Petroleum Exploration Plays and Resource Estimates, 1989, Onshore United States-­ Region 3, Colorado Plateau and Basin and Range

Total Page:16

File Type:pdf, Size:1020Kb

Petroleum Exploration Plays and Resource Estimates, 1989, Onshore United States-­ Region 3, Colorado Plateau and Basin and Range U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Petroleum Exploration Plays and Resource Estimates, 1989, Onshore United States-­ Region 3, Colorado Plateau and Basin and Range By Richard B. Powers, Editor1 Open-File Report 93-248 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Denver, Colorado 1993 CONTENTS Introduction Richard B. Powers................................................................................................ 1 Commodities assessed.................................................................................................. 2 Areas of study.............................................................................................................. 2 Play discussion format................................................................................................. 5 Assessment procedures and methods........................................................................... 5 References cited........................................................................................................... 7 Glossary....................................................................................................................... 8 Region 3, Colorado Plateau and Basin and Range................................................................... 9 Geologic Framework Richard B. Powers.................................................................................................. 9 Eastern Basin and Range province (082) James A. Peterson.................................................................................................. 11 Western Basin and Range province (083) Harry E. Cook........................................................................................................ 17 Idaho-Snake River Downwarp province (084) James A. Peterson.................................................................................................. 21 Paradox Basin province (085) James A. Peterson.................................................................................................. 25 Uinta-Piceance-Eagle Basins province (086) Charles W. Spencer................................................................................................ 35 Park Basins province (087) Edwin K. Maughan................................................................................................ 45 San Juan Basin province (088) A. Curtis Huffman, Jr............................................................................................ 49 Albuquerque-Santa Fe-San Luis Rift Basins province (089) Cornelius M. Molenaar.......................................................................................... 66 Wyoming-Utah-Idaho Thrust Belt province (090) Richard B. Powers.................................................................................................. 74 Northern Arizona province (091) William C.Butler................................................................................................... 93 Contents-continued South-Central New Mexico province (092) William C.Butler................................................................................................... 99 Southern Arizona-Southwestern New Mexico province (093) William C. Butler................................................................................................... 103 Selected references................................................................................................................... 107 Table of resource estimates...................................................................................................... 109 FIGURES 1. Diagram showing petroleum resource classification ................................................... 3 2. Map showing petroleum regions assessed in this study......................................... 4 3. Index map of lower 48 States, showing provinces assessd in Region 3............................................................................................................. 10 4. Generalized stratigraphic column, Eastern Basin and Range province ................. 12 5. Map of Unconformity play ................................................................................... 14 6. Mapof Upper Plaeozoic play................................................................................ 16 7. Generalized stratigraphic column, Western Basin and Range province................ 18 8. Map of Dixie Valley play....................................................................................... 20 9. Generalized stratigraphic column, Idaho-Snake River Downwarp province........................................................................................... 22 10. Map of Idaho Lake Basin play................................................................................ 24 11. Generalized stratigraphic column, Paradox Basin province.................................. 26 12-15.Playmaps: 12. Carbonate Buildup ............................................................................................. 28 13. Older Paleozoic.................................................................................................. 30 14. Salt Interbeds...................................................................................................... 32 15. Salt Anticline...................................................................................................... 