.8625 0.007 0.45794 0.744 0.8 0.9016 910 1.508751 0.02276329 0.8568 0.0067 0.57683 0.733 0.8 0.8911 870 1.529052 0.0215096 0.8497 0.0069 0.4426 0.752 0.8 0.9009 970 1.536098 0.0228881 0.848 0.0064 0.44289 0.763 0.8 0.9426 990 1.497454 0.02466606 0.881 0.0083 0.48545 0.724 0.8 0.8897 990 1.503307 0.02485926 0.8823 0.0079 0.53856 0.739 0.8 0.8978 860 1.511487 0.02238902 0.8741 0.007 0.4942 0.773 0.8 0.9346 990 1.502404 0.02482939 0.8681 0.0078 0.5841 0.756 0.8 0.9130 1100 1.479728 0.89 0.8805 0.01 0.43509 0.748 0.8 0.9168 1100 1.461988 0.897 0.876 0.011 0.50277 0.723 0.8 0.8925 1100 1.501502 0.8911 0.884 0.0093 0.52766 0.760 0.8 0.9150 1200 1.492537 0.8923 0.8801 0.0084 0.39699 0.761 0.8 0.9109 1300 1.451379 0.03370401 0.876 0.013 0.59937 0.753 0.8 0.9295 1200 1.466276 0.0300995 0.876 0.011 0.51175 0.752 0.8 0.9094 1100 1.468429 0.03018796 0.8906 0.0099 0.57353 0.741 0.8 0.8975 1200 1.481481 0.03072702 0.895 0.012 0.50133 0.746 0.8 0.8996 1.4936 0.8738 0.748 0.823 0.909 0.0238 0.0136 0.014 0.008 0.016 1.6% 1.55% 1.8% 1.0% 1.7%

780 1.387732 0.03851603 0.8785 0.0069 0.44568 0.776 0.8 0.9347 770 1.398406 0.03911078 0.8755 0.007 0.47943 0.723 0.8 0.8911 820 1.373815 0.03774736 0.8874 0.0083 0.53137 0.768 0.8 0.9108 790 1.401149 0.03926437 0.8787 0.008 0.4279 0.726 0.8 0.8981 780 1.401542 0.03928638 0.8576 0.007 0.5217 0.761 0.8 0.9123 780 1.402131 0.03931944 0.862 0.0067 0.55771 0.721 0.8 0.8999 870 1.405086 0.03948536 0.8745 0.0071 0.52743 0.769 0.8 0.9086 840 1.386194 0.03843065 0.8712 0.007 0.57326 0.741 0.8 0.9145 830 1.418641 0.04025084 0.8518 0.0066 0.44004 0.759 0.8 0.9063 860 1.38831 0.04047552 0.8481 0.007 0.62434 0.720 0.8 0.9119 800 1.406866 0.03958541 0.854 0.007 0.4869 0.784 0.9 0.9206 810 1.409642 0.03974181 0.859 0.0074 0.50756 0.730 0.8 0.8963 810 1.406668 0.03957427 0.8316 0.0063 0.52323 0.757 0.8 0.9137 730 1.414827 0.04003473 0.8337 0.0066 0.59893 0.728 0.8 0.9066 820 1.423082 0.04050327 0.8447 0.0066 0.55293 0.773 0.8 0.9122 810 1.419446 0.03828173 0.8445 0.0065 0.48461 0.734 0.8 0.9028 830 1.419648 0.040308 0.8275 0.0062 0.49962 0.762 0.8 0.9115 810 1.419648 0.040308 0.827 0.0066 0.40872 0.725 0.8 0.8989 870 1.417635 0.0401938 0.8347 0.0057 0.31637 0.772 0.8 0.9151 740 1.414027 0.03998946 0.8364 0.0069 0.45405 0.733 0.8 0.9096 770 1.397819 0.07815596 0.8258 0.068 0.50364 0.758 0.8 0.9164 730 1.412429 0.07780331 0.8367 0.069 0.50332 0.724 0.8 0.8931 750 1.408649 0.0773874 0.8138 0.067 0.51812 0.770 0.8 0.9105 700 1.427552 0.07947826 0.8033 0.066 0.46061 0.740 0.8 0.9153 760 1.399776 0.07837492 0.8593 0.071 0.52876 0.761 0.8 860 1.416431 0.07824475 0.8621 0.071 0.49832 0.724 0.8 0.8951 800 1.404297 0.07690997 0.8351 0.069 0.51143 0.766 0.8 0.9160 880 1.413228 0.0778913 0.8367 0.069 0.49855 0.742 0.8 0.9107 1.4070 0.8483 0.748 0.823 0.909 0.0125 0.0210 0.020 0.017 0.010 0.9% 2.48% 2.7% 2.1% 1.0% ization to a primary standard material WC‐1 calcite

119 Texas Tech University, Austin D Bertoch, August 2020

Table 16. LA‐ICP‐MS U‐Pb Results for NIST SRM 614 Soda‐Lime Silicate Glass (Woodhead and Hergt 2001, ID‐TIMS 207/206=0.8710) (Jochum et al 2011, U=0.823+/‐0.002ppm, Th=0.748+/‐0.006ppm)

Measured Isotope Intensities Corrected Isotope R

Pb206_CPS_ Pb207_CPS_ Th232_CPS_ U238_CPS_I Final238_206_ Sequence Comments Source file DateTime Durations Total points Pb206_CPS Int2SE Pb207_CPS Int2SE Th232_CPS Int2SE U238_CPS nt2SE Final238_206 Prop2SE Final207_206

NIST SRM 614 for Sample 4 Analysis

G_NIST614_6 NIST‐6 11136c_TRA_Data 06/03/2020 (6) 18:37:11.64 28.66 145 50240 530 44110 350 20480 290 70150 760 1.489203 0.0421368 0.8689 G_NIST614_5 NIST‐5 11136c_TRA_Data 06/03/2020 (6) 18:36:22.73 28.436 143 50010 530 43970 340 19380 300 68350 750 1.450116 0.04205673 0.8693 G_NIST614_4 NIST‐4 11136c_TRA_Data 06/03/2020 (6) 18:32:15.20 28.444 143 50030 500 44070 370 19380 380 69830 910 1.466061 0.04298668 0.8719 G_NIST614_3 NIST‐3 11136c_TRA_Data 06/03/2020 (6) 18:31:26.27 28.514 144 50060 570 43800 400 18330 330 68560 900 1.436782 0.04335117 0.8682 G_NIST614_2 NIST‐2 11136c_TRA_Data 06/03/2020 (6) 18:16:14.87 28.482 143 49470 570 43610 380 19120 350 68930 790 1.443418 0.04166911 0.876 G_NIST614_1 NIST‐1 11136c_TRA_Data 06/03/2020 (6) 18:15:26.13 28.427 143 46520 490 40800 390 18730 290 65670 890 1.459641 0.04261103 0.8726 G_NIST614_10 NIST‐10 11137c_TRA_Data 06/03/2020 (6) 18:58:06.72 28.545 144 50210 480 44210 350 20680 310 70330 780 1.479947 0.0416146 0.8653 G_NIST614_9 NIST‐9 11137c_TRA_Data 06/03/2020 (6) 18:57:17.98 28.448 144 50170 490 43670 360 19500 330 69310 940 1.448436 0.04195932 0.8581 G_NIST614_8 NIST‐8 11137c_TRA_Data 06/03/2020 (6) 18:53:10.66 28.722 145 50350 470 44170 340 20800 290 69990 810 1.439678 0.03938076 0.8645 G_NIST614_7 NIST‐7 11137c_TRA_Data 06/03/2020 (6) 18:52:21.95 28.348 143 50190 490 43900 320 19490 290 69410 810 1.435544 0.04121574 0.8617 G_NIST614_18 NIST‐18 11138c_TRA_Data 06/03/2020 (6) 19:39:04.55 28.359 143 50310 470 44110 340 20660 320 71730 780 1.573317 0.04208052 0.8564 G_NIST614_17 NIST‐17 11138c_TRA_Data 06/03/2020 (6) 19:38:15.65 28.611 144 49990 470 43980 310 19850 310 70160 820 1.53069 0.04217423 0.8572 G_NIST614_16 NIST‐16 11138c_TRA_Data 06/03/2020 (6) 19:34:08.24 28.352 142 50150 440 44170 400 20640 310 71090 760 1.44655 0.03975763 0.8559 G_NIST614_15 NIST‐15 11138c_TRA_Data 06/03/2020 (6) 19:33:19.34 28.486 144 50170 460 44100 350 20140 320 70380 790 1.41844 0.04023942 0.8578 G_NIST614_14 NIST‐14 11138c_TRA_Data 06/03/2020 (6) 19:18:32.62 28.633 144 50460 500 44440 360 20650 320 71220 870 1.454545 0.04019835 0.8631 G_NIST614_13 NIST‐13 11138c_TRA_Data 06/03/2020 (6) 19:17:43.38 28.741 144 50020 460 44130 340 19940 290 70510 740 1.4537 0.04015161 0.8642 G_NIST614_12 NIST‐12 11138c_TRA_Data 06/03/2020 (6) 19:13:35.98 28.487 143 50710 490 44230 370 20740 320 71080 810 1.46886 0.04099345 0.8555 G_NIST614_11 NIST‐11 11138c_TRA_Data 06/03/2020 (6) 19:12:47.43 28.363 143 49990 500 44360 350 20150 310 70700 810 1.480823 0.04166392 0.8672 G_NIST614_22 NIST‐22 11139c_TRA_Data 06/03/2020 (6) 20:00:06.77 28.382 143 50840 520 44760 370 20340 360 71910 760 1.469724 0.04104167 0.8526 G_NIST614_21 NIST‐21 11139c_TRA_Data 06/03/2020 (6) 19:59:17.94 28.509 143 51130 490 44570 350 19410 310 70800 780 1.445922 0.03972315 0.8465 G_NIST614_20 NIST‐20 11139c_TRA_Data 06/03/2020 (6) 19:55:10.35 28.541 144 50690 520 44700 360 20840 310 72090 810 1.512859 0.04119738 0.8567 G_NIST614_19 NIST‐19 11139c_TRA_Data 06/03/2020 (6) 19:54:21.37 28.628 144 50650 470 44440 340 19840 280 71210 780 1.503759 0.04070326 0.8527 G_NIST614_24 NIST‐24 11140c_TRA_Data 06/03/2020 (6) 20:16:19.93 28.586 144 51760 480 45300 320 19720 330 72230 850 1.438435 0.0413819 0.8435 G_NIST614_23 NIST‐23 11140c_TRA_Data 06/03/2020 (6) 20:15:30.95 28.62 145 51580 510 45270 340 19100 290 72710 900 1.448436 0.04195932 0.8469 Mean 1.4665 0.8605 SD 0.0351 0.0087 %RSD 2.4% 1.01%

NIST SRM 614 for Sample 8 Analysis G_NIST614_4 NIST‐4 11154c_TRA_Data 17/03/2020 (3) 20:32:39.33 28.683 145 54040 520 47130 440 27420 380 69970 800 1.376462 0.02273579 0.8616 G_NIST614_3 NIST‐3 11154c_TRA_Data 17/03/2020 (3) 20:31:50.34 28.487 144 51920 600 45810 400 25240 390 67200 810 1.376084 0.02272328 0.8702 G_NIST614_2 NIST‐2 11154c_TRA_Data 17/03/2020 (3) 20:16:18.87 28.606 145 55450 540 48610 380 27840 380 71970 850 1.384275 0.0229946 0.8601 G_NIST614_1 NIST‐1 11154c_TRA_Data 17/03/2020 (3) 20:15:30.04 28.431 144 53450 550 46810 370 26300 370 68380 760 1.365374 0.02237096 0.8593 G_NIST614_8 NIST‐8 11155c_TRA_Data 17/03/2020 (3) 20:53:53.71 28.702 144 52510 560 45950 430 26040 340 68520 850 1.382361 0.02293107 0.8731 G_NIST614_7 NIST‐7 11155c_TRA_Data 17/03/2020 (3) 20:53:04.61 28.734 145 50860 520 44560 420 24410 420 66300 890 1.37893 0.02281737 0.8716 G_NIST614_6 NIST‐6 11155c_TRA_Data 17/03/2020 (3) 20:37:35.37 28.41 143 53820 560 46950 430 27140 400 70390 900 1.390241 0.02319322 0.864 G_NIST614_5 NIST‐5 11155c_TRA_Data 17/03/2020 (3) 20:36:46.62 28.337 143 51990 570 45380 430 25390 390 67250 830 1.37457 0.02267333 0.8646 Mean 1.3785 0.8656 SD 0.0074 0.0054 %RSD 0.5% 0.62%

NIST SRM 614 for Sample 9 Analysis G_NIST614_4 NIST‐4 11151c_TRA_Data 17/03/2020 (3) 19:25:54.74 28.655 145 57190 640 49810 460 26360 390 72850 910 1.300052 0.0574646 0.8565 G_NIST614_3 NIST‐3 11151c_TRA_Data 17/03/2020 (3) 19:25:05.66 28.741 145 54460 540 47760 390 24780 430 69560 750 1.285182 0.05615754 0.8628 G_NIST614_2 NIST‐2 11151c_TRA_Data 17/03/2020 (3) 19:09:54.55 28.68 145 57530 650 50210 450 26670 440 74100 1000 1.324503 0.0578922 0.8578 G_NIST614_1 NIST‐1 11151c_TRA_Data 17/03/2020 (3) 19:09:05.78 28.49 143 57050 560 49670 380 25620 420 71940 820 1.319784 0.05573852 0.853 G_NIST614_8 NIST‐8 11152c_TRA_Data 17/03/2020 (3) 19:46:55.64 28.506 144 54740 570 48150 430 26610 390 70370 760 1.414827 0.06205383 0.8682 G_NIST614_7 NIST‐7 11152c_TRA_Data 17/03/2020 (3) 19:46:06.58 28.642 144 52920 610 46260 430 24850 420 67500 880 1.424501 0.06087613 0.866 G_NIST614_6 NIST‐6 11152c_TRA_Data 17/03/2020 (3) 19:30:51.18 28.564 144 57100 540 50000 450 27640 500 73760 780 1.472537 0.06505097 0.8594 G_NIST614_5 NIST‐5 11152c_TRA_Data 17/03/2020 (3) 19:30:02.32 28.405 144 54280 550 47490 400 25130 400 69310 880 1.43472 0.06381109 0.8643 G_NIST614_12 NIST‐12 11153c_TRA_Data 17/03/2020 (3) 20:07:56.73 28.58 144 54230 550 47430 380 26630 330 70280 750 1.362027 0.05936374 0.8715 G_NIST614_11 NIST‐11 11153c_TRA_Data 17/03/2020 (3) 20:07:07.73 28.614 145 51680 530 45540 420 24730 400 66920 830 1.350804 0.05838946 0.8759 G_NIST614_10 NIST‐10 11153c_TRA_Data 17/03/2020 (3) 19:51:51.87 28.607 144 54810 590 48010 430 26100 470 70840 840 1.321877 0.05766285 0.8672 G_NIST614_9 NIST‐9 11153c_TRA_Data 17/03/2020 (3) 19:51:02.80 28.586 144 51870 560 45520 400 23990 390 66170 870 1.318913 0.05740456 0.8685 Mean 1.3720 0.8610 SD 0.0720 0.0052 %RSD 5.3% 0.60% 1 Raw intensity count rate data processed in Iolite (Paton et al., 2011) using the VisualAge_UcomPbine data reduction schemes (DRS; Chew et al., 2014) for baseline, drift and U/Pb downhole fractionation corrections and normalization to a primary standard material WC‐1 calcite 2 Measured U and Th intensities calibrated against NIST SRM 614 concentrations in MS Excel spreadsheet

120 Texas Tech University, Austin D Bertoch, August 2020

Ratios1 Element Concentrations2

Final207_206_ ErrorCorrelation Prop2SE _38_6vs7_6 Th, ppm U, ppm Th/U

0.0081 0.56168 0.796 0.8 0.9460 0.0077 0.60909 0.754 0.8 0.9187 0.0086 0.42514 0.754 0.8 0.8993 0.01 0.60082 0.713 0.8 0.8663 0.0095 0.59201 0.743 0.8 0.8988 0.0084 0.49784 0.728 0.8 0.9242 0.0077 0.54325 0.769 0.8 0.9267 0.0079 0.44624 0.725 0.8 0.8867 0.0079 0.43071 0.773 0.8 0.9366 0.0075 0.56171 0.725 0.8 0.8850 0.0071 0.42505 0.760 0.8 0.9117 0.0071 0.42127 0.730 0.8 0.8955 0.0068 0.37267 0.759 0.8 0.9190 0.0076 0.45138 0.740 0.8 0.9058 0.0081 0.51358 0.759 0.8 0.9178 0.0075 0.54612 0.733 0.8 0.8951 0.0078 0.56392 0.762 0.8 0.9236 0.0082 0.50401 0.741 0.8 0.9021 0.0084 0.52329 0.757 0.8 0.9142 0.0081 0.51114 0.722 0.8 0.8860 0.0072 0.53376 0.775 0.8 0.9343 0.0076 0.48454 0.738 0.8 0.9005 0.0079 0.4685 0.760 0.8 0.9265 0.0083 0.45124 0.736 0.8 0.8914 0.748 0.823 0.909 0.020 0.010 0.019 2.7% 1.2% 2.1%

0.0067 0.46658 0.768 0.8 0.9255 0.0075 0.51082 0.707 0.8 0.8870 0.0066 0.42709 0.780 0.9 0.9136 0.007 0.54786 0.737 0.8 0.9083 0.0065 0.46457 0.757 0.8 0.9139 0.0071 0.46227 0.709 0.8 0.8853 0.0064 0.516 0.789 0.9 0.9272 0.0068 0.36265 0.738 0.8 0.9079 0.748 0.823 0.909 0.031 0.021 0.016 4.1% 2.6% 1.7%

0.032 0.58323 0.763 0.8 0.9172 0.032 0.4663 0.717 0.8 0.9030 0.032 0.56098 0.772 0.8 0.9123 0.032 0.40535 0.741 0.8 0.9027 0.033 0.57774 0.764 0.8 0.9264 0.033 0.55504 0.713 0.8 0.9019 0.032 0.44236 0.793 0.9 0.9180 0.033 0.45449 0.721 0.8 0.8882 0.033 0.59629 0.785 0.8 0.9308 0.033 0.52365 0.729 0.8 0.9078 0.033 0.61088 0.770 0.9 0.9051 0.033 0.43532 0.708 0.8 0.8906 0.748 0.823 0.909 0.029 0.025 0.012 3.9% 3.0% 1.3%

121 Texas Tech University, Austin D Bertoch, August 2020

Table 14. LA‐ICP‐MS U‐Pb Results for Long Point Limestone ‐ Duff Brown Tank Locality, Coconino Plateau, Arizona (Hill et al. 2016; MC‐ICP‐MS total Pb/U 3D Isochron age =

Measured Isotope Intensities

Pb206_CPS_ Pb207_CPS_ Th232_CPS_ Sequence Comments Source file DateTime Durations Total points Pb206_CPS Int2SE Pb207_CPS Int2SE Th232_CPS Int2SE

Long Point Crystallization Age Population for Sample 12 Analysis (63.78+/‐0.17 Ma n=16)

Long_4 Long‐4 11147c_TRA_Data 14/03/2020 (7) 19:03:47.09 28.883 145 22880 570 7090 320 3230 180 Long_3 Long‐3 11147c_TRA_Data 14/03/2020 (7) 19:02:58.08 28.97 146 20440 720 5770 260 4010 130 Long_2 Long‐2 11147c_TRA_Data 14/03/2020 (7) 18:52:04.57 28.958 146 18280 500 5230 140 3740 120 Long_1 Long‐1 11147c_TRA_Data 14/03/2020 (7) 18:51:15.44 29.207 147 20010 300 5635 99 3990 130 Long_8 Long‐8 11148c_TRA_Data 14/03/2020 (7) 19:24:54.12 28.957 146 13140 580 4580 200 1440 130 Long_7 Long‐7 11148c_TRA_Data 14/03/2020 (7) 19:24:04.93 29.198 147 18580 360 5980 150 2350 110 Long_6 Long‐6 11148c_TRA_Data 14/03/2020 (7) 19:13:12.32 28.984 146 19090 510 6640 190 2940 170 Long_5 Long‐5 11148c_TRA_Data 14/03/2020 (7) 19:12:23.40 29.025 147 18970 590 5460 260 2600 130 Long_12 Long‐12 11149_TRA_Data 14/03/2020 (7) 19:46:00.90 29.092 147 23950 410 7010 190 4300 850 Long_11 Long‐11 11149_TRA_Data 14/03/2020 (7) 19:45:11.97 28.926 146 21460 460 6400 230 3460 130 Long_10 Long‐10 11149_TRA_Data 14/03/2020 (7) 19:34:19.79 29.124 147 24160 530 7540 240 3700 160 Long_9 Long‐9 11149_TRA_Data 14/03/2020 (7) 19:33:30.46 29.253 147 18940 990 5790 250 2110 230 Long_16 Long‐16 11150c_TRA_Data 14/03/2020 (7) 20:07:36.16 29.124 146 22910 670 6790 140 3120 160 Long_15 Long‐15 11150c_TRA_Data 14/03/2020 (7) 20:06:46.98 29.147 147 19200 1000 5700 270 2220 200 Long_14 Long‐14 11150c_TRA_Data 14/03/2020 (7) 19:55:27.16 29.115 147 21130 490 5740 160 3450 160 Long_13 Long‐13 11150c_TRA_Data 14/03/2020 (7) 19:54:38.21 29.104 147 22510 330 6560 110 3830 140 Mean SD %RSD

Long Point Crystallization Age Population for Sample 13 Analysis (63.79+/‐0.21 Ma n=16) Longpoint_2 Long‐2 11132c_TRA_Data 06/03/2020 (6) 14:51:21.99 17.374 87 14970 420 3830 160 2860 230 Longpoint_1 Long‐1 11132c_TRA_Data 06/03/2020 (6) 14:50:35.88 17.937 91 12770 660 3750 260 2290 400 Longpoint_6 Long‐6 11133c_TRA_Data 06/03/2020 (6) 15:29:57.98 29.062 146 17030 240 4750 92 4310 170 Longpoint_5 Long‐5 11133c_TRA_Data 06/03/2020 (6) 15:29:08.88 28.743 145 15600 470 4550 160 4020 140 Longpoint_4 Long‐4 11133c_TRA_Data 06/03/2020 (6) 15:20:39.07 9.5942 48 14120 390 5140 390 2890 210 Longpoint_3 Long‐3 11133c_TRA_Data 06/03/2020 (6) 15:20:04.15 14.224 71 13540 430 4180 220 3470 240 Longpoint_10 Long‐10 11134c_TRA_Data 06/03/2020 (6) 15:51:12.51 28.218 142 15070 320 4280 140 2990 140 Longpoint_9 Long‐9 11134c_TRA_Data 06/03/2020 (6) 15:50:36.38 15.222 77 16960 520 4780 270 3950 220 Longpoint_8 Long‐8 11134c_TRA_Data 06/03/2020 (6) 15:42:05.45 14.792 75 12140 620 3530 170 3030 250 Longpoint_7 Long‐7 11134c_TRA_Data 06/03/2020 (6) 15:41:03.42 28.78 145 16840 330 5330 180 3850 120 Longpoint_16 Long‐16 11135c_TRA_Data 06/03/2020 (6) 16:24:05.60 28.319 142 16880 450 5040 180 4680 220 Longpoint_15 Long‐15 11135c_TRA_Data 06/03/2020 (6) 16:23:17.61 26.574 134 16210 360 4180 160 3870 190 Longpoint_14 Long‐14 11135c_TRA_Data 06/03/2020 (6) 16:12:20.81 12.058 61 14780 370 3990 130 3710 220 Longpoint_13 Long‐13 11135c_TRA_Data 06/03/2020 (6) 16:11:35.69 18.593 93 15810 450 4590 210 3260 230 Longpoint_12 Long‐12 11135c_TRA_Data 06/03/2020 (6) 16:03:01.82 8.9003 45 13320 720 3580 260 2130 200 Longpoint_11 Long‐11 11135c_TRA_Data 06/03/2020 (6) 16:02:12.48 27.696 140 16350 420 4990 190 3880 200 Mean SD %RSD

1 Raw intensity count rate data processed in Iolite (Paton et al., 2011) using the VisualAge_UcomPbine data reduction schemes (DRS; Chew et al., 2014) for baseline, drift and U/Pb downhole fractionation correction 2 Measured U and Th intensities calibrated against NIST SRM 614 concentrations in MS Excel spreadsheet

122 Texas Tech University, Austin D Bertoch, August 2020

= 64.04 +/‐ 0.67 Ma, 207Pb/206Pb = 0.7385)

Corrected Isotope Ratios1 Element Concentrations2

U238_CPS_I Final238_206_ Final207_206_ ErrorCorrelation U238_CPS nt2SE Final238_206 Prop2SE Final207_206 Prop2SE _38_6vs7_6 Th, ppm U, ppm Th/U

1284000 21000 66.313 3.07819 0.291 0.0075 ‐0.54514 0.1080 13.658 0.0079 1185000 32000 68.16633 3.206187 0.2678 0.0051 ‐0.4646 0.1341 12.605 0.0106 1074000 28000 67.56757 2.967495 0.2739 0.0053 0.47252 0.1250 11.424 0.0109 1224000 22000 69.78367 3.067949 0.2666 0.005 0.28703 0.1334 13.020 0.0102 665000 33000 57.87037 2.947102 0.345 0.01 ‐0.32524 0.0481 6.966 0.0069 997400 26000 62.2665 2.98538 0.3169 0.0092 ‐0.29156 0.0785 10.448 0.0075 977000 37000 58.00464 2.927148 0.342 0.01 ‐0.71008 0.0982 10.234 0.0096 1137000 30000 70.92199 3.269453 0.2734 0.0074 ‐0.29845 0.0868 11.911 0.0073 1329000 20000 63.01197 2.819061 0.2881 0.0061 ‐0.10242 0.1480 14.062 0.0105 1195000 29000 62.57822 3.054506 0.2905 0.0076 ‐0.43597 0.1191 12.644 0.0094 1268000 21000 60.09615 2.744776 0.3048 0.0068 ‐0.11923 0.1274 13.416 0.0095 1041000 63000 61.57635 3.033318 0.31 0.011 ‐0.67281 0.0726 11.015 0.0066 1328000 50000 65.27415 3.025108 0.3016 0.0077 ‐0.40057 0.1109 14.370 0.0077 1099000 77000 58.99705 4.176782 0.318 0.015 ‐0.75791 0.0789 11.892 0.0066 1277000 28000 68.91799 3.087298 0.2691 0.006 0.041068 0.1227 13.819 0.0089 1297000 21000 65.35948 2.904866 0.2905 0.006 0.14828 0.1362 14.035 0.0097 64.1691 0.296825 0.108 12.220 0.009 4.2400 0.024849 0.028 1.920 0.002 6.6% 8.37% 26.0% 15.7% 17.3%

936000 20000 73.52941 2.487024 0.2509 0.0084 ‐0.3594 0.098 10.5 0.0093 740000 30000 68.16633 2.416257 0.286 0.011 ‐0.45217 0.078 8.3 0.0094 1040000 13000 70.32349 2.126519 0.2711 0.0059 0.24522 0.167 12.7 0.0131 941000 30000 68.44627 2.389295 0.2869 0.0091 ‐0.26015 0.156 11.5 0.0136 729000 26000 53.39028 2.850522 0.348 0.022 ‐0.62486 0.112 8.9 0.0126 768000 20000 60.31363 2.219018 0.293 0.011 ‐0.32569 0.134 9.4 0.0143 916000 20000 65.35948 2.093212 0.2837 0.0078 ‐0.19257 0.118 11.1 0.0106 1000000 36000 64.10256 2.465483 0.282 0.012 ‐0.60273 0.156 12.2 0.0128 733000 40000 66.357 2.333723 0.295 0.011 ‐0.066375 0.120 8.9 0.0134 952000 22000 62.18905 2.127113 0.3108 0.0089 ‐0.43282 0.152 11.6 0.0131 985000 25000 64.02049 2.008325 0.2914 0.0066 ‐0.070955 0.179 11.8 0.0151 1050000 22000 70.47216 2.334173 0.2521 0.0075 ‐0.27303 0.148 12.7 0.0117 959000 23000 69.93007 2.591814 0.2689 0.0088 0.37478 0.142 11.5 0.0123 929000 22000 63.45178 2.415677 0.2873 0.0092 ‐0.29307 0.125 11.2 0.0112 836000 35000 67.2495 2.803947 0.268 0.011 ‐0.16958 0.081 10.1 0.0081 918000 20000 60.60606 2.093664 0.306 0.0076 ‐0.069877 0.148 11.0 0.0134 65.4942 0.286319 0.132 10.846 0.012 4.9564 0.023466 0.029 1.365 0.002 7.6% 8.20% 22.3% 12.6% 16.1% ns and normalization to a primary standard material WC‐1 calcite

123 Texas Tech University, Austin D Bertoch, August 2020

Table 12. LA‐ICP‐MS U‐Pb Results for Long Point Limestone ‐ Duff Brown Tank Locality, Coconino Plateau, Arizona (Hill et al. 2016; solution MC‐ICP‐MS total Pb/U 3D Isochron age = 64.04 +/‐ 0.67 Ma, 20

Measured Isotope Intensities

Pb206_CPS_ Pb207_CPS_ Th232_CPS_ U238_CPS_I Sequence Comments Source file DateTime Durations Total points Pb206_CPS Int2SE Pb207_CPS Int2SE Th232_CPS Int2SE U238_CPS nt2SE

Long Point Crystallization Age Population for Sample 1 Analysis (64.18+/‐0.29 Ma n=8)

Long_1 Long‐1 11141c_TRA_Data 14/03/2020 (7) 16:06:54.03 28.639 145 22160 580 7520 330 3950 130 1130000 22000 Long_2 Long‐2 11141c_TRA_Data 14/03/2020 (7) 16:07:44.83 26.56 134 21480 330 7550 150 3550 170 1030000 18000 Long_3 Long‐3 11141c_TRA_Data 14/03/2020 (7) 16:18:42.88 27.867 141 16690 650 5490 220 3160 200 856000 33000 Long_4 Long‐4 11141c_TRA_Data 14/03/2020 (7) 16:19:33.44 26.5 134 14430 580 4660 170 3720 170 694000 25000 Long_5 Long‐5 11142c_TRA_Data 14/03/2020 (7) 16:28:05.45 25.966 131 13160 520 4750 160 3060 160 639000 39000 Long_6 Long‐6 11142c_TRA_Data 14/03/2020 (7) 16:28:53.52 27.51 139 15990 970 4880 180 3220 140 896000 72000 Long_7 Long‐7 11142c_TRA_Data 14/03/2020 (7) 16:39:56.80 24.837 125 20070 620 5940 190 3280 170 1130000 42000 Long_8 Long‐8 11142c_TRA_Data 14/03/2020 (7) 16:40:45.22 25.49 129 18720 450 5990 210 3320 140 1000000 31000 Mean SD %RSD