34 16. Generalized stratigraphic columns, Uinta-Piceance-Eagle Basins province.......... 36 11 Contents Continued 17-20. Play maps: 17. Wasateh-Green River Gas................................................................................. 38 18. Wasatch-Green River Oil.................................................................................. 40 19. Upper Cretaceous.............................................................................................. 42 20. Permian-Pennsylvanian..................................................................................... 44 21. Generalized stratigraphic column, Park Basins province ....................................... 46 22. Map of Mesozoic structure play.............................................................................. 48 23. Generalized stratigraphic column, San Juan Basin province.................................. 50 24-30. Play maps: 24. Mesaverde......................................................................................................... 52 25. Fruitland-Kirtland............................................................................................. 54 26. Pictured Cliffs................................................................................................... 56 27. Tocito-Gallup.................................................................................................... 58 28. Dakota............................................................................................................... 61 29. Pennsylvania!!................................................................................................... 63 30. Entrada.............................................................................................................. 65 31. Generalized stratigraphic column, Albuquerque-Santa Fe-San Luis Rift Basins province........................................................................................... 67 32-34. Play maps: 32. Albuquerque Basin............................................................................................ 69 33. Hagan-Santa Fe Embayment............................................................................. 71 34. San Juan Sag ..................................................................................................... 73 35. Generalized stratigraphic column, Wyoming-Utah-Idaho Thrust Belt province........................................................................................... 75 in Contents Continued 36-41. Play maps: 36. Moxa Arch Extension ....................................................................................... 78 37. Crawford-Meade Thrusts.................................................................................. 81 38. Northern Thrusts............................................................................................... 83 39. Absaroka Thrust Gas, Absaroka Thrust Oil...................................................... 86 40. Hogsback Thrust............................................................................................... 89 41. Cretaceous Stratigraphic ................................................................................... 92 42. Generalized stratigraphic columns, Northern Arizona province ............................ 94 43. Map of Defiance Uplift play................................................................................... 95 44. Map of Oraibi Trough play..................................................................................... 98 45. Generalized stratigraphic columns, South-Central New Mexico province.............................................................................................................. 100 46. Map of Orogrande Basin play................................................................................. 102 47. Generalized stratigraphic column, Southern Arizona - Southwestern
Recommended publications
  • Threatened, Endangered, Candidate & Proposed Plant Species of Utah
    TECHNICAL NOTE USDA - Natural Resources Conservation Service Boise, Idaho and Salt Lake City, Utah TN PLANT MATERIALS NO. 52 MARCH 2011 THREATENED, ENDANGERED, CANDIDATE & PROPOSED PLANT SPECIES OF UTAH Derek Tilley, Agronomist, NRCS, Aberdeen, Idaho Loren St. John, PMC Team Leader, NRCS, Aberdeen, Idaho Dan Ogle, Plant Materials Specialist, NRCS, Boise, Idaho Casey Burns, State Biologist, NRCS, Salt Lake City, Utah Last Chance Townsendia (Townsendia aprica). Photo by Megan Robinson. This technical note identifies the current threatened, endangered, candidate and proposed plant species listed by the U.S.D.I. Fish and Wildlife Service (USDI FWS) in Utah. Review your county list of threatened and endangered species and the Utah Division of Wildlife Resources Conservation Data Center (CDC) GIS T&E database to see if any of these species have been identified in your area of work. Additional information on these listed species can be found on the USDI FWS web site under “endangered species”. Consideration of these species during the planning process and determination of potential impacts related to scheduled work will help in the conservation of these rare plants. Contact your Plant Material Specialist, Plant Materials Center, State Biologist and Area Biologist for additional guidance on identification of these plants and NRCS responsibilities related to the Endangered Species Act. 2 Table of Contents Map of Utah Threatened, Endangered and Candidate Plant Species 4 Threatened & Endangered Species Profiles Arctomecon humilis Dwarf Bear-poppy ARHU3 6 Asclepias welshii Welsh’s Milkweed ASWE3 8 Astragalus ampullarioides Shivwits Milkvetch ASAM14 10 Astragalus desereticus Deseret Milkvetch ASDE2 12 Astragalus holmgreniorum Holmgren Milkvetch ASHO5 14 Astragalus limnocharis var.