Long Point Crystallization Age Population for Sample 2 Analysis (64.31+/‐0.18 Ma n=14) Long_4 Long‐4 11143c_TRA_Data 14/03/2020 (7) 17:06:38.91 27.201 137 20910 340 6700 170 3890 160 1128000 18000 Long_3 Long‐3 11143c_TRA_Data 14/03/2020 (7) 17:05:50.75 25.704 130 21030 510 6420 190 4620 160 1203000 28000 Long_2 Long‐2 11143c_TRA_Data 14/03/2020 (7) 16:55:11.51 27.825 140 21930 810 6460 240 4150 260 1276000 59000 Long_1 Long‐1 11143c_TRA_Data 14/03/2020 (7) 16:54:21.98 27.451 138 24040 380 6960 160 4390 140 1389000 19000 Long_8 Long‐8 11144c_TRA_Data 14/03/2020 (7) 17:27:39.91 26.952 136 18090 340 5620 140 3660 170 1018000 28000 Long_6 Long‐6 11144c_TRA_Data 14/03/2020 (7) 17:16:05.40 26.827 135 22130 500 6780 160 4580 160 1205000 29000 Long_5 Long‐5 11144c_TRA_Data 14/03/2020 (7) 17:15:15.61 28.075 141 20660 350 6480 140 4210 130 1110000 20000 Long_12 Long‐12 11145c_TRA_Data 14/03/2020 (7) 17:48:45.27 26.328 133 22850 390 6720 160 3430 130 1299000 17000 Long_11 Long‐11 11145c_TRA_Data 14/03/2020 (7) 17:47:56.86 24.831 125 21820 590 6150 270 2850 150 1262000 20000 Long_10 Long‐10 11145c_TRA_Data 14/03/2020 (7) 17:37:08.14 26.453 133 20270 540 6350 290 2730 140 1068000 17000 Long_9 Long‐9 11145c_TRA_Data 14/03/2020 (7) 17:36:17.48 27.701 139 21420 370 6330 110 3750 160 1212000 20000 Long_16 Long‐16 11146c_TRA_Data 14/03/2020 (7) 18:09:45.40 28.075 141 21370 310 7040 150 3970 130 1115000 14000 Long_15 Long‐15 11146c_TRA_Data 14/03/2020 (7) 18:08:55.74 27.95 140 20320 640 6810 300 4320 150 1057000 33000 Long_13 Long‐13 11146c_TRA_Data 14/03/2020 (7) 17:57:22.60 25.704 130 23940 340 7500 190 4080 160 1296000 19000 Mean SD %RSD

Long Point Secondary Cement for Sample 2 Analysis(n=2) Long_7 Long‐7 11144c_TRA_Data 14/03/2020 (7) 17:26:53.37 24.207 122 22960 580 6500 230 4470 180 1399000 29000 Long_14 Long‐14 11146c_TRA_Data 14/03/2020 (7) 17:58:10.76 28.449 143 23230 540 9130 510 4120 190 1024000 38000

Long Point Crystallization Age Population for Sample 3 Analysis (67.46+/‐0.15 Ma n=27) Long_4 Long‐4 11156c_TRA_Data 17/03/2020 (3) 21:24:33.37 26.401 133 18060 360 4770 100 4500 150 1140000 22000 Long_3 Long‐3 11156c_TRA_Data 17/03/2020 (3) 21:23:44.59 13.189 67 17440 540 4470 230 3330 180 1120000 31000 Long_2 Long‐2 11156c_TRA_Data 17/03/2020 (3) 21:13:10.43 25.721 129 17290 300 4600 120 4680 230 1130000 17000 Long_1 Long‐1 11156c_TRA_Data 17/03/2020 (3) 21:12:20.80 26.608 135 15060 360 4280 100 5020 210 956000 30000 Long_8 Long‐8 11157c_TRA_Data 17/03/2020 (3) 21:45:25.61 15.302 77 16440 510 4520 180 4540 200 1030000 38000 Long_7 Long‐7 11157c_TRA_Data 17/03/2020 (3) 21:44:25.51 26.44 134 15360 390 4310 120 4240 160 919000 22000 Long_6 Long‐6 11157c_TRA_Data 17/03/2020 (3) 21:33:53.74 26.913 136 17630 320 4710 100 4300 190 1100000 22000 Long_5 Long‐5 11157c_TRA_Data 17/03/2020 (3) 21:33:05.42 26.402 134 19370 410 4950 110 5140 200 1220000 23000 Long_12 Long‐12 11158c_TRA_Data 17/03/2020 (3) 22:06:30.45 14.724 75 20300 800 5680 410 3740 230 1230000 42000 Long_11 Long‐11 11158c_TRA_Data 17/03/2020 (3) 22:05:41.80 14.941 76 19800 1200 5340 300 3770 210 1250000 97000 Long_10 Long‐10 11158c_TRA_Data 17/03/2020 (3) 21:54:36.08 25.713 129 17130 370 5010 140 4830 180 973000 27000 Long_9 Long‐9 11158c_TRA_Data 17/03/2020 (3) 21:54:00.84 12.58 64 18800 570 5930 230 5170 240 1060000 30000 Long_16 Long‐16 11159c_TRA_Data 17/03/2020 (3) 22:27:42.97 28.442 143 18670 370 5160 130 5040 190 1100000 23000 Long_15 Long‐15 11159c_TRA_Data 17/03/2020 (3) 22:26:54.06 28.492 144 16250 520 5060 180 4210 240 901000 32000 Long_14 Long‐14 11159c_TRA_Data 17/03/2020 (3) 22:15:49.85 28.467 143 19330 520 5600 180 4000 270 1110000 27000 Long_13 Long‐13 11159c_TRA_Data 17/03/2020 (3) 22:15:01.49 23.149 117 20180 720 5600 340 3860 260 1220000 42000 Long_20 Long‐20 11160c_TRA_Data 17/03/2020 (3) 22:48:40.87 28.632 144 16910 400 4570 180 4640 250 1040000 25000 Long_19 Long‐19 11160c_TRA_Data 17/03/2020 (3) 22:47:51.82 28.694 145 16950 580 4710 220 4190 240 1060000 37000 Long_18 Long‐18 11160c_TRA_Data 17/03/2020 (3) 22:37:04.91 28.686 144 15320 320 4009 97 3800 160 966000 22000 Long_17 Long‐17 11160c_TRA_Data 17/03/2020 (3) 22:36:15.91 28.553 144 15970 340 4390 130 4030 170 960000 22000 Long_4 Long‐4 11161c_TRA_Data 17/03/2020 (3) 23:27:17.24 21.533 108 13220 480 3800 160 2740 220 822000 31000 Long_3 Long‐3 11161c_TRA_Data 17/03/2020 (3) 23:26:22.57 27.149 137 12950 500 4100 190 2400 310 706000 34000 Long_2 Long‐2 11161c_TRA_Data 17/03/2020 (3) 23:15:16.68 27.234 137 13420 380 3750 170 3540 140 887000 23000 Long_1 Long‐1 11161c_TRA_Data 17/03/2020 (3) 23:14:27.98 26.966 136 13140 280 3799 82 3420 160 826000 24000 Long_8 Long‐8 11162c_TRA_Data 17/03/2020 (3) 23:48:41.48 14.682 74 16870 530 5130 190 6630 570 967000 24000 Long_7 Long‐7 11162c_TRA_Data 17/03/2020 (3) 23:47:37.93 27.191 137 16520 510 4720 130 5030 170 957000 32000 Long_6 Long‐6 11162c_TRA_Data 17/03/2020 (3) 23:36:32.36 27.222 137 16630 400 4650 130 4200 160 970000 29000 Mean SD %RSD

Long Point Secondary Cement for Sample 3 Analysis (n=1) Long_5 Long‐5 11162c_TRA_Data 17/03/2020 (3) 23:35:47.08 23.25 117 19300 1100 6210 480 35500 5000 1273000 67000 1 Raw intensity count rate data processed in Iolite (Paton et al., 2011) using the VisualAge_UcomPbine data reduction schemes (DRS; Chew et al., 2014) for baseline, drift and U/Pb downhole fractionation corrections and normalization to a pr 2 Measured U and Th intensities calibrated against NIST SRM 614 concentrations in MS Excel spreadsheet

124 Texas Tech University, Austin D Bertoch, August 2020

7Pb/206Pb = 0.7385)

Corrected Isotope Ratios1 Element Concentrations2

Final238_206_ Final207_206_ ErrorCorrelation Final238_206 Prop2SE Final207_206 Prop2SE _38_6vs7_6 Th, ppm U, ppm Th/U

60.4230 1.5699 0.3394 0.0088 ‐0.3872 0.141 13.1 0.0108 56.9152 1.4253 0.3615 0.0068 ‐0.1275 0.127 11.9 0.0107 61.8429 1.6446 0.3457 0.0091 ‐0.2057 0.113 9.9 0.0114 57.8369 2.4419 0.3550 0.0120 ‐0.5348 0.133 8.0 0.0166 51.5198 2.0438 0.3600 0.0130 ‐0.6669 0.108 7.3 0.0148 58.3771 2.0788 0.3130 0.0110 ‐0.5553 0.114 10.2 0.0111 62.7746 1.7733 0.2785 0.0076 ‐0.3830 0.116 12.9 0.0090 59.8444 1.6474 0.2998 0.0091 ‐0.4594 0.117 11.4 0.0103 58.6917 0.3316 0.121 10.592 0.012 3.5122 0.0309 0.011 2.135 0.003 6.0% 9.32% 9.4% 20.2% 21.5%

61.08735 1.306083 0.3154 0.0073 ‐0.15364 0.128 11.7 0.0109 64.80881 1.260055 0.2995 0.0064 ‐0.088242 0.152 12.4 0.0122 65.35948 1.366996 0.2871 0.0065 ‐0.19748 0.136 13.2 0.0103 66.09385 1.135783 0.2809 0.0056 0.065308 0.144 14.4 0.0100 63.09148 1.432993 0.3143 0.0086 ‐0.32677 0.123 10.4 0.0118 61.8047 1.222343 0.308 0.0062 ‐0.22455 0.154 12.4 0.0124 60.71645 1.179676 0.311 0.0061 ‐0.040067 0.141 11.4 0.0124 63.93862 1.144681 0.2981 0.0057 0.037132 0.123 13.7 0.0090 65.10417 1.61065 0.2842 0.0078 ‐0.32806 0.102 13.3 0.0077 59.91612 1.507775 0.321 0.01 ‐0.47999 0.098 11.3 0.0087 63.65372 1.134503 0.2988 0.0051 0.32956 0.135 12.8 0.0105 58.20722 1.118066 0.3279 0.0061 0.092106 0.149 12.0 0.0123 57.73672 1.500088 0.3352 0.0095 ‐0.49709 0.162 11.4 0.0142 60.38647 1.239819 0.3156 0.0069 ‐0.28739 0.153 14.0 0.0109 62.2789 0.3069 0.136 12.466 0.011 2.6917 0.0163 0.019 1.162 0.002 4.3% 5.30% 14.1% 9.3% 16.0%

68.91799 1.187422 0.2828 0.0061 ‐0.00049063 0.150 14.4 0.0104 46.97041 2.206219 0.392 0.017 ‐0.81278 0.154 11.1 0.0139

65.87615 1.996247 0.2666 0.0058 ‐0.00060247 0.128 13.1 0.0098 68.87052 2.513869 0.261 0.01 ‐0.21847 0.095 12.9 0.0073 68.02721 2.036189 0.2676 0.0057 ‐0.16365 0.133 13.0 0.0103 65.27415 2.172965 0.291 0.0085 ‐0.18729 0.143 11.0 0.0130 65.06181 2.116519 0.2684 0.0084 ‐0.0807 0.128 11.9 0.0108 62.97229 1.9431 0.2784 0.007 0.16126 0.120 10.6 0.0114 66.09385 1.965779 0.2668 0.0059 ‐0.0539 0.122 12.7 0.0096 65.91958 1.955426 0.2549 0.0049 0.37834 0.145 14.0 0.0104 64.85084 2.733661 0.268 0.013 ‐0.61888 0.106 14.3 0.0074 65.57377 2.321956 0.2612 0.0076 ‐0.1675 0.107 14.5 0.0074 59.52381 2.12585 0.2888 0.0074 0.047858 0.137 11.3 0.0122 58.82353 2.179931 0.3093 0.0095 0.16734 0.147 12.4 0.0119 62.73526 1.889142 0.2652 0.0054 0.23391 0.146 13.0 0.0112 58.68545 1.85975 0.301 0.0072 ‐0.062917 0.122 10.6 0.0115 61.31208 1.804402 0.2783 0.0053 0.2276 0.116 13.1 0.0088 63.73486 2.477901 0.264 0.012 ‐0.65625 0.112 14.3 0.0078 65.48788 2.058558 0.255 0.0077 ‐0.24054 0.140 12.4 0.0112 65.78947 2.20741 0.263 0.0077 ‐0.56448 0.126 12.7 0.0100 66.88963 2.058143 0.2512 0.0069 ‐0.10787 0.114 11.6 0.0099 64.14368 1.892629 0.263 0.0066 0.16239 0.121 11.5 0.0105 65.70302 3.885198 0.28 0.025 ‐0.35724 0.079 9.7 0.0081 55.58644 3.707822 0.31 0.029 ‐0.68493 0.069 8.4 0.0083 68.63418 4.05116 0.257 0.022 ‐0.39565 0.102 10.5 0.0097 65.10417 3.772312 0.2704 0.024 ‐0.21195 0.099 9.8 0.0101 60.35003 3.569284 0.299 0.027 0.39751 0.187 11.4 0.0165 60.56935 3.485214 0.2827 0.024 0.21529 0.142 11.3 0.0126 60.45949 3.54569 0.2706 0.023 ‐0.10737 0.119 11.4 0.0104 63.7797 0.2738 0.122 11.971 0.010 3.3339 0.0165 0.024 1.519 0.002 5.2% 6.03% 19.3% 12.7% 19.5%

69.63788 4.025031 0.3042 0.027 ‐0.027125 1.003 15.0 0.0670 rimary standard material WC‐1 calcite

125 Texas Tech University, Austin D Bertoch, August 2020

Table 13. LA‐ICP‐MS U‐Pb Results for Long Point Limestone ‐ Duff Brown Tank Locality, Coconino Plateau, Arizona (Hill et al. 2016; solution MC‐ICP‐MS total Pb/U 3D Isochron age = 64.04 +/‐ 0

Measured Isotope Intensities

Pb206_CPS_ Pb207_CPS_ Th232_CPS_ Sequence Comments Source file DateTime Durations Total points Pb206_CPS Int2SE Pb207_CPS Int2SE Th232_CPS Int2SE U238_CPS

Long Point Crystallization Age Population for Sample 4 Analysis (65.46+/‐0.19 Ma n=19)