    [Show full text]
  • Permian Basin, West Texas and Southeastern New Mexico
    Report of Investigations No. 201 Stratigraphic Analysis of the Upper Devonian Woodford Formation, Permian Basin, West Texas and Southeastern New Mexico John B. Comer* *Current address Indiana Geological Survey Bloomington, Indiana 47405 1991 Bureau of Economic Geology • W. L. Fisher, Director The University of Texas at Austin • Austin, Texas 78713-7508 Contents Abstract ..............................................................................................................................1 Introduction ..................................................................................................................... 1 Methods .............................................................................................................................3 Stratigraphy .....................................................................................................................5 Nomenclature ...................................................................................................................5 Age and Correlation ........................................................................................................6 Previous Work .................................................................................................................6 Western Outcrop Belt ......................................................................................................6 Central Texas ...................................................................................................................7 Northeastern Oklahoma
    [Show full text]
  • Newell C. Remington
    A HISTORY OF THE GILSONITE INDUSTRY by NEWELL C. REMINGTON m A HISTORY OF THE GILSONITE INDUSTRY by Newell C. Remington This paper was submitted by the author in unpublished form in April, 1959, to the Department of History, University of Utah, in partial fulfillment of the re­ quirements for a Master of Science Degree. Typed by Pauline Love and Lithographed by Robert L. Jensen Salt Lake City, Utah Digital Im age©2006, Newell C. Remington. All rights reserved. Copyright Newell C. Remington 1959 Manufactured in the United States of America Digital Im age©2006, Newell C. Remington. All rights reserved. DEDICATION --To the Indomitable miners who, with crude imple­ ments and disregard for hazards and physical discomfort, helped to develop a prosperous, modern gilsonite industry. Digital Im age©2006, Newell C. Remington. All rights reserved. PREFACE In 1957 the American Gilsonite Company opened a revolu­ tionary refinery near Grand Junction, Colorado, which had cost them $16,000,000 to build, and began reducing the gilsonite--a solid hydrocarbon--to high-grade gasoline and pure carbon-coke at the rate of about 700 tons per day. Just as incredible is the fact that gilsonite was and is conveyed from Bonanza, Utah, across the precipitous Book Cliffs to the refinery through a pipeline. The opening of this magnificent plant was eighty-eight years removed from the year 1869 when the blacksmith of the Whiterocks Indian Agency attempted to b u m gilsonite as coal in his forge with rather dreadful results. During the interval so many human events occurred in relation to gilsonite--a rare bitumen closely related to grahamite and glance pitch--that it was felt to be an adequate and deserving topic for thorough historical treatment.
    [Show full text]
  • Non-Proprietary Resume -- 1993
    PROFESSIONAL VITAE REX D. COLE, Ph.D., P.G. Professor of Geology Colorado Mesa University February, 2014 EDUCATION Ph.D. in Geology (1975) University of Utah, Salt Lake City, UT Advisors: Dr. M.D. Picard and Dr. M.L. Jensen B.S. in Geology (1970) Colorado State University, Fort Collins, CO A.S. in Geology (1968) Mesa College, Grand Junction, CO High School Diploma (1966) Delta High School, Delta, CO PROFESSIONAL REGISTRATION Registered Professional Geologist (Wyoming) since 1992; Number PG-463 PROFESSIONAL EXPERIENCE 2011- Professor of Geology; Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO; also Geology Program Coordinator from 2009-2013. 1999-11 Professor of Geology; Department of Physical and Environmental Sciences, Mesa State College, Grand Junction, CO; also Geology Program Coordinator. 1995-99 Associate Professor of Geology; Department of Physical and Environmental Sciences, Mesa State College, Grand Junction, CO. 1983-95 Sr. Advising Geologist; Unocal Corp., Production and Development Technology Group, Brea, CA. 1982- Consulting Geologist; R.D. Cole and Associates, Grand Junction, CO. 1980-82 Manager of Geotechnical Operations; Multi Mineral Corp., Grand Junction, CO. 1978-80 Staff Geoscientist IV; Bendix Field Engineering Corporation, Grand Junction, CO. 1975-77 Assistant Professor of Geology; Department of Geology, Southern Illinois University, Carbondale, IL. 1973-75 Exploration Geologist; American Smelting and Refining Company, Salt Lake City, UT (part time). 1970-73 Teaching Fellow and Research Assistant; Department of Geology and Geophysics, University of Utah, Salt Lake City, UT (academic months). 1971 Exploration Geologist; Inspiration Development Company, Spokane, WA (summer). 1970 Exploration Geologist; Duval Corporation, Salt Lake City, UT (summer).