Longpoint_6 Long‐6 11136c_TRA_Data 06/03/2020 (6) 18:39:25.03 25.456 128 11310 240 4050 110 2440 100 586000 Longpoint_4 Long‐4 11136c_TRA_Data 06/03/2020 (6) 18:30:06.46 24.867 125 16880 520 5480 190 4690 320 981000 Longpoint_3 Long‐3 11136c_TRA_Data 06/03/2020 (6) 18:29:17.68 24.647 124 19700 410 5570 130 5170 200 1244000 Longpoint_2 Long‐2 11136c_TRA_Data 06/03/2020 (6) 18:18:28.39 24.619 124 16900 430 5250 150 4850 210 1011000 Longpoint_1 Long‐1 11136c_TRA_Data 06/03/2020 (6) 18:17:39.60 24.682 124 17150 430 5690 210 4730 190 975000 Longpoint_10 Long‐10 11137c_TRA_Data 06/03/2020 (6) 19:00:19.37 25.484 128 14230 460 4260 170 3700 240 880000 Longpoint_9 Long‐9 11137c_TRA_Data 06/03/2020 (6) 18:59:30.81 25.324 127 12490 440 3970 170 2670 190 716000 Longpoint_8 Long‐8 11137c_TRA_Data 06/03/2020 (6) 18:51:02.00 25.355 128 11350 360 3880 190 1940 150 609000 Longpoint_7 Long‐7 11137c_TRA_Data 06/03/2020 (6) 18:50:12.81 25.613 129 8590 180 3620 110 2740 120 397400 Longpoint_16 Long‐16 11138c_TRA_Data 06/03/2020 (6) 19:31:59.70 24.971 126 15770 520 5180 360 3340 140 903000 Longpoint_14 Long‐14 11138c_TRA_Data 06/03/2020 (6) 19:20:45.99 25.02 126 14250 360 4180 150 3120 160 874000 Longpoint_13 Long‐13 11138c_TRA_Data 06/03/2020 (6) 19:19:56.52 25.769 129 13440 320 3482 98 2740 130 898000 Longpoint_12 Long‐12 11138c_TRA_Data 06/03/2020 (6) 19:11:28.38 24.283 123 15530 490 4910 180 3640 220 900000 Longpoint_11 Long‐11 11138c_TRA_Data 06/03/2020 (6) 19:10:38.14 25.739 130 14260 300 3990 120 3140 150 867000 Longpoint_21 Long‐21 11139c_TRA_Data 06/03/2020 (6) 20:01:31.87 24.498 123 11710 630 4080 240 3800 960 616000 Longpoint_20 Long‐20 11139c_TRA_Data 06/03/2020 (6) 19:53:03.68 22.901 116 15860 440 5190 220 3790 200 898000 Longpoint_19 Long‐19 11139c_TRA_Data 06/03/2020 (6) 19:52:12.77 24.684 124 14120 430 4360 170 3170 150 828000 Longpoint_24 Long‐24 11140c_TRA_Data 06/03/2020 (6) 20:14:10.28 25.539 129 14160 380 4940 110 3680 140 782000 Longpoint_23 Long‐23 11140c_TRA_Data 06/03/2020 (6) 20:13:21.99 24.812 126 14960 600 4620 170 3850 420 834000 Mean SD %RSD

Long Point Secondary Cement for Sample 4 Analysis (n=4) Longpoint_5 Long‐5 11136c_TRA_Data 06/03/2020 (6) 18:38:35.97 25.616 129 13680 420 3990 150 2140 160 878000 Longpoint_17 Long‐17 11138c_TRA_Data 06/03/2020 (6) 19:40:28.35 25.403 128 14940 330 4250 100 3870 150 919000 Longpoint_15 Long‐15 11138c_TRA_Data 06/03/2020 (6) 19:31:10.09 25.928 130 18300 480 6900 410 3960 150 904000 Longpoint_22 Long‐22 11139c_TRA_Data 06/03/2020 (6) 20:02:19.88 25.263 127 14910 470 4660 200 3430 170 840000 Mean SD %RSD

Long Point Crystallization Age Population for Sample 8 Analysis (65.66+/‐0.33 Ma n=6) Long_4 Long‐4 11154c_TRA_Data 17/03/2020 (3) 20:30:30.18 26.567 134 14050 430 3860 140 3010 170 904000 Long_3 Long‐3 11154c_TRA_Data 17/03/2020 (3) 20:29:41.03 26.82 135 13240 650 3700 220 2890 270 805000 Long_2 Long‐2 11154c_TRA_Data 17/03/2020 (3) 20:18:31.44 26.732 134 11190 690 3220 180 2350 160 677000 Long_7 Long‐7 11155c_TRA_Data 17/03/2020 (3) 20:50:54.92 27.029 136 17340 550 5250 190 3750 180 1014000 Long_6 Long‐6 11155c_TRA_Data 17/03/2020 (3) 20:39:47.48 26.835 135 17060 290 4670 130 3990 140 1062000 Long_5 Long‐5 11155c_TRA_Data 17/03/2020 (3) 20:38:58.43 26.716 135 15470 350 4480 150 3890 190 922000 Mean SD %RSD

Long Point Secondary Cement for Sample 8 (n=2) Long_1 Long‐1 11154c_TRA_Data 17/03/2020 (3) 20:17:42.62 26.582 134 9160 480 3710 330 773 81 405000 Long_8 Long‐8 11155c_TRA_Data 17/03/2020 (3) 20:51:44.11 26.878 135 15850 370 5140 120 3980 470 848000

Long Point Crystallization Age Population for Sample 9 Analyis (65.58+/‐1.66 Ma n=8) Long_4 Long‐4 11151c_TRA_Data 17/03/2020 (3) 19:23:43.35 28.395 143 20710 610 6720 420 5990 470 1130000 Long_3 Long‐3 11151c_TRA_Data 17/03/2020 (3) 19:22:54.37 28.604 144 18930 500 5270 170 3780 180 1134000 Long_2 Long‐2 11151c_TRA_Data 17/03/2020 (3) 19:12:05.22 28.426 143 18190 410 5690 140 3980 180 1048000 Long_1 Long‐1 11151c_TRA_Data 17/03/2020 (3) 19:11:16.41 28.449 143 20600 680 5570 200 3730 170 1294000 Long_12 Long‐12 11153c_TRA_Data 17/03/2020 (3) 20:05:45.18 28.659 145 10560 780 3650 140 2980 120 568000 Long_11 Long‐11 11153c_TRA_Data 17/03/2020 (3) 20:04:56.35 28.534 144 12610 320 3649 88 2680 110 765000 Long_10 Long‐10 11153c_TRA_Data 17/03/2020 (3) 19:54:02.35 28.45 143 16270 680 4690 310 3050 160 977000 Long_9 Long‐9 11153c_TRA_Data 17/03/2020 (3) 19:53:13.47 28.595 144 15910 740 4340 210 3260 200 998400 Mean SD %RSD

Long Point Secondary Cement for Sample 9 Analysis (n=4) Long_8 Long‐8 11152c_TRA_Data 17/03/2020 (3) 19:44:43.96 28.463 144 16460 270 4487 96 3710 150 1047000 Long_7 Long‐7 11152c_TRA_Data 17/03/2020 (3) 19:43:55.25 28.398 143 17220 690 4890 160 4040 180 1044000 Long_6 Long‐6 11152c_TRA_Data 17/03/2020 (3) 19:33:01.70 28.362 143 16420 540 4760 150 4490 260 960000 Long_5 Long‐5 11152c_TRA_Data 17/03/2020 (3) 19:32:12.90 28.508 143 18940 370 5890 150 4620 210 1042000 Mean SD %RSD 1 Raw intensity count rate data processed in Iolite (Paton et al., 2011) using the VisualAge_UcomPbine data reduction schemes (DRS; Chew et al., 2014) for baseline, drift and U/Pb downhole fractionation corrections and normal 2 Measured U and Th intensities calibrated against NIST SRM 614 concentrations in MS Excel spreadsheet

126 Texas Tech University, Austin D Bertoch, August 2020

0.67 Ma, 207Pb/206Pb = 0.7385)

Corrected Isotope Ratios1 Element Concentrations2

U238_CPS_I Final238_206_ Final207_206_ ErrorCorrelation nt2SE Final238_206 Prop2SE Final207_206 Prop2SE _38_6vs7_6 Th, ppm U, ppm Th/U

16000 54.67469 1.823486 0.3536 0.0086 ‐0.085296 0.095 7.0 0.0135 32000 60.45949 1.791122 0.3202 0.0071 0.027276 0.182 11.8 0.0155 26000 65.6168 1.98056 0.284 0.006 0.07651 0.201 14.9 0.0135 22000 61.50062 1.966809 0.3097 0.0067 0.059583 0.189 12.1 0.0155 19000 58.61665 1.958469 0.3284 0.0084 ‐0.29559 0.184 11.7 0.0157 24000 65.5308 2.061257 0.2947 0.0079 0.049994 0.138 10.4 0.0133 23000 60.49607 2.049474 0.3146 0.0095 ‐0.1773 0.099 8.4 0.0118 16000 55.55556 2.098765 0.335 0.011 ‐0.39794 0.072 7.2 0.0100 8900 47.48338 1.64591 0.414 0.011 0.026058 0.102 4.7 0.0217 24000 57.07763 2.215342 0.318 0.012 ‐0.70197 0.123 10.5 0.0117 18000 62.81407 1.972804 0.287 0.0078 ‐0.11693 0.115 10.2 0.0113 20000 68.68132 2.028363 0.254 0.0062 0.29164 0.101 10.4 0.0097 32000 60.49607 2.086071 0.312 0.0091 ‐0.30299 0.134 10.5 0.0128 18000 64.22608 2.062494 0.2758 0.0072 ‐0.028409 0.115 10.1 0.0115 29000 55.55556 1.91358 0.349 0.011 ‐0.33762 0.141 7.1 0.0199 24000 60.86427 2.000408 0.3206 0.0098 ‐0.18205 0.141 10.3 0.0136 29000 63.01197 2.223485 0.302 0.011 ‐0.53702 0.118 9.5 0.0124 32000 55.6483 2.167714 0.344 0.011 ‐0.42687 0.142 8.9 0.0160 35000 57.8369 1.87326 0.3112 0.0084 ‐0.36447 0.148 9.5 0.0157 59.7972 0.3173 0.134 9.746 0.014 4.9096 0.0345 0.035 2.262 0.003 8.2% 10.89% 26.4% 23.2% 22.2%

32000 67.47638 2.231001 0.2894 0.008 ‐0.18916 0.083 10.5 0.0079 21000 68.72852 2.125624 0.2808 0.0063 0.09317 0.142 10.7 0.0133 18000 48.59086 2.124965 0.359 0.015 ‐0.71441 0.146 10.5 0.0139 21000 57.87037 2.310796 0.3016 0.0099 ‐0.29132 0.128 9.7 0.0132 60.6665 0.3077 0.125 10.345 0.012 9.3988 0.0352 0.029 0.457 0.003 15.5% 11.46% 23.0% 4.4% 23.2%

29000 68.11989 1.484902 0.2722 0.0071 ‐0.064247 0.084 10.7 0.0079 35000 65.27415 1.619072 0.2749 0.0084 ‐0.18785 0.081 9.5 0.0085 46000 61.61429 2.353719 0.29 0.013 ‐0.48689 0.066 8.0 0.0082 36000 61.57635 1.478743 0.3021 0.008 0.02903 0.109 0.0 34.6824 19000 65.91958 1.433979 0.2698 0.0066 ‐0.071612 0.116 0.0 68.5325 15000 63.29114 1.56225 0.2848 0.0066 ‐0.10002 0.113 0.0 85.0371 64.2992 0.2823 0.095 4.718 31.379 2.6005 0.0124 0.021 5.236 38.008 4.0% 4.40% 21.7% 111.0% 121.1%

16000 44.64286 3.188776 0.388 0.018 ‐0.63388 0.022 4.8 0.0045 30000 55.30973 1.682542 0.327 0.01 ‐0.41947 0.116 0.0 43.5023

22000 53.19149 2.801041 0.316 0.016 ‐0.64231 0.173 12.9 0.0134 28000 58.07201 2.630439 0.2766 0.012 ‐0.057664 0.109 12.9 0.0084 32000 57.01254 2.632848 0.3115 0.014 ‐0.30772 0.115 12.0 0.0096 55000 62.46096 2.965043 0.2691 0.013 ‐0.44689 0.108 14.8 0.0073 61000 47.39336 3.144583 0.381 0.022 ‐0.68002 0.088 6.8 0.0129 26000 62.3053 2.911462 0.29 0.013 ‐0.32179 0.079 9.2 0.0086 29000 60.53269 3.224502 0.2822 0.014 ‐0.72068 0.090 11.7 0.0077 47000 63.21113 2.876865 0.273 0.013 ‐0.28155 0.096 12.0 0.0080 58.0224 0.2999 0.107 11.536 0.010 5.4590 0.0370 0.029 2.463 0.002 9.4% 12.35% 27.3% 21.4% 24.9%

18000 72.67442 3.274574 0.2693 0.011 0.1232 0.106 12.3 0.0087 47000 68.96552 3.186683 0.2857 0.013 ‐0.11364 0.116 12.2 0.0095 34000 68.5401 3.241444 0.2877 0.014 ‐0.2752 0.129 11.2 0.0115 24000 64.14368 2.921232 0.3089 0.013 ‐0.17219 0.133 12.2 0.0109 68.5809 0.2879 0.121 11.990 0.010 3.4926 0.0162 0.012 0.495 0.001 5.1% 5.64% 9.9% 4.1% 12.5% lization to a primary standard material WC‐1 calcite

127 Texas Tech University, Austin D Bertoch, August 2020

Table 14. LA‐ICP‐MS U‐Pb Results for Long Point Limestone ‐ Duff Brown Tank Locality, Coconino Plateau, Arizona (Hill et al. 2016; solution MC‐ICP‐MS total Pb/U 3D Isochron age =

Measured Isotope Intensities

Pb206_CPS_ Pb207_CPS_ Th232_CPS_ Sequence Comments Source file DateTime Durations Total points Pb206_CPS Int2SE Pb207_CPS Int2SE Th232_CPS Int2SE

Long Point Crystallization Age Population for Sample 12 Analysis (63.78+/‐0.17 Ma n=16)

Long_4 Long‐4 11147c_TRA_Data 14/03/2020 (7) 19:03:47.09 28.883 145 22880 570 7090 320 3230 180 Long_3 Long‐3 11147c_TRA_Data 14/03/2020 (7) 19:02:58.08 28.97 146 20440 720 5770 260 4010 130 Long_2 Long‐2 11147c_TRA_Data 14/03/2020 (7) 18:52:04.57 28.958 146 18280 500 5230 140 3740 120 Long_1 Long‐1 11147c_TRA_Data 14/03/2020 (7) 18:51:15.44 29.207 147 20010 300 5635 99 3990 130 Long_8 Long‐8 11148c_TRA_Data 14/03/2020 (7) 19:24:54.12 28.957 146 13140 580 4580 200 1440 130 Long_7 Long‐7 11148c_TRA_Data 14/03/2020 (7) 19:24:04.93 29.198 147 18580 360 5980 150 2350 110 Long_6 Long‐6 11148c_TRA_Data 14/03/2020 (7) 19:13:12.32 28.984 146 19090 510 6640 190 2940 170 Long_5 Long‐5 11148c_TRA_Data 14/03/2020 (7) 19:12:23.40 29.025 147 18970 590 5460 260 2600 130 Long_12 Long‐12 11149_TRA_Data 14/03/2020 (7) 19:46:00.90 29.092 147 23950 410 7010 190 4300 850 Long_11 Long‐11 11149_TRA_Data 14/03/2020 (7) 19:45:11.97 28.926 146 21460 460 6400 230 3460 130 Long_10 Long‐10 11149_TRA_Data 14/03/2020 (7) 19:34:19.79 29.124 147 24160 530 7540 240 3700 160 Long_9 Long‐9 11149_TRA_Data 14/03/2020 (7) 19:33:30.46 29.253 147 18940 990 5790 250 2110 230 Long_16 Long‐16 11150c_TRA_Data 14/03/2020 (7) 20:07:36.16 29.124 146 22910 670 6790 140 3120 160 Long_15 Long‐15 11150c_TRA_Data 14/03/2020 (7) 20:06:46.98 29.147 147 19200 1000 5700 270 2220 200 Long_14 Long‐14 11150c_TRA_Data 14/03/2020 (7) 19:55:27.16 29.115 147 21130 490 5740 160 3450 160 Long_13 Long‐13 11150c_TRA_Data 14/03/2020 (7) 19:54:38.21 29.104 147 22510 330 6560 110 3830 140 Mean SD %RSD

Long Point Crystallization Age Population for Sample 13 Analysis (63.79+/‐0.21 Ma n=16) Longpoint_2 Long‐2 11132c_TRA_Data 06/03/2020 (6) 14:51:21.99 17.374 87 14970 420 3830 160 2860 230 Longpoint_1 Long‐1 11132c_TRA_Data 06/03/2020 (6) 14:50:35.88 17.937 91 12770 660 3750 260 2290 400 Longpoint_6 Long‐6 11133c_TRA_Data 06/03/2020 (6) 15:29:57.98 29.062 146 17030 240 4750 92 4310 170 Longpoint_5 Long‐5 11133c_TRA_Data 06/03/2020 (6) 15:29:08.88 28.743 145 15600 470 4550 160 4020 140 Longpoint_4 Long‐4 11133c_TRA_Data 06/03/2020 (6) 15:20:39.07 9.5942 48 14120 390 5140 390 2890 210 Longpoint_3 Long‐3 11133c_TRA_Data 06/03/2020 (6) 15:20:04.15 14.224 71 13540 430 4180 220 3470 240 Longpoint_10 Long‐10 11134c_TRA_Data 06/03/2020 (6) 15:51:12.51 28.218 142 15070 320 4280 140 2990 140 Longpoint_9 Long‐9 11134c_TRA_Data 06/03/2020 (6) 15:50:36.38 15.222 77 16960 520 4780 270 3950 220 Longpoint_8 Long‐8 11134c_TRA_Data 06/03/2020 (6) 15:42:05.45 14.792 75 12140 620 3530 170 3030 250 Longpoint_7 Long‐7 11134c_TRA_Data 06/03/2020 (6) 15:41:03.42 28.78 145 16840 330 5330 180 3850 120 Longpoint_16 Long‐16 11135c_TRA_Data 06/03/2020 (6) 16:24:05.60 28.319 142 16880 450 5040 180 4680 220 Longpoint_15 Long‐15 11135c_TRA_Data 06/03/2020 (6) 16:23:17.61 26.574 134 16210 360 4180 160 3870 190 Longpoint_14 Long‐14 11135c_TRA_Data 06/03/2020 (6) 16:12:20.81 12.058 61 14780 370 3990 130 3710 220 Longpoint_13 Long‐13 11135c_TRA_Data 06/03/2020 (6) 16:11:35.69 18.593 93 15810 450 4590 210 3260 230 Longpoint_12 Long‐12 11135c_TRA_Data 06/03/2020 (6) 16:03:01.82 8.9003 45 13320 720 3580 260 2130 200 Longpoint_11 Long‐11 11135c_TRA_Data 06/03/2020 (6) 16:02:12.48 27.696 140 16350 420 4990 190 3880 200 Mean SD %RSD

1 Raw intensity count rate data processed in Iolite (Paton et al., 2011) using the VisualAge_UcomPbine data reduction schemes (DRS; Chew et al., 2014) for baseline, drift and U/Pb downhole fractionation correction 2 Measured U and Th intensities calibrated against NIST SRM 614 concentrations in MS Excel spreadsheet

128 Texas Tech University, Austin D Bertoch, August 2020

= 64.04 +/‐ 0.67 Ma, 207Pb/206Pb = 0.7385)

Corrected Isotope Ratios1 Element Concentrations2

U238_CPS_I Final238_206_ Final207_206_ ErrorCorrelation U238_CPS nt2SE Final238_206 Prop2SE Final207_206 Prop2SE _38_6vs7_6 Th, ppm U, ppm Th/U

1284000 21000 66.313 3.07819 0.291 0.0075 ‐0.54514 0.1080 13.658 0.0079 1185000 32000 68.16633 3.206187 0.2678 0.0051 ‐0.4646 0.1341 12.605 0.0106 1074000 28000 67.56757 2.967495 0.2739 0.0053 0.47252 0.1250 11.424 0.0109 1224000 22000 69.78367 3.067949 0.2666 0.005 0.28703 0.1334 13.020 0.0102 665000 33000 57.87037 2.947102 0.345 0.01 ‐0.32524 0.0481 6.966 0.0069 997400 26000 62.2665 2.98538 0.3169 0.0092 ‐0.29156 0.0785 10.448 0.0075 977000 37000 58.00464 2.927148 0.342 0.01 ‐0.71008 0.0982 10.234 0.0096 1137000 30000 70.92199 3.269453 0.2734 0.0074 ‐0.29845 0.0868 11.911 0.0073 1329000 20000 63.01197 2.819061 0.2881 0.0061 ‐0.10242 0.1480 14.062 0.0105 1195000 29000 62.57822 3.054506 0.2905 0.0076 ‐0.43597 0.1191 12.644 0.0094 1268000 21000 60.09615 2.744776 0.3048 0.0068 ‐0.11923 0.1274 13.416 0.0095 1041000 63000 61.57635 3.033318 0.31 0.011 ‐0.67281 0.0726 11.015 0.0066 1328000 50000 65.27415 3.025108 0.3016 0.0077 ‐0.40057 0.1109 14.370 0.0077 1099000 77000 58.99705 4.176782 0.318 0.015 ‐0.75791 0.0789 11.892 0.0066 1277000 28000 68.91799 3.087298 0.2691 0.006 0.041068 0.1227 13.819 0.0089 1297000 21000 65.35948 2.904866 0.2905 0.006 0.14828 0.1362 14.035 0.0097 64.1691 0.296825 0.108 12.220 0.009 4.2400 0.024849 0.028 1.920 0.002 6.6% 8.37% 26.0% 15.7% 17.3%

936000 20000 73.52941 2.487024 0.2509 0.0084 ‐0.3594 0.098 10.5 0.0093 740000 30000 68.16633 2.416257 0.286 0.011 ‐0.45217 0.078 8.3 0.0094 1040000 13000 70.32349 2.126519 0.2711 0.0059 0.24522 0.167 12.7 0.0131 941000 30000 68.44627 2.389295 0.2869 0.0091 ‐0.26015 0.156 11.5 0.0136 729000 26000 53.39028 2.850522 0.348 0.022 ‐0.62486 0.112 8.9 0.0126 768000 20000 60.31363 2.219018 0.293 0.011 ‐0.32569 0.134 9.4 0.0143 916000 20000 65.35948 2.093212 0.2837 0.0078 ‐0.19257 0.118 11.1 0.0106 1000000 36000 64.10256 2.465483 0.282 0.012 ‐0.60273 0.156 12.2 0.0128 733000 40000 66.357 2.333723 0.295 0.011 ‐0.066375 0.120 8.9 0.0134 952000 22000 62.18905 2.127113 0.3108 0.0089 ‐0.43282 0.152 11.6 0.0131 985000 25000 64.02049 2.008325 0.2914 0.0066 ‐0.070955 0.179 11.8 0.0151 1050000 22000 70.47216 2.334173 0.2521 0.0075 ‐0.27303 0.148 12.7 0.0117 959000 23000 69.93007 2.591814 0.2689 0.0088 0.37478 0.142 11.5 0.0123 929000 22000 63.45178 2.415677 0.2873 0.0092 ‐0.29307 0.125 11.2 0.0112 836000 35000 67.2495 2.803947 0.268 0.011 ‐0.16958 0.081 10.1 0.0081 918000 20000 60.60606 2.093664 0.306 0.0076 ‐0.069877 0.148 11.0 0.0134 65.4942 0.286319 0.132 10.846 0.012 4.9564 0.023466 0.029 1.365 0.002 7.6% 8.20% 22.3% 12.6% 16.1% ns and normalization to a primary standard material WC‐1 calcite

129 Texas Tech University, Austin D Bertoch, August 2020

Table 18. LA‐ICP‐MS U‐Pb Results for Guadalupe Pass, Texas (GUPA‐00001‐001), Border Fault Zone, fibrous fault‐filling calcite (Decker et al. 2017, ID‐MC‐ICP‐MS 3D Concordia Age = 16.11 +/‐ 0.43 Ma)

Measured Isotope Intensities

Pb206_CPS_ Pb207_CPS_ Th232_CPS_ U238_CPS_I Sequence Comments Source file DateTime Durations Total points Pb206_CPS Int2SE Pb207_CPS Int2SE Th232_CPS Int2SE U238_CPS nt2SE

Decker Crystallization Age Population for Sample 1 Analysis (30.57+/‐2.71 Ma n=8)

Decker_1 Decker‐1 11141c_TRA_Data 14/03/2020 (7) 16:08:36.90 17.706 89 614 62 442 36 37 17 21840 760 Decker_2 Decker‐2 11141c_TRA_Data 14/03/2020 (7) 16:09:27.46 24.955 125 763 55 558 36 36 14 26180 520 Decker_3 Decker‐3 11141c_TRA_Data 14/03/2020 (7) 16:17:00.11 12.537 63 694 72 456 49 25 18 25390 710 Decker_4 Decker‐4 11141c_TRA_Data 14/03/2020 (7) 16:17:49.19 25.787 130 628 46 426 30 43 14 37900 1700 Decker_5 Decker‐5 11142c_TRA_Data 14/03/2020 (7) 16:29:46.60 26.916 136 668 52 408 32 53 15 59000 4900 Decker_6 Decker‐6 11142c_TRA_Data 14/03/2020 (7) 16:30:51.54 11.586 58 2080 120 1484 86 70 27 94000 2100 Decker_7 Decker‐7 11142c_TRA_Data 14/03/2020 (7) 16:38:11.83 25.668 129 992 72 591 51 115 68 83300 2200 Decker_8 Decker‐8 11142c_TRA_Data 14/03/2020 (7) 16:38:59.66 12.953 65 950 78 502 37 38 18 81300 2200 Mean SD %RSD

Decker Crystallization Age Population for Sample 2 Analysis (19.78+/‐1.40 Ma n=16) Decker_4 Decker‐4 11143c_TRA_Data 14/03/2020 (7) 17:04:53.76 28.699 145 418 31 176 16 22 8 63000 2000 Decker_3 Decker‐3 11143c_TRA_Data 14/03/2020 (7) 17:04:05.22 26.702 135 434 32 186 15 17 8 74900 4300 Decker_2 Decker‐2 11143c_TRA_Data 14/03/2020 (7) 16:56:55.24 26.827 135 447 31 178 15 20 8 70600 1400 Decker_1 Decker‐1 11143c_TRA_Data 14/03/2020 (7) 16:56:06.45 11.854 60 348 49 206 26 ‐3 0 35900 2100 Decker_8 Decker‐8 11144c_TRA_Data 14/03/2020 (7) 17:25:55.01 26.952 136 424 30 213 17 12 7 43500 1400 Decker_7 Decker‐7 11144c_TRA_Data 14/03/2020 (7) 17:25:12.21 19.59 98 372 36 164 17 15 9 54000 1800 Decker_6 Decker‐6 11144c_TRA_Data 14/03/2020 (7) 17:17:49.13 27.576 139 403 32 169 15 16 8 54000 1600 Decker_5 Decker‐5 11144c_TRA_Data 14/03/2020 (7) 17:17:06.08 20.838 105 391 35 167 18 16 9 62200 2500 Decker_12 Decker‐12 11145c_TRA_Data 14/03/2020 (7) 17:47:04.62 23.333 118 276 31 202 18 17 8 12980 650 Decker_11 Decker‐11 11145c_TRA_Data 14/03/2020 (7) 17:46:25.19 13.102 66 337 37 243 32 21 12 18900 1000 Decker_10 Decker‐10 11145c_TRA_Data 14/03/2020 (7) 17:39:02.85 15.348 78 399 41 227 26 24 12 43300 2800 Decker_9 Decker‐9 11145c_TRA_Data 14/03/2020 (7) 17:38:02.46 24.456 123 382 32 198 18 23 9 48500 1800 Decker_16 Decker‐16 11146c_TRA_Data 14/03/2020 (7) 18:08:01.75 24.706 125 473 38 349 28 18 8 18550 860 Decker_15 Decker‐15 11146c_TRA_Data 14/03/2020 (7) 18:07:11.83 26.203 132 390 38 296 24 12 7 15550 490 Decker_14 Decker‐14 11146c_TRA_Data 14/03/2020 (7) 18:00:01.23 20.339 103 339 36 246 23 15 9 14780 950 Decker_13 Decker‐13 11146c_TRA_Data 14/03/2020 (7) 17:59:20.05 11.604 58 289 39 210 28 17 12 19500 970 Mean SD %RSD

Decker Crystallization Age Population for Sample 3 Analysis (20.25+/‐3.40 Ma n=17) Decker_4 Decker‐4 11156c_TRA_Data 17/03/2020 (3) 21:22:49.67 14.741 74 707 74 502 58 34 17 47200 2200 Decker_3 Decker‐3 11156c_TRA_Data 17/03/2020 (3) 21:22:01.66 23.618 119 572 48 322 25 37 14 58500 2500 Decker_2 Decker‐2 11156c_TRA_Data 17/03/2020 (3) 21:14:51.91 25.107 127 606 67 415 44 15.6 8.6 43600 2100 Decker_6 Decker‐6 11157c_TRA_Data 17/03/2020 (3) 21:35:34.82 6.611 34 1050 210 750 140 44 26 39500 4700 Decker_5 Decker‐5 11157c_TRA_Data 17/03/2020 (3) 21:34:46.53 9.1243 46 650 72 419 45 12 14 48300 1600 Decker_12 Decker‐12 11158c_TRA_Data 17/03/2020 (3) 22:05:03.99 11.301 57 464 66 350 39 27 14 16250 970 Decker_11 Decker‐11 11158c_TRA_Data 17/03/2020 (3) 22:04:22.15 4.082 20 323 81 256 47 10 17 12420 630 Decker_10 Decker‐10 11158c_TRA_Data 17/03/2020 (3) 21:56:25.79 17.15 86 378 42 288 24 12.5 9.6 2360 160 Decker_9 Decker‐9 11158c_TRA_Data 17/03/2020 (3) 21:55:41.77 12.487 63 594 81 469 55 7.1 9.9 1600 120 Decker_16 Decker‐16 11159c_TRA_Data 17/03/2020 (3) 22:26:00.42 8.9167 45 396 68 249 35 24 17 20700 1500 Decker_15 Decker‐15 11159c_TRA_Data 17/03/2020 (3) 22:25:11.15 11.999 60 474 49 311 30 25 15 23200 1100 Decker_14 Decker‐14 11159c_TRA_Data 17/03/2020 (3) 22:17:39.14 14.359 73 405 44 267 24 35 17 18450 580 Decker_13 Decker‐13 11159c_TRA_Data 17/03/2020 (3) 22:16:56.83 12.789 65 486 58 393 41 ‐2.8084 0.0066 20180 770 Decker_20 Decker‐20 11160c_TRA_Data 17/03/2020 (3) 22:47:08.47 8.6029 43 374 64 266 34 13 15 7100 600 Decker_19 Decker‐19 11160c_TRA_Data 17/03/2020 (3) 22:46:24.11 7.6973 39 450 56 349 41 31 23 7950 840 Decker_18 Decker‐18 11160c_TRA_Data 17/03/2020 (3) 22:38:46.51 7.21 36 376 59 287 37 2 12 10420 430 Decker_17 Decker‐17 11160c_TRA_Data 17/03/2020 (3) 22:37:57.73 14.155 71 381 46 276 31 9 11 10880 710 Decker_3 Decker‐4 11161c_TRA_Data 17/03/2020 (3) 23:25:38.67 2.639 13 278 39 193 21 12 11 10610 300 Decker_2 Decker‐2 11161c_TRA_Data 17/03/2020 (3) 23:17:16.36 9.1582 46 402 42 319 32 4 7 7680 700 Decker_1 Decker‐1 11161c_TRA_Data 17/03/2020 (3) 23:16:19.99 13.389 67 590 110 523 86 4 9 6340 860 Decker_7 Decker‐8 11162c_TRA_Data 17/03/2020 (3) 23:46:55.83 15.758 80 286 34 221 23 11 9 2850 260 Decker_6 Decker‐7 11162c_TRA_Data 17/03/2020 (3) 23:45:55.70 27.116 137 450 110 360 110 0 0 1240 180 Decker_5 Decker‐6 11162c_TRA_Data 17/03/2020 (3) 23:38:14.37 12.766 64 738 92 553 58 15 15 15600 1500 Decker_4 Decker‐5 11162c_TRA_Data 17/03/2020 (3) 23:37:26.23 18.37 93 650 110 456 68 30 15 33000 2400 Mean SD %RSD