    [Show full text]
  • Oil and Gas Discovery Wells Drilled in New Mexico in 1981
    completedas oil producersand 448completed gas in as gasproducers for a successrate of 81.890. Oiland discoverywells drilled On the Bravodome in northeastNe* Mexico, 140 wells were completedas carbon-dioxide NewMexico in 1981 producers.In the SanJuan Basin ofnorthwest New Mexico, 1,379wells were completed; 218 byR. F. Broadhea4 PetroleumGeologist, New Mexico Bureauof Minesand Mineral Resources, of theseare oil wellsand 1,128are gas wells, Socorro,New Mexico calculatingto a successrate of 97.690.In the not-yet-productiveRaton Basin of Colfax Introduction completedin New Mexico in l98l; this setsa Countyand HaganBasin of SantaFe County, Drilling for oil and gas in New Mexico new recordfor completionsand surpassesthe wildcatsencountered promising shows of oil reacheda record high in 1981.Statistics ob- old record of 2,218 wells set in 1980.In the and gas from Cretaceousrocks. A record tainedfrom theNew MexicoOil Conservation Permian Basin of southeastNew Mexico, 14,076,000ft of well weredrilled in New Mex- Division indicatethat there were 2.867wells 1,348 wells were completedwith 655 wells ico in 1981, surpassingthe old record of I 1,278,000ft setin 1980.The averagedepth of wellsdrilled in l98l is 4,910ft, 175ft lessthan \ ,t8 Toos I theaverage depth of wellsdrilled in 1980. Rolon Fig. I showsthe locationsof the significant ao Mexico in 1981;table I Bosin wells drilled in New summarizesthe significantwildcat discoveries and table2 summarizesthe significantwildcat dry holes.For purposesof this paper,a sig- nificant wildcat discoveryis definedas a well in which commercialamounts of oil or gas I bonlo I from a formation have beendiscovered at a Fel distanceof more than 5 mi from the limits of n with Mrguel r previouslydiscovered fields commercial productionfrom that formation.A significant /) r wildcatdry hole is definedas a well drilled in '" Jt an unproductivebasil or part of a basinthat Acomo t, encounteredan encouragingshow of hydro- o Bosin carbonsbefore being abandoned.
    [Show full text]
  • Characteristics of the Boundary Between the Castile and Salado
    Gharacteristicsofthe boundary between the Castile and SaladoFormations near the western edge of the Delaware Basin, southeasternNew Mexico by BethM. Madsenand 1mer B. Raup,U.S. Geological Survey, Box 25046, MS-939, Denver, C0 80225 Abstract 1050 posited in the DelawareBasin of southeast New Mexico and west Texasduring Late Per- Permian The contact between the Upper mian (Ochoan)time. In early investigations Castile and Salado Formations throughout and SaladoFormations were un- the Delaware Basin, southeastNew Mexico /-a(run,ouo the Castile differentiated, and the two formations were and west Texas,has been difficult to define EDDY / aou^r" because of facies chanqes from the basin called Castile by Richardson (1904).Cart- center to the western idge. Petrographic wright (1930)divided the sequenceinto the studies of core from a Phillips Petroleum i .,/ upper and lower parts of the Castileon the Company well, drilled in the westernDela- -r---| ,' . NEW MEXTCO basisof lithology and arealdistribution. Lang ware Basin, indicate that there are maior (1935) the name "Saladohalite" Perotf,um introduced mineralogical and textural differences be- ,/ rot company "n for the upper part of the sequence,and he and Salado Formations. / core hole'NM 3170'1 tween the Castile the term Castile for the lower part The Castile is primarilv laminated anhv- retained of the drite with calciteand dolomite.The Salado ( of the sequence.Lang placed the base DELAWARE BASIN Formation is also primarily anhydrite at the SaladoFormation at the base of potassium location of this corehole, but with abundant (polyhalite) mineralization. This proved to layers of magnesite.This magnesiteindi- be an unreliable marker becausethe zone of catesan increaseof magnesiumenrichment mineralization occupies different strati- in the basin brines, which later resulted in graphic positions in different areas.