Decker Results with Poor Precision (>25% SD uncertainty) for Sample 3 Analysis (n=3) Decker_1 Decker‐1 11156c_TRA_Data 17/03/2020 (3) 21:14:05.31 22.652 114 391 35 205 20 64 17 61100 4300 Decker_8 Decker‐8 11157c_TRA_Data 17/03/2020 (3) 21:43:29.99 3.1156 16 680 480 840 630 24 28 9400 2000 Decker_7 Decker‐7 11157c_TRA_Data 17/03/2020 (3) 21:42:42.03 3.7354 19 325 79 222 40 13 23 27400 3900 1 Raw intensity count rate data processed in Iolite (Paton et al., 2011) using the VisualAge_UcomPbine data reduction schemes (DRS; Chew et al., 2014) for baseline, drift and U/Pb downhole fractionation corrections and normalization to a pr 2 Measured U and Th intensities calibrated against NIST SRM 614 concentrations in MS Excel spreadsheet

130 Texas Tech University, Austin D Bertoch, August 2020

Corrected Isotope Ratios1 Element Concentrations2

Final238_206_ Final207_206_ ErrorCorrelation Final238_206 Prop2SE Final207_206 Prop2SE _38_6vs7_6 Th, ppm U, ppm Th/U

41.1523 4.4031 0.8700 0.1100 0.8302 0.001 0.3 0.0052 40.4858 3.2782 0.8340 0.0690 0.6449 0.001 0.3 0.0043 43.1035 4.8306 0.7450 0.0900 0.6347 0.001 0.3 0.0030 68.9655 5.2319 0.7600 0.0540 0.7988 0.002 0.4 0.0035 89.4454 6.2404 0.6250 0.0490 0.7379 0.002 0.7 0.0028 50.7614 3.0921 0.7020 0.0500 0.4594 0.002 1.1 0.0023 93.9850 6.4482 0.5750 0.0370 0.2972 0.004 1.0 0.0043 94.8767 8.0114 0.5130 0.0410 0.6568 0.001 0.9 0.0014 65.3469 0.7030 0.002 0.614 0.003 24.4860 0.1246 0.001 0.336 0.001 37.5% 17.72% 54.7% 54.7% 36.3%

168.6341 12.79685 0.54 0.1 0.87347 0.001 0.7 0.0011 184.5018 16.68006 0.5 0.056 0.71817 0.001 0.8 0.0007 178.5714 12.43622 0.466 0.059 0.76775 0.001 0.7 0.0009 121.9512 16.35931 0.74 0.15 0.78681 0.000 0.4 0.0002 116.0093 8.882381 0.587 0.07 0.80018 0.000 0.4 0.0009 159.2357 15.97428 0.519 0.07 0.87966 0.000 0.6 0.0009 151.2859 12.13034 0.504 0.072 0.86059 0.001 0.6 0.0010 173.3102 15.31858 0.492 0.074 0.64312 0.001 0.6 0.0008 50.25126 6.060453 0.9 0.28 0.91381 0.001 0.1 0.0044 57.14286 7.836735 0.76 0.1 0.4971 0.001 0.2 0.0038 116.2791 13.52082 0.66 0.11 0.79556 0.001 0.5 0.0019 143.0615 11.66596 0.617 0.082 0.70609 0.001 0.5 0.0016 42.19409 3.560683 0.822 0.081 0.88579 0.001 0.2 0.0033 44.05286 4.463506 0.95 0.11 0.67137 0.000 0.2 0.0027 42.73504 5.296223 0.91 0.14 0.73545 0.001 0.2 0.0035 72.46377 9.976896 0.78 0.23 0.72384 0.001 0.2 0.0030 113.8550 0.6717 0.001 0.423 0.002 54.2494 0.1666 0.000 0.220 0.001 47.6% 24.80% 38.2% 51.9% 68.5%

70.42254 7.439 0.781 0.088 0.16184 0.001 0.5 0.0018 102.3541 9.638261 0.612 0.053 0.73184 0.001 0.7 0.0016 74.62687 7.23992 0.752 0.059 0.78681 0.000 0.5 0.0009 42.73504 6.026737 0.77 0.11 0.54628 0.001 0.5 0.0027 77.51938 9.614807 0.69 0.1 0.82614 0.000 0.6 0.0006 36.10108 5.343482 0.88 0.13 0.86385 0.001 0.2 0.0041 39.0625 10.0708 0.96 0.33 0.97485 0.000 0.1 0.0020 6.329114 0.8412113 0.87 0.16 0.95484 0.000 0.0 0.0130 2.583979 0.3805861 0.91 0.13 0.98982 0.000 0.0 0.0109 57.80347 10.35785 0.86 0.23 0.95186 0.001 0.2 0.0028 53.47594 6.291287 0.72 0.11 0.7903 0.001 0.3 0.0026 48.30918 5.367687 0.722 0.095 0.78748 0.001 0.2 0.0047 43.85965 4.809172 0.91 0.14 0.99449 0.000 0.2 0.0003 18.51852 3.429355 0.86 0.23 0.9611 0.000 0.1 0.0046 18.05054 2.476248 0.8 0.12 0.47026 0.001 0.1 0.0098 30.39514 4.804095 0.9 0.23 0.88123 0.000 0.1 0.0005 30.58104 4.02136 0.82 0.13 0.97114 0.000 0.1 0.0021 2.80112 0.7218574 0.92 0.35 0.45819 0.000 0.0 0.0006 20.04008 2.931715 0.771 0.11 0.59798 0.000 0.2 0.0023 53.19149 8.20507 0.725 0.11 0.59929 0.001 0.4 0.0022 40.48583 6.064679 0.96 0.34 0.80614 0.000 0.1 0.0027 18.08318 1.994709 0.911 0.12 0.93293 0.000 0.1 0.0012 10.98901 1.569859 0.98 0.18 0.97282 0.000 0.1 0.0014 9.345794 1.397502 0.84 0.14 0.83832 0.000 0.0 0.0089 37.8194 0.8302 0.000 0.226 0.004 26.2001 0.0963 0.000 0.192 0.004 69.3% 11.60% 76.3% 84.8% 100.0%

145.3488 18.37987 0.6 0.13 0.79207 0.002 0.7 0.0026 20 8.4 1.18 0.66 0.79113 0.001 0.1 0.0063 91.74312 21.88368 0.87 0.33 0.41587 0.000 0.3 0.0012 rimary standard material WC‐1 calcite

131 Texas Tech University, Austin D Bertoch, August 2020

Table 19. LA‐ICP‐MS U‐Pb Results for Guadalupe Pass, Texas (GUPA‐00001‐001), Border Fault Zone, fibrous fault‐filling calcite (Decker et al. 2017, ID‐MC‐ICP‐MS 3D Concordia Age = 16.11 +/‐ 0

Measured Isotope Intensities

Pb206_CPS_ Pb207_CPS_ Th232_CPS_ Sequence Comments Source file DateTime Durations Total points Pb206_CPS Int2SE Pb207_CPS Int2SE Th232_CPS Int2SE U238_CPS

Decker Crystallization Age Population for Sample 4 Analysis (24.03+/‐4.06 Ma n=13)

Decker_6 Decker‐6 11136c_TRA_Data 06/03/2020 (6) 18:41:07.01 24.292 122 258 30 162 15 2.5 6.8 17210 Decker_4 Decker‐4 11136c_TRA_Data 06/03/2020 (6) 18:28:24.28 24.464 123 211 26 139 17 7.1 7.6 12500 Decker_2 Decker‐2 11136c_TRA_Data 06/03/2020 (6) 18:20:10.31 24.398 123 308 38 215 26 7 7.7 11020 Decker_10 Decker‐10 11137c_TRA_Data 06/03/2020 (6) 19:02:01.81 24.506 123 374 32 188 18 32 13 50000 Decker_7 Decker‐7 11137c_TRA_Data 06/03/2020 (6) 18:48:30.83 25.19 127 240 26 164 15 1.4 6.6 20400 Decker_16 Decker‐16 11138c_TRA_Data 06/03/2020 (6) 19:30:26.50 8.2542 41 180 40 156 27 13 15 1470 Decker_15 Decker‐15 11138c_TRA_Data 06/03/2020 (6) 19:29:26.77 5.7643 29 332 83 295 81 23 21 8300 Decker_11 Decker‐11 11138c_TRA_Data 06/03/2020 (6) 19:08:57.44 20.632 104 757 75 511 51 67 18 50000 Decker_22 Decker‐22 11139c_TRA_Data 06/03/2020 (6) 20:04:01.46 25.328 127 271 26 202 15 5.3 7.4 12100 Decker_21 Decker‐21 11139c_TRA_Data 06/03/2020 (6) 20:03:13.47 24.197 122 339 37 233 20 6.4 7.9 19830 Decker_20 Decker‐20 11139c_TRA_Data 06/03/2020 (6) 19:51:18.83 24.893 125 260 28 175 16 25.2 9.6 18960 Decker_19 Decker‐19 11139c_TRA_Data 06/03/2020 (6) 19:50:30.84 20.357 102 240 27 182 21 17.9 9.3 10450 Decker_23 Decker‐23 11140c_TRA_Data 06/03/2020 (6) 20:11:38.93 24.695 124 263 29 190 17 ‐0.9 6 8310 Mean SD %RSD

Decker Results with Poor Precision (>25% SD uncertainty) for Sample 4 Analysis (n=11) Decker_5 Decker‐5 11136c_TRA_Data 06/03/2020 (6) 18:40:18.74 23.868 121 214 28 168 17 11.1 8.5 13640 Decker_3 Decker‐3 11136c_TRA_Data 06/03/2020 (6) 18:27:34.53 25.217 127 209 25 146 16 13.3 8.6 10540 Decker_1 Decker‐1 11136c_TRA_Data 06/03/2020 (6) 18:19:20.82 24.788 125 172 22 136 14 6.7 7.6 13200 Decker_9 Decker‐9 11137c_TRA_Data 06/03/2020 (6) 19:01:12.33 25.036 126 305 32 156 15 16.4 9.3 40400 Decker_8 Decker‐8 11137c_TRA_Data 06/03/2020 (6) 18:49:18.85 26.111 132 319 29 157 15 26 12 35100 Decker_14 Decker‐14 11138c_TRA_Data 06/03/2020 (6) 19:22:25.08 9.4534 48 420 130 235 83 74 32 44100 Decker_13 Decker‐13 11138c_TRA_Data 06/03/2020 (6) 19:21:37.63 9.3627 47 321 52 135 28 32 17 48500 Decker_12 Decker‐12 11138c_TRA_Data 06/03/2020 (6) 19:09:44.60 14.796 75 402 47 198 24 8 10 48900 Decker_18 Decker‐18 11139c_TRA_Data 06/03/2020 (6) 19:42:59.44 24.629 124 262 31 185 16 4.9 6.2 7210 Decker_17 Decker‐17 11139c_TRA_Data 06/03/2020 (6) 19:42:14.85 20.376 103 227 30 152 16 12.5 8.8 3900 Decker_24 Decker‐24 11140c_TRA_Data 06/03/2020 (6) 20:12:26.32 5.8437 29 190 59 163 36 ‐10.1176 0.0019 10610 Mean SD %RSD

Decker Crystallization Age Population for Sample 8 Analysis (21.80+/‐2.50 Ma n=7) Decker_4 Decker‐4 11154c_TRA_Data 17/03/2020 (3) 20:28:46.46 4.6567 23 216 26 172 13 2.3 5.9 6370 Decker_3 Decker‐3 11154c_TRA_Data 17/03/2020 (3) 20:27:58.07 9.6152 48 252 29 199 18 4.6 6.9 3960 Decker_2 Decker‐2 11154c_TRA_Data 17/03/2020 (3) 20:20:13.54 14.13 71 247 37 205 24 23 14 3340 Decker_1 Decker‐1 11154c_TRA_Data 17/03/2020 (3) 20:19:25.14 17.372 88 229 66 184 43 5 17 5100 Decker_7 Decker‐7 11155c_TRA_Data 17/03/2020 (3) 20:49:14.46 24.437 123 382 51 173 27 36 21 56600 Decker_6 Decker‐6 11155c_TRA_Data 17/03/2020 (3) 20:41:44.49 12.2 62 401 38 213 26 9 10 58700 Decker_5 Decker‐5 11155c_TRA_Data 17/03/2020 (3) 20:40:40.28 4.0412 20 504 47 247 28 47 17 71300 Mean SD %RSD

Decker Result with Poor Precision (>25% SD uncertainty) for Sample 8 Analysis (n=1) Decker_8 Decker‐8 11155c_TRA_Data 17/03/2020 (3) 20:50:00.87 27.03 136 310 77 143 31 21 23 35400

Decker Crystallization Age Population for Sample 9 Analysis (31.29+/‐6.75 Ma n=8) Decker_4 Decker‐4 11151c_TRA_Data 17/03/2020 (3) 19:22:01.50 27.346 137 324 34 235 17 17 9 13400 Decker_3 Decker‐3 11151c_TRA_Data 17/03/2020 (3) 19:21:23.88 16.012 81 350 44 262 27 7 9 10370 Decker_2 Decker‐2 11151c_TRA_Data 17/03/2020 (3) 19:13:48.71 17.563 88 234 33 214 24 14 10 3120 Decker_1 Decker‐1 11151c_TRA_Data 17/03/2020 (3) 19:13:00.21 26.818 135 325 31 299 28 8 7 2580 Decker_8 Decker‐8 11152c_TRA_Data 17/03/2020 (3) 19:43:02.84 7.3939 37 267 57 206 32 ‐5 0 7040 Decker_7 Decker‐7 11152c_TRA_Data 17/03/2020 (3) 19:42:12.13 13.701 69 315 79 218 50 30 17 14600 Decker_6 Decker‐6 11152c_TRA_Data 17/03/2020 (3) 19:34:45.92 26.396 133 290 28 189 17 2 5 17500 Decker_5 Decker‐5 11152c_TRA_Data 17/03/2020 (3) 19:33:57.11 26.369 133 344 34 237 21 9 7 22040 Decker_11 Decker‐11 11153c_TRA_Data 17/03/2020 (3) 20:03:13.22 8.7949 45 199 47 147 31 29 16 5610 Decker_10 Decker‐10 11153c_TRA_Data 17/03/2020 (3) 19:55:45.34 9.3469 47 193 49 145 27 14 13 5010 Mean SD %RSD

Decker Result with Poor Precision (>25% SD uncertainty) for Sample 9 (n=2) Decker_12 Decker‐12 11153c_TRA_Data 17/03/2020 (3) 20:04:02.20 8.3921 43 222 52 187 28 11 12 2550 Decker_9 Decker‐9 11153c_TRA_Data 17/03/2020 (3) 19:54:56.98 26.952 136 276 31 219 17 20 8 4510 1 Raw intensity count rate data processed in Iolite (Paton et al., 2011) using the VisualAge_UcomPbine data reduction schemes (DRS; Chew et al., 2014) for baseline, drift and U/Pb downhole fractionation corrections and normal 2 Measured U and Th intensities calibrated against NIST SRM 614 concentrations in MS Excel spreadsheet

132 Texas Tech University, Austin D Bertoch, August 2020

0.43 Ma)

Corrected Isotope Ratios1 Element Concentrations2

U238_CPS_I Final238_206_ Final207_206_ ErrorCorrelation nt2SE Final238_206 Prop2SE Final207_206 Prop2SE _38_6vs7_6 Th, ppm U, ppm Th/U

290 69.93007 8.313365 0.63 0.34 0.94361 0.000 0.2 0.0005 550 59.52381 7.794785 0.8 0.16 0.86373 0.000 0.2 0.0018 500 36.10108 4.300851 0.83 0.11 0.92578 0.000 0.1 0.0021 1900 137.931 12.93698 0.598 0.087 0.86599 0.001 0.6 0.0020 890 88.49558 10.18091 0.84 0.22 0.92853 0.000 0.2 0.0002 140 7.751938 1.682591 1.03 0.36 0.90722 0.000 0.0 0.0280 2600 19.60784 5.382545 1.33 0.47 0.88056 0.001 0.1 0.0088 3200 66.66667 6.666667 0.717 0.071 0.67597 0.002 0.6 0.0042 750 44.24779 5.090453 0.86 0.16 0.89494 0.000 0.1 0.0014 950 57.14286 6.530612 0.86 0.2 0.97979 0.000 0.2 0.0010 840 76.92308 8.87574 0.62 0.46 0.87121 0.001 0.2 0.0043 510 47.16981 5.562478 1.06 0.33 0.76246 0.001 0.1 0.0055 530 29.23977 3.847338 0.99 0.18 0.93388 0.000 0.1 0.0004 56.9793 0.8588 0.001 0.216 0.005 33.5360 0.2064 0.001 0.175 0.007 58.9% 24.03% 114.3% 81.0% 160.4%

360 67.11409 9.008603 0.69 0.37 0.8383 0.000 0.2 0.0026 390 50.76142 6.699477 0.41 0.4 0.88623 0.001 0.1 0.0041 1300 63.69427 9.736703 0.81 0.28 0.84064 0.000 0.2 0.0016 1800 136.4256 15.26181 0.67 0.13 0.81155 0.001 0.5 0.0013 2500 103.9501 10.69757 0.63 0.12 0.94512 0.001 0.4 0.0023 6400 105.2632 22.16066 0.57 0.1 0.41318 0.003 0.5 0.0053 5100 147.0588 28.11419 0.52 0.14 0.94708 0.001 0.6 0.0021 2400 127.2265 16.18657 0.63 0.12 0.95457 0.000 0.6 0.0005 590 25.83979 3.805861 0.74 0.37 0.75246 0.000 0.1 0.0022 180 18.69159 2.690191 0.5 0.33 0.96088 0.000 0.0 0.0104 580 58.82353 20.76125 0.81 0.66 0.89928 0.000 0.1 0.0032 82.2590 0.6345 0.001 0.294 0.003 44.1521 0.1276 0.001 0.210 0.003 53.7% 20.11% 121.1% 71.7% 83.3%

870 120.4819 23.22543 0.61 0.19 0.5346 0.001 0.4 0.0014 150 138.8889 21.21914 0.57 0.16 0.5028 0.001 0.7 0.0015 230 153.3742 17.4075 0.595 0.085 0.50584 0.000 0.7 0.0004 820 154.0832 14.71981 0.545 0.063 0.63651 0.001 0.8 0.0016 7300 16.52893 1.939758 1.07 0.19 0.90332 0.000 0.0 2.7653 3300 13.51351 2.373996 1.09 0.51 0.88272 0.001 0.0 10.6359 2600 22.72727 6.714876 0.91 0.44 0.7424 0.000 0.0 0.9249 88.5140 0.7700 0.001 0.376 2.047 67.3307 0.2446 0.000 0.373 3.922 76.1% 31.76% 77.0% 99.2% 191.6%

5000 23.80952 3.514739 1.46 0.71 0.7213 0.000 0.0 0.7001

1100 32.05128 4.622781 1.03 0.17 0.89209 0.000 0.2 0.0032 530 26.38522 4.037844 1.01 0.24 0.94677 0.000 0.1 0.0016 180 12.34568 1.981405 0.67 0.35 0.86906 0.000 0.0 0.0114 110 7.407407 0.8230453 1.1 0.15 0.76687 0.000 0.0 0.0074 930 29.15452 6.459893 0.83 0.61 0.86899 0.000 0.1 0.0016 2000 50.25126 10.85831 0.9 0.21 0.89405 0.001 0.2 0.0050 1300 66.66667 7.111111 0.65 0.27 0.736 0.000 0.2 0.0003 660 74.07407 8.230453 0.759 0.086 0.77181 0.000 0.3 0.0010 710 27.02703 7.304602 8 9.1 0.7975 0.001 0.1 450 25 7.5 ‐2.7 4.5 0.72979 0.000 0.1 37.2920 0.8686 0.000 0.132 0.004 24.2363 0.1696 0.000 0.081 0.004 65.0% 19.52% 101.9% 61.4% 96.9%

580 7.633588 1.922965 1.7 1.8 0.51463 0.000 0.0 310 14.94768 2.055586 0.2 1.3 0.88633 0.001 0.1 lization to a primary standard material WC‐1 calcite

133 Texas Tech University, Austin D Bertoch, August 2020

Table 20. LA‐ICP‐MS U‐Pb Results for Guadalupe Pass, Texas (GUPA‐00001‐001), Border Fault Zone, fibrous fault‐filling calcite (Decker et al. 2017, ID‐MC‐ICP‐MS 3D Concordia Age = 16.11 +/‐ 0.43 Ma)

Measured Isotope Intensities

Pb206_CPS_ Pb207_CPS_ Th232_CPS_ U238_CPS_I Sequence Comments Source file DateTime Durations Total points Pb206_CPS Int2SE Pb207_CPS Int2SE Th232_CPS Int2SE U238_CPS nt2SE

Decker Crystallization Age Population for Sample 12 Analysis (15.03+/‐2.52 Ma n=16)

Decker_4 Decker‐4 11147c_TRA_Data 14/03/2020 (7) 19:02:03.83 28.936 146 431 33 223 17 17 8 43700 1700 Decker_3 Decker‐3 11147c_TRA_Data 14/03/2020 (7) 19:01:14.26 28.707 145 410 32 243 19 23 8 50800 4400 Decker_2 Decker‐2 11147c_TRA_Data 14/03/2020 (7) 18:53:48.31 28.598 145 376 30 181 14 13 7 58500 3700 Decker_1 Decker‐1 11147c_TRA_Data 14/03/2020 (7) 18:52:58.96 28.863 145 323 27 164 14 11 7 45100 2100 Decker_8 Decker‐8 11148c_TRA_Data 14/03/2020 (7) 19:23:11.17 28.495 144 472 39 202 16 22 9 75300 1800 Decker_7 Decker‐7 11148c_TRA_Data 14/03/2020 (7) 19:22:21.47 28.694 144 481 36 214 16 15 8 71900 5600 Decker_6 Decker‐6 11148c_TRA_Data 14/03/2020 (7) 19:14:56.42 28.622 144 494 38 200 18 31 11 82800 2800 Decker_5 Decker‐5 11148c_TRA_Data 14/03/2020 (7) 19:14:06.99 28.8 146 477 36 232 17 15 7 63300 3400 Decker_12 Decker‐12 11149_TRA_Data 14/03/2020 (7) 19:44:17.76 28.744 145 487 36 256 20 26 9 67500 2900 Decker_11 Decker‐11 11149_TRA_Data 14/03/2020 (7) 19:43:28.63 28.61 144 518 40 270 22 33 11 69000 3900 Decker_10 Decker‐10 11149_TRA_Data 14/03/2020 (7) 19:36:03.80 28.757 144 472 36 227 16 22 9 57900 4000 Decker_9 Decker‐9 11149_TRA_Data 14/03/2020 (7) 19:35:14.40 28.639 144 461 34 231 19 23 9 62000 3300 Decker_16 Decker‐16 11150c_TRA_Data 14/03/2020 (7) 20:05:52.83 28.819 145 466 34 250 17 25 9 48100 5200 Decker_15 Decker‐15 11150c_TRA_Data 14/03/2020 (7) 20:05:03.11 28.872 146 536 39 279 22 39 12 63400 5400 Decker_14 Decker‐14 11150c_TRA_Data 14/03/2020 (7) 19:57:11.45 28.928 146 519 40 275 20 35 11 64600 4000 Decker_13 Decker‐13 11150c_TRA_Data 14/03/2020 (7) 19:56:22.07 28.766 145 504 33 240 19 32 11 63600 2300 Mean SD %RSD

Decker Results with Poor Precision for Sample 13 Analysis (27.96+/‐4.44 Ma n=16) Decker_2 Decker‐2 11132c_TRA_Data 06/03/2020 (6) 14:53:18.69 9.3129 47 271 59 199 33 11 13 8260 500 Decker_1 Decker‐1 11132c_TRA_Data 06/03/2020 (6) 14:52:29.26 8.2064 41 233 56 150 33 10 14 19000 1300 Decker_6 Decker‐6 11133c_TRA_Data 06/03/2020 (6) 15:31:41.25 25.956 131 233 27 176 19 9.7 7.3 6300 200 Decker_5 Decker‐5 11133c_TRA_Data 06/03/2020 (6) 15:30:55.63 22.41 113 206 30 162 19 4.1 6.5 5000 260 Decker_4 Decker‐4 11133c_TRA_Data 06/03/2020 (6) 15:19:09.41 12.607 63 197 47 140 17 11 11 8230 490 Decker_3 Decker‐3 11133c_TRA_Data 06/03/2020 (6) 15:18:19.12 13.103 66 142 33 123 21 14 12 5490 230 Decker_10 Decker‐10 11134c_TRA_Data 06/03/2020 (6) 15:52:53.89 11.89 60 485 62 241 32 73 29 69900 5600 Decker_9 Decker‐9 11134c_TRA_Data 06/03/2020 (6) 15:52:05.67 11.101 56 697 69 395 54 98 35 55000 3600 Decker_8 Decker‐8 11134c_TRA_Data 06/03/2020 (6) 15:40:24.58 12.41 63 269 39 185 25 15 12 14310 380 Decker_7 Decker‐7 11134c_TRA_Data 06/03/2020 (6) 15:39:29.57 15.19 76 249 37 154 23 7.8 8.9 8960 390 Decker_16 Decker‐16 11135c_TRA_Data 06/03/2020 (6) 16:22:24.16 26.696 135 681 99 606 87 37 13 1940 150 Decker_15 Decker‐15 11135c_TRA_Data 06/03/2020 (6) 16:21:54.44 7.7416 39 359 53 266 46 200 130 24600 3700 Decker_14 Decker‐14 11135c_TRA_Data 06/03/2020 (6) 16:14:20.60 9.8488 50 520 76 377 54 25 15 37600 4700 Decker_13 Decker‐13 11135c_TRA_Data 06/03/2020 (6) 16:13:30.24 12.644 64 536 74 247 33 48 19 49700 2800 Decker_12 Decker‐12 11135c_TRA_Data 06/03/2020 (6) 16:01:31.03 17.811 90 433 43 202 21 70 23 48900 2400 Decker_11 Decker‐11 11135c_TRA_Data 06/03/2020 (6) 16:00:31.09 25.998 131 505 42 256 26 50 14 64000 1500 Mean SD %RSD 1 Raw intensity count rate data processed in Iolite (Paton et al., 2011) using the VisualAge_UcomPbine data reduction schemes (DRS; Chew et al., 2014) for baseline, drift and U/Pb downhole fractionation corrections and normalization to a p 2 Measured U and Th intensities calibrated against NIST SRM 614 concentrations in MS Excel spreadsheet

134 Texas Tech University, Austin D Bertoch, August 2020

Corrected Isotope Ratios1 Element Concentrations2

Final238_206_ Final207_206_ ErrorCorrelation Final238_206 Prop2SE Final207_206 Prop2SE _38_6vs7_6 Th, ppm U, ppm Th/U

114.8106 10.54517 0.588 0.07 0.76081 0.0006 0.465 0.0012 130.3781 12.57885 0.731 0.098 0.81658 0.0008 0.540 0.0014 169.4915 16.3746 0.54 0.06 0.75087 0.0004 0.622 0.0007 157.7287 14.67822 0.596 0.079 0.81947 0.0004 0.480 0.0008 185.5288 17.21046 0.513 0.058 0.91808 0.0007 0.789 0.0009 151.9757 15.24376 0.545 0.078 0.89366 0.0005 0.753 0.0007 193.4236 16.83571 0.432 0.048 0.88876 0.0010 0.867 0.0012 152.439 13.71022 0.555 0.062 0.53568 0.0005 0.663 0.0008 155.2795 13.74368 0.614 0.067 0.7817 0.0009 0.714 0.0013 141.6431 13.44205 0.568 0.063 0.72335 0.0011 0.730 0.0016 128.2051 11.83432 0.561 0.063 0.73179 0.0007 0.613 0.0012 147.0588 13.4083 0.541 0.056 0.47783 0.0008 0.656 0.0012 91.74312 10.10016 0.625 0.06 0.43098 0.0009 0.520 0.0017 106.383 13.58081 0.575 0.053 0.38698 0.0014 0.686 0.0020 130.5483 12.10043 0.605 0.057 0.61767 0.0012 0.699 0.0018 137.1742 11.85456 0.526 0.05 0.56617 0.0011 0.688 0.0017 143.3632 0.569688 0.001 0.655 0.001 27.0019 0.063264 0.000 0.112 0.000 18.8% 11.11% 36.9% 17.0% 33.0%

36.36364 7.272727 0.8 0.26 0.98197 0.000 0.1 0.0040 86.95652 23.44045 0.68 0.36 0.44197 0.000 0.2 0.0016 29.94012 3.854566 0.93 0.22 0.72879 0.000 0.1 0.0049 25.44529 4.273255 1.12 0.34 0.80445 0.000 0.1 0.0026 41.32231 10.41596 1.07 0.66 0.88624 0.000 0.1 0.0042 40.16064 9.677263 1.06 0.62 0.77023 0.001 0.1 0.0081 147.7105 19.85473 0.68 0.16 0.88656 0.003 0.9 0.0034 84.74576 7.900029 0.59 0.066 0.39285 0.004 0.7 0.0058 59.52381 8.85771 0.69 0.13 0.84547 0.001 0.2 0.0034 38.91051 6.207513 0.53 0.19 0.8374 0.000 0.1 0.0028 2.747253 0.4302017 1.1 0.14 0.77218 0.001 0.0 0.0607 62.1118 11.18784 0.8 0.15 0.72405 0.008 0.3 0.0259 68.96552 10.46373 0.78 0.11 0.8733 0.001 0.5 0.0021 102.0408 12.49479 0.563 0.088 0.55021 0.002 0.6 0.0031 115.8749 13.02417 0.567 0.086 0.80203 0.003 0.6 0.0046 137.931 11.22473 0.539 0.053 0.82165 0.002 0.8 0.0025 67.5469 0.781188 0.002 0.321 0.009 41.8649 0.213075 0.002 0.286 0.015 62.0% 27.28% 118.5% 89.0% 171.8% primary standard material WC‐1 calcite

135 Texas Tech University, Austin D Bertoch, August 2020

age = 268.22 ± 6.17 | 14.60 | 22.86 Ma (n=8) 207 206 ( Pb/ Pb)o= 0.84 ± 0 | 0 | 0 MSWD = 2.5, p(χ2) = 0.016

6DPSOH

00 ●

● Pb 206

● Pb/ 207

● ●

000 ●

● 3000 ● ● 0.2 0.4 0.6 0.8 1.0 1.2 2000 ● ● 1000 500 ●

0 5 10 15 20

238U/206Pb 

136 Texas Tech University, Austin D Bertoch, August 2020

age = 260.95 ± 1.33 | 2.75 | 3.59 Ma (n=24) 207 206 ( Pb/ Pb)o= 0.8535 ± 0.0041 | 0.0084 | 0.0110 MSWD = 1.7, p(χ2) = 0.021

6DPSOH

0000●● ●

● Pb 206 Pb/

● 207

4000 ● ●

● ● ●

● ● ● 3000 ●

● ● 0.2 0.4 0.6 0.8 1.0 ● ●

● 2000 ● ●

● 1000 ● 500 ●

0 5 10 15 20 25

238 206 U/ Pb 

137 Texas Tech University, Austin D Bertoch, August 2020

● age = 274.45 ± 1.81 | 3.75 | 4.75 Ma (n=23) 207 206 ( Pb/ Pb)o= 0.84 ± 0 | 0 | 0 MSWD = 1.6, p(χ2) = 0.037