    [Show full text]
  • UINTA-PICEANCE BASIN PROVINCE (020) by Charles W
    UINTA-PICEANCE BASIN PROVINCE (020) By Charles W. Spencer INTRODUCTION This province trends west-east, extending from the thrust belt in north-central Utah, on the west, to the southern Park Range and Sawatch Uplift in northwestern Colorado on the east. The northern boundary is defined roughly by the Uinta Mountain Uplift, and the southern boundary is located along a line north of the axis of the Uncompahgre Uplift. The province covers an area of about 40,000 sq mi and encompasses the Uinta, Piceance, and Eagle Basins. Sedimentary rocks in the basin range in age from Cambrian to Tertiary. Spencer and Wilson (1988) provided a summary of the stratigraphy and petroleum geology of the province. The Uinta and Piceance Basins were formed mainly in Tertiary time. The Eagle Basin is a structural feature east of the Piceance Basin and coincides in part with the Pennsylvanian-age Eagle Evaporite Basin, although the present-day Eagle Basin is much smaller than the paleodepositional basin. Numerous oil and gas fields have been discovered in the Uinta and Piceance basins; however, there have been no fields discovered in the Eagle structural basin. The lack of exploration success in the Eagle Basin is attributed to very thermal maturity levels in source rocks (Johnson and Nuccio, 1993) and the generally poor quality of reservoirs, and although gas might be present, the expected volume is small. The Uinta Basin of Utah is about 120 mi long and is bounded on the west by the thrust belt and on the east by the Douglas Creek Arch. It is nearly 100 mi wide and bounded on the north side by the Uinta Mountains Uplift.
    [Show full text]
  • Tectonic Evolution of Western Colorado and Eastern Utah D
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/32 Tectonic evolution of western Colorado and eastern Utah D. L. Baars and G. M. Stevenson, 1981, pp. 105-112 in: Western Slope (Western Colorado), Epis, R. C.; Callender, J. F.; [eds.], New Mexico Geological Society 32nd Annual Fall Field Conference Guidebook, 337 p. This is one of many related papers that were included in the 1981 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • Birds of the Upper Colorado River Basin
    Brigham Young University Science Bulletin, Biological Series Volume 9 Number 2 Article 1 12-1967 Birds of the Upper Colorado River Basin C. Lynn Hayward Department of Zoology and Entomology, Brigham Young University, Provo, Utah Follow this and additional works at: https://scholarsarchive.byu.edu/byuscib Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Hayward, C. Lynn (1967) "Birds of the Upper Colorado River Basin," Brigham Young University Science Bulletin, Biological Series: Vol. 9 : No. 2 , Article 1. Available at: https://scholarsarchive.byu.edu/byuscib/vol9/iss2/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Brigham Young University Science Bulletin, Biological Series by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. $ NA-<p£< °1 Brigham Young University Science Bulletin BIRDS OF THE UPPER COLORADO RIVER BASIN US. COM P. ZOGL. LIBRARY MAR2 2«J*8 "Y HARV£ UNIVEh C. LYNN HAYWARD BIOLOGICAL SERIES — VOLUME IX, NUMBER 2 DECEMBER, 1967 BRSGHAM YOUNG UNIVERSITY SCIENCE BULLETIN BIOLOGICAL SERIES Editor: Dohald M. Allred, Department of Zoology and Entomology, Brigham Young University, Provo, Utah Si Associate Editor: Earl M. Chbistensen, Department of Botany, Brigham Young University, Provo, Utah Members of the Editorial Board: David L. Hanks, Botany J. V. Beck, Bacteriology Wilmer W. Tanner, Zoology, Chairman of the Board Stanley Welsh, Botany W. Derby Laws, Agronomy C. Lynn Hayward, Zoology Ex officio Members: Rudger H. Walker,1 Dean, College of Biological and Agricultural ScienceSciences Ernest L.