6DPSOH

00 ● Pb ● ● ● 206 Pb/ 207

● ● ● 3000 ● ● ● ●

● ● ● ●

● ● ● 2000 ●

● 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1000 ● 500 ●

5 101520

238U/206Pb 

138 Texas Tech University, Austin D Bertoch, August 2020

age = 299.75 ± 2.12 | 4.47 | 12.42 Ma (n=19) 207 206 ( Pb/ Pb)o= 0.716 ± 0.034 | 0.073 | 0.202 MSWD = 7.7, p(χ2) = 0

6DPSOH3UHGHSRVLWLRQDO$JH

00 ● Pb 206 Pb/ 207

000 ● ● ●

● ●

● ● ● ● ● 2000 ● ● ●

● ●

● ●

0.1 0.2 0.3 0.4 0.5 ● 1000 ● 500 ●

5 101520

238 206 U/ Pb 

139 Texas Tech University, Austin D Bertoch, August 2020

age = 265.32 ± 1.64 | 3.45 | 3.80 Ma (n=18) 207 206 ( Pb/ Pb)o= 0.84 ± 0 | 0 | 0 MSWD = 1.2, p(χ2) = 0.24

6DPSOH

00 ● ● Pb

● 206 Pb/

● 207 000 ●

● ●

● ● 3000 ● 0.2 0.4 0.6 0.8 1.0

● ● ● 2000 ● ● ● ● ● ● 1000 ● 500 ●

0 5 10 15 20 25

238 206 U/ Pb 

140 Texas Tech University, Austin D Bertoch, August 2020

age = 314.45 ± 2.44 | 5.76 | 13.14 Ma (n=8) 207 206 ( Pb/ Pb)o= 0.84 ± 0 | 0 | 0 MSWD = 5.2, p(χ2) = 6.1e−06

6DPSOH3UHGHSRVLWLRQDO$JH

● 000 ●

● Pb ●

● 206

Pb/ 1500 ● 207

● 1000 ●

0.06 0.08 0.10 0.12500 0.14 ●

5101520

238 206 U/ Pb 

141 Texas Tech University, Austin D Bertoch, August 2020

age = 272.46 ± 4.35 | 11.19 | 17.08 Ma (n=6) 207 206 ( Pb/ Pb)o= 0.84 ± 0 | 0 | 0 MSWD = 2.3, p(χ2) = 0.04

00 ● 6DPSOH

00 ●

● Pb ● 206

Pb/ 2500 ● 207

2000 ●

1500 ●

1000 ●

500 ● 0.05 0.10 0.15 0.20 0.25 0.30

5101520

238U/206Pb 

142 Texas Tech University, Austin D Bertoch, August 2020

age = 249.44 ± 4.79 | 10.34 | 15.78 Ma (n=14) 207 206 ( Pb/ Pb)o= 0.84 ± 0 | 0 | 0 MSWD = 2.3, p(χ2) = 0.0043

6DPSOH

● 00 ●

● Pb

206 ●

● Pb/

207 ● ● ● ●

● 3000 ●

2000 ● 0.1 0.2 0.3 0.4 0.5 0.6 1000 ● 500 ●

5 101520

238U/206Pb 

143 Texas Tech University, Austin D Bertoch, August 2020

age = 388.3 ± 14.1 | 44.8 | 64.9 Ma (n=4) 207 206 ( Pb/ Pb)o= 0.84 ± 0 | 0 | 0 MSWD = 2.1, p(χ2) = 0.098

6DPSOH3UHGHSRVLWLRQDO$JH

000 ● Pb 206 ● Pb/ 207

● 3000 ●

2000 ● 0.1 0.2 0.3 0.4 0.5 0.6 0.7 1000 ● 500 ●

2 4 6 8 10 12 14

238U/206Pb 

144 Texas Tech University, Austin D Bertoch, August 2020

age = 265.4 ± 12.7 | 27.1 | 41.4 Ma (n=17) 207 206 ( Pb/ Pb)o= 0.896 ± 0.027 | 0.058 | 0.088 MSWD = 2.3, p(χ2) = 0.0025

6DPSOH

00 ● ● ● ●

Pb ● ● ● ● 206

● Pb/

● 207 ●

000 ● ●

● 3000 ● 0.2 0.4 0.6 0.8 1.0 1.2 2000 ● ● 1000 500 ●

0 5 10 15 20

238U/206Pb 

145 Texas Tech University, Austin D Bertoch, August 2020

age = 267.96 ± 4.26 | 9.82 | 16.07 Ma (n=10) 207 206 ( Pb/ Pb)o= 0.8557 ± 0.0061 | 0.0140 | 0.0228 MSWD = 2.7, p(χ2) = 0.0062

50000● ● 6DPSOH 0.8 0.6

Pb ● 206

Pb/ ● 4000 ●

● 207 0.4 ●

3000 ● 0.2

2000 ●

1000 ● 500 ●

0 5 10 15

238 206 U/ Pb 

146 Texas Tech University, Austin D Bertoch, August 2020

concordia age = 254.01 ± 0.54 | 1.15 Ma (n=9) MSWD = 0.52 | 0.12 | 0.15 , p(χ2) = 0.47 | 1 | 1 0 ● :&IRU6DPSOH

600 ●

500 ●

400 ●

● Pb ● 300 ● ● ● ● 206 ● ●

● ● Pb/ 207 0.045 0.050 0.055 0.060

10 15 20 25

238 206 U/ Pb 

147 Texas Tech University, Austin D Bertoch, August 2020

concordia age = 254.23 ± 0.45 | 0.92 Ma (n=15) MSWD = 1.5 | 0.91 | 0.93 , p(χ2) = 0.22 | 0.6 | 0.57 0 ● :&6DPSOH

700 ●

600 ●

500 ●

● 400 ●

● ●

● ● ● ● ●● 300 ● ● ●

Pb ●

● 206

● Pb/ 207

● 0.035 0.040 0.045 0.050 0.055 0.060 0.065

10 15 20 25

238 206 U/ Pb 

148 Texas Tech University, Austin D Bertoch, August 2020

concordia age = 253.98 ± 0.36 | 0.72 | 1.64 Ma (n=27) ● MSWD = 0.74 | 2.3 | 2.3 , p(χ2) = 0.39 | 3e−07 | 3.8e−07

:&IRU6DPSOH

000 ● 0.07

800 ●

600 ● ● Pb 0.06 206

Pb/ 400 ● ●

207 ● ● ● ● ● ● ● ● ● ● ● ● ●● ● ● ●

● ● ●

0.05 ●

● 0.04

5 10152025

238U/206Pb 

149 Texas Tech University, Austin D Bertoch, August 2020

concordia age = 254.03 ± 0.37 | 0.76 Ma (n=21) ● MSWD = 1.8 | 0.47 | 0.5 , p(χ2) = 0.18 | 1 | 1

:&IRU6DPSOH 800 ●

700 ●

600 ●

● ● 500 ●

400 ●

Pb ● ● ● ● ● ● 206 300 ● ● ● ● ●

● ● ●

Pb/ ●

● 207

● 0.040 0.045 0.050 0.055 0.060 0.065

10 15 20 25

238U/206Pb 

150 Texas Tech University, Austin D Bertoch, August 2020

● concordia age = 254.05 ± 0.55 | 1.16 Ma (n=9) MSWD = 1.1 | 0.56 | 0.59 , p(χ2) = 0.28 | 0.92 | 0.9

600 ● :&IRU6DPSOH 0.060

500 ●

400 ● 0.055

Pb ● ● 300 ●

206 ● ● ●● ●

● Pb/ 207 0.050 0.045

10 15 20 25

238U/206Pb 

151 Texas Tech University, Austin D Bertoch, August 2020

concordia age = 253.84 ± 0.48 | 1.01 Ma (n=11) 2 ● MSWD = 2.2 | 0.27 | 0.36 , p(χ ) = 0.14 | 1 | 1

:&IRU6DPSOH 800 ●

700 ●

600 ●

500 ●

Pb 400 ● 206 ● ●●

Pb/ ● ● 300 ●

● 207 ● ● ● 0.040 0.045 0.050 0.055 0.060 0.065

10 15 20 25

238U/206Pb 

152 Texas Tech University, Austin D Bertoch, August 2020

concordia age = 254.05 ± 0.46 | 0.95 | 2.74 Ma (n=15) MSWD = 0.0083 | 3 | 2.9 , p(χ2) = 0.93 | 1.7e−07 | 2.9e−07 0 ● :&IRU6DPSOH 700 ●

600 ●

500 ●

400 ● ●

Pb ●

● 206 300 ● ● ● ●

● ● Pb/

● ● ● 207

● ● 0.040 0.045 0.050 0.055 0.060 0.065

10 15 20 25

238U/206Pb 

153 Texas Tech University, Austin D Bertoch, August 2020

concordia age = 253.85 ± 0.52 | 1.07 Ma (n=15) ● MSWD = 0.42 | 0.48 | 0.48 , p(χ2) = 0.52 | 0.99 | 0.99

:&IRU6DPSOH

1000 ● 0.07

800 ●

● Pb 600 ● 206 0.06 Pb/ 207 400 ● ●

● ●

● ●

● ● ● ●

● ● ●

● ● 0.05 0.04

5 10152025

238U/206Pb 

154 Texas Tech University, Austin D Bertoch, August 2020

● age = 64.18 ± 0.29 | 0.67 | 3.26 Ma (n=8) 207 206 ( Pb/ Pb)o= 0.74 ± 0 | 0 | 0 MSWD = 23, p(χ2) = 0

/RQJ3RLQWIRU6DPSOH ● ●

● Pb 00 ● 206 Pb/ 207

000 ●

1000 ● 500 ● 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0 102030405060

238U/206Pb 

155 Texas Tech University, Austin D Bertoch, August 2020

age = 64.31 ± 0.18 | 0.40 | 0.48 Ma (n=14) 207 206 ( Pb/ Pb)o= 0.74 ± 0 | 0 | 0 MSWD = 1.5, p(χ2) = 0.12

/RQJ3RLQWIRU6DPSOH ● ●

● ● ●

● ●

● ●●

● ●

00 ● Pb 206 Pb/ 207

000 ●

1000 ● 500 ● 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0 10203040506070

238U/206Pb 

156 Texas Tech University, Austin D Bertoch, August 2020

age = 67.46 ± 0.15 | 0.32 | 0.83 Ma (n=27) 207 206 ( Pb/ Pb)o= 0.74 ± 0 | 0 | 0 MSWD = 6.8, p(χ2) = 0

/RQJ3RLQWIRU6DPSOH

● ●

● ●

● ●

● ● ● ●

● ● ● ● ● ●● ● ● ● ● ● ●

● ● ●

00 ● Pb 206 Pb/ 207

000 ●

1000 ● 500 ● 0.05 0.10 0.15 0.20 0.25 0.30

0 10203040506070

238U/206Pb 

157 Texas Tech University, Austin D Bertoch, August 2020

age = 65.46 ± 0.19 | 0.41 | 0.77 Ma (n=19) 207 206 ( Pb/ Pb)o= 0.74 ± 0 | 0 | 0 MSWD = 3.6, p(χ2) = 3.8e−07

00 ● /RQJ3RLQWIRU6DPSOH ● 0.4

● ● ● ● ● ● ●

● 0.3

● ●

● Pb ● 206

Pb/ 00 ● 207 0.2

000 ● 0.1

1000 ● 500 ●

0 10203040506070

238U/206Pb 

158 Texas Tech University, Austin D Bertoch, August 2020

age = 65.66 ± 0.33 | 0.86 | 1.41 Ma (n=6) 207 206 ( Pb/ Pb)o= 0.74 ± 0 | 0 | 0 MSWD = 2.7, p(χ2) = 0.018

00 ● /RQJ3RLQWIRU6DPSOH ●

● ● ●

00 ● Pb 206 Pb/ 00 ● 207

000 ●

500 ●

1000 ● 500 ● 250 ● 0.05 0.10 0.15 0.20 0.25 0.30

0 10203040506070

238U/206Pb 

159 Texas Tech University, Austin D Bertoch, August 2020

age = 65.58 ± 1.66 | 4.06 | 12.74 Ma (n=8) 207 206 ( Pb/ Pb)o= 0.665 ± 0.023 | 0.057 | 0.180 χ2 ● MSWD = 9.8, p( ) = 7.5e−11

/RQJ3RLQWIRU6DPSOH

● ● ● Pb 206 00 ● Pb/ 207

000 ●

1000 ● 500 ● 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0 102030405060

238U/206Pb 

160 Texas Tech University, Austin D Bertoch, August 2020

● age = 63.78 ± 0.17 | 0.36 | 0.88 Ma (n=16) 207 206 ( Pb/ Pb)o= 0.74 ± 0 | 0 | 0 MSWD = 6.1, p(χ2) = 6.6e−13

● /RQJ3RLQWIRU6DPSOH ●

● ●

● ●

● ● ● ●

● ●

● ● ●

00 ● Pb 206 Pb/ 207

000 ●

1000 ● 500 ● 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0 10203040506070

238U/206Pb 

161 Texas Tech University, Austin D Bertoch, August 2020

± ● age = 63.79 0.21 | 0.45 | 1.13 Ma (n=16) 207 206 ( Pb/ Pb)o= 0.74 ± 0 | 0 | 0 MSWD = 6.2, p(χ2) = 2.2e−13

/RQJ3RLQWIRU6DPSOH

● ● ●

● ●● ● ●

● ● ●

● ● Pb 00 ● 206 Pb/ 207

000 ●

1000 ● 500 ● 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0 204060

238U/206Pb 

162 Texas Tech University, Austin D Bertoch, August 2020

age = 30.57 ± 2.71 | 6.64 | 10.04 Ma (n=8) 207 206 ( Pb/ Pb)o= 0.998 ± 0.043 | 0.106 | 0.161 MSWD = 2.3, p(χ2) = 0.033

'HFNHUIRU6DPSOH

● Pb

● 206

● Pb/ 207 0.20.40.60.81.0

1000 ● 200 ● 100 ●

0 20406080100

238U/206Pb 

163 Texas Tech University, Austin D Bertoch, August 2020

age = 19.78 ± 1.40 | 3.00 Ma (n=16) 207 206 ( Pb/ Pb)o= 1.000 ± 0.042 | 0.089 MSWD = 0.64, p(χ2) = 0.83

'HFNHUIRU6DPSOH

● ●

Pb ● 206

● Pb/ ●

● 207

● ● ●

500 ● 200 ● 50 ● 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0 50 100 150 200

238U/206Pb 

164 Texas Tech University, Austin D Bertoch, August 2020

● age = 20.25 ± 3.40 | 7.25 Ma (n=17) 207 206 ( Pb/ Pb)o= 0.930 ± 0.035 | 0.075 MSWD = 0.71, p(χ2) = 0.78

'HFNHUIRU6DPSOH

● ● ●

● ● ● ●

● Pb ●

● ● 206 ●

● ●

● Pb/ 207

1000 ● 200 ● 100 ● 50 ● 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 20 40 60 80 100 120

238 206 U/ Pb 

165 Texas Tech University, Austin D Bertoch, August 2020

age = 24.03 ± 4.06 | 8.94 | 9.23 Ma (n=13) 207 206 ( Pb/ Pb)o= 1.043 ± 0.063 | 0.138 | 0.142 MSWD = 1.1, p(χ2) = 0.39

2.0 'HFNHUIRU6DPSOH 1.5

● Pb ●

206 ● 1.0 Pb/

● ● ● ●

207 ●

● ● ● 0.5

500 ● 200 ● 50 ● 0.0

0 50 100 150  238U/206Pb

166 Texas Tech University, Austin D Bertoch, August 2020

age = 15.03 ± 2.52 | 5.41 | 6.24 Ma (n=16) 207 206 ( Pb/ Pb)o= 0.826 ± 0.066 | 0.142 | 0.164 MSWD = 1.3, p(χ2) = 0.18

'HFNHUIRU6DPSOH 8 .

60 ●

. ● ●

● ● ● ●

● ● ●

● Pb 206

● Pb/ 40 . 207 20 . 0

● 500 200 ● 50 ●

0 50 100 150 200

238 206 U/ Pb 

167