    [Show full text]
  • Exxon Mobil Corporation, Darren W
    Case 3:21-cv-00194-G Document 1 Filed 01/28/21 Page 1 of 18 PageID 1 UNITED STATES DISTRICT COURT NORTHERN DISTRICT OF TEXAS MENDI YOSHIKAWA, Individually and Case No. 3:21-cv-194 On Behalf of All Others Similarly Situated, CLASS ACTION COMPLAINT Plaintiff, v. JURY TRIAL DEMANDED EXXON MOBIL CORPORATION, DARREN W. WOODS, ANDREW P. SWIGER, and DAVID S. ROSENTHAL, Defendants. Plaintiff Mendi Yoshikawa (“Plaintiff”), individually and on behalf of all others similarly situated, by Plaintiff’s undersigned attorneys, for Plaintiff’s complaint against Defendants, alleges the following based upon personal knowledge as to Plaintiff and Plaintiff’s own acts, and information and belief as to all other matters, based upon, inter alia, the investigation conducted by and through Plaintiff’s attorneys, which included, among other things, a review of the Defendants’ public documents, conference calls and announcements made by Defendants, United States (“U.S.”) Securities and Exchange Commission (“SEC”) filings, wire and press releases published by and regarding Exxon Mobil Corporation (“Exxon” or the “Company”), analysts’ reports and advisories about the Company, and information readily obtainable on the Internet. Plaintiff believes that substantial additional evidentiary support will exist for the allegations set forth herein after a reasonable opportunity for discovery. NATURE OF THE ACTION 1. This is a federal securities class action on behalf of a class consisting of all persons and entities other than Defendants that purchased or otherwise acquired Exxon securities between 1 Case 3:21-cv-00194-G Document 1 Filed 01/28/21 Page 2 of 18 PageID 2 November 6, 2019 and January 14, 2021, both dates inclusive (the “Class Period”), seeking to recover damages caused by Defendants’ violations of the federal securities laws and to pursue remedies under Sections 10(b) and 20(a) of the Securities Exchange Act of 1934 (the “Exchange Act”) and Rule 10b-5 promulgated thereunder, against the Company and certain of its top officials.
    [Show full text]
  • Capitan Reef Complex Structure and Stratigraphy
    Capitan Reef Complex Structure and Stratigraphy Report by Allan Standen, P.G. Steve Finch, P.G. Randy Williams, P.G., Beronica Lee-Brand, P.G. Assisted by Paul Kirby Texas Water Development Board Contract Number 0804830794 September 2009 TABLE OF CONTENTS 1. Executive summary....................................................................................................................1 2. Introduction................................................................................................................................2 3. Study area geology.....................................................................................................................4 3.1 Stratigraphy ........................................................................................................................4 3.1.1 Bone Spring Limestone...........................................................................................9 3.1.2 San Andres Formation ............................................................................................9 3.1.3 Delaware Mountain Group .....................................................................................9 3.1.4 Capitan Reef Complex..........................................................................................10 3.1.5 Artesia Group........................................................................................................11 3.1.6 Castile and Salado Formations..............................................................................11 3.1.7 Rustler Formation
    [Show full text]
  • Orogen Proximal Sedimentation in the Permian Foreland Basin GEOSPHERE
    Research Paper GEOSPHERE Orogen proximal sedimentation in the Permian foreland basin Graham M. Soto-Kerans1,2, Daniel F. Stockli1, Xavier Janson2, Timothy F. Lawton2, and Jacob A. Covault2 1Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, USA 2Bureau of Economic Geology, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78758, USA GEOSPHERE, v. 16, no. 2 https://doi.org/10.1130/GES02108.1 ABSTRACT ■ INTRODUCTION 15 figures; 1 table; 1 set of supplemental files The sedimentary fill of peripheral foreland basins has the potential to pre- Major tectonic and geologic events, such as ocean closure and continen- serve a record of the processes of ocean closure and continental collision, as tal collision, and the evolution of associated sediment-routing systems, are CORRESPONDENCE: well as the long-term (i.e., 107–108 yr) sediment-routing evolution associated recorded within the sedimentary fill of foreland basins (Jordan et al., 1988; [email protected] with these processes; however, the detrital record of these deep-time tec- DeCelles and Giles, 1996; Ingersoll, 2012). Detrital zircon (D2) U-Pb geochronol- CITATION: Soto-Kerans, G.M., Stockli, D.F., Janson, tonic processes and the sedimentary response have rarely been documented ogy is a powerful provenance analysis tool for elucidating hinterland tectonic X., Lawton, T.F., and Covault, J.A., 2020, Orogen proxi- during the final stages of supercontinent assembly. The stratigraphy within and erosional processes and the associated depositional record (Dickinson, mal sedimentation in the Permian foreland basin: Geo- the southern margin of the Delaware Basin and Marathon fold and thrust 1988; Fedo et al., 2003; Gehrels, 2012; Gehrels, 2014).
    [Show full text]