Monitoring Lesser- Known Biodiversity

Total Page:16

File Type:pdf, Size:1020Kb

Monitoring Lesser- Known Biodiversity ZSL SCIENCE REVIEW | IMPACT AREAS Monitoring lesser- IMPACT known biodiversity AREA Determining the status of the world’s species is important to track progress towards global environmental targets – and IoZ leads the way. IoZ is at the forefront of monitoring global in putting reptile conservation in the biodiversity and developing scientifically international spotlight. robust indicators to track progress towards Our recent work focused on predicting targets such as the Aichi Targets of the extinction risk by investigating species- Convention on Biological Diversity, assessing specific factors that correlate with conservation actions and measuring human extinction risk, and by employing novel impact on biodiversity. machine-learning techniques to determine Monitoring species with very few the true extinction risk of species currently data, such as less well-studied reptiles, listed as Data Deficient. In addition to reptile invertebrates and plants, is a challenge for species with a smaller range size having science. Over recent years, IoZ has increased a higher risk of extinction, our research our knowledge of the extinction risk of found that at smaller range sizes, habitat reptiles, freshwater molluscs, dung beetles specialisation and accessibility of a species Main image: reptiles and crayfish, among others. Reptiles provide range to humans became important in the conservation us with an excellent group for testing how predictors of extinction risk (Böhm et al. spotlight: lyre head lizard to assess and monitor species 2016a). This suggests that (Lyriocephalus scutatus) trends when data are scarce, extinction risk may be Inset left: Usambara eyelash viper (Atheris ceratophora), data deficiency is high, and predicted by models based Vulnerable on the IUCN Red species groups are highly on range size, coupled List due to restricted range in the montane rainforests species-rich, making with other key of Tanzania, an area complete assessments factors, so as to affected by high rates of deforestation; the species is of the whole discriminate between also assessed to be highly group time- and threatened and sensitive to climate change resource-consuming. non-threatened range- restricted species. Extinction risk IoZ researchers estimate extinction risk not only for Data in reptiles and collaborators also Deficient species, but also for previously In partnership with the investigated the true status unassessed ones. International Union for of Data Deficient species using Conservation of Nature (IUCN), IoZ more complex models, specifically Measuring range for researchers are developing and refining the machine-learning techniques. Essentially, extinction risk assessments Sampled Red List Index. This indicator relies we trained a computer to discriminate For many lesser-known species, for which on repeated assessments of the extinction between threatened and non-threatened we lack estimates of population trends over risk for a random sample of 1,500 species, species by deriving decisions based on time, range size becomes an important to assess status and trends in the extinction species-specific data (for example, biological criterion for assessing extinction risk under risk of megadiverse species groups. Previous traits such as size and longevity, and the IUCN Red List Categories and Criteria. work using this sampled approach, led by IoZ environmental factors such as climate and These criteria arguably provide the most researchers with help from more than 200 human impact). We found that 19% of Data comprehensive and scientifically robust reptile experts, estimated that one in five Deficient reptiles are likely to be threatened system for assessing species extinction risk. reptile species is threatened with extinction. with extinction (Bland and Böhm, 2016). IoZ has been involved in the development This research has been instrumental Therefore, our models may provide a timely of the current IUCN Red List criteria since and efficient way to dramatically increase their inception in 2001. In the past year, our knowledge of the extinction risk of work primarily focused on the effects Learn more about previously under-studied species groups. of inconsistently estimating extent of the Red List at We are now refining and testing these occurrence (EOO), which is a key measure iucnredlist.org models on other species groups, so we can of extinction risk. This work highlighted that, 10 | SCIENCE REVIEW 2015/2016 | zsl.org IoZ research indicated that 22% of reptile species were highly vulnerable to while a one-time downlisting of hundreds Unit to refine climate climate change more robust, and of species may be required (as extinction change vulnerability deliver climate change risk may be lower for these species than assessments. These vulnerability assessments previously estimated), estimating EOO as assessments use species- for other species groups, a strict minimum convex polygon – as in specific trait and environmental particularly invertebrates. IUCN Red List guidance – ultimately ensures data relating to climate change to consistency across assessments and realigns assess the vulnerability of species to climate the calculation of EOO with the theoretical change. While such assessments have been basis on which the metric was founded carried out globally for better-known species References Bland, LM and Böhm, M (2016) Overcoming data deficiency (Joppa et al. 2015). groups, IoZ researchers published a first in reptiles. Biological Conservation. DOI: 10.1016/j.biocon. assessment of climate change vulnerability 2016.05.018 Emerging threats from climate change for a sampled assessment of nearly 1,500 Böhm, M, Williams, R, Bramhall, HR, McMillan, KM, Davidson, AD, Garcia, A, Bland, LM, Bielby, J and Collen, B (2016a) Correlates of Climate change represents an often slow- reptile species. Our results indicate that extinction risk in squamate reptiles: the relative importance of biology, geography, threat and range size. Global Ecology and acting threat, potentially affecting species 22% of reptile species were highly vulnerable Biogeography. DOI: 10.1111/geb.12419 over longer time periods than those to climate change (Böhm et al. 2016b). Böhm, M, Cook, D, Ma, H, Davidson, AD, García, A, Tapley, B, considered in IUCN Red List assessments. Overlap between climate change-vulnerable Pearce-Kelly, P and Carr, J (2016b) Hot and bothered: using trait-based approaches to assess climate change vulnerability Climate change may therefore not feature species and species threatened on the in reptiles. Biological Conservation. DOI:10.1016/j. as prominently on the Red List as other IUCN Red List is very limited, suggesting biocon.2016.06.002 Joppa, LN, Butchart, SHM, Hoffmann, M, Bachman, SP, Akçakaya, threats, such as habitat loss, invasive that climate change will present new and HR, Moat, JF, Böhm, M, Holland, RA, Newton, A, Polidoro, B and species and pollution. IoZ researchers are additional conservation priorities. Work is Hughes, A (2015) Impact of alternative metrics on estimates of extent of occurrence for extinction risk assessment. Conservation working with the IUCN Climate Change ongoing to make the assessment process Biology 30(2): 362-370. DOI: 10.1111/cobi.12591 zsl.org | SCIENCE REVIEW 2015/2016 | 11.
Recommended publications
  • The Herpetological Journal
    Volume 8, Number 3 July 1998 ISSN 0268-0130 THE HERPETOLOGICAL JOURNAL Published by the Indexed in BRITISH HERPETOLOGICAL SOCIETY Current Contents Th e Herpetological Jo urnal is published quarterly by the British Herpetological Society and is issued freeto members. Articles are listed in Current Awareness in Biological Sciences, Current Contents, Science Citation Index and Zoological Record. Applications to purchase copies and/or for details of membership should be made to the Hon. Secretary, British Herpetological Society, The Zoological Society of London, Regent's Park, London NWl 4RY, UK. Instructions to authors are printed inside the back cover. All contributions should be addressed to the Editor (address below). Editor: Richard A. Griffiths, The Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent CT2 7NJ, UK Associate Editor: Leigh Gillett Editorial Board: Pim Arntzen (Oporto) Donald Broadley (Zimbabwe) John Cooper (Wellingborough) John Davenport (Millport) Andrew Gardner (Oman) Tim Halliday (Milton Keynes) Michael Klemens (New York) Colin McCarthy (London) Andrew Milner (London) Henk Strijbosch (Nijmegen) Richard Tinsley (Bristol) BRITISH HERPETOLOGICAL SOCIETY Copyright It is a fundamental condition that submitted manuscripts have not been published and will not be simultaneously submitted or published elsewhere. By submitting a manuscript, the authors agree that the copyright for their article is transferred to the publisher if and when the article is accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and photographic reproductions. Permission for any such activities must be sought in advance from the Editor. ADVERTISEMENTS The Herpetological Journal accepts advertisements subject to approval of contents by the Editor, to whom enquiries should be addressed.
    [Show full text]
  • Australasian Journal of Herpetology ISSN 1836-5698 (Print)1 Issue 12, 30 April 2012 ISSN 1836-5779 (Online) Australasian Journal of Herpetology
    Australasian Journal of Herpetology ISSN 1836-5698 (Print)1 Issue 12, 30 April 2012 ISSN 1836-5779 (Online) Australasian Journal of Herpetology Hoser 2012 - Australasian Journal of Herpetology 9:1-64. Available online at www.herp.net Contents on pageCopyright- 2. Kotabi Publishing - All rights reserved 2 Australasian Journal of Herpetology Issue 12, 30 April 2012 Australasian Journal of Herpetology CONTENTS ISSN 1836-5698 (Print) ISSN 1836-5779 (Online) A New Genus of Coral Snake from Japan (Serpentes:Elapidae). Raymond T. Hoser, 3-5. A revision of the Asian Pitvipers, referred to the genus Cryptelytrops Cope, 1860, with the creation of a new genus Adelynhoserea to accommodate six divergent species (Serpentes:Viperidae:Crotalinae). Raymond T. Hoser, 6-8. A division of the South-east Asian Ratsnake genus Coelognathus (Serpentes: Colubridae). Raymond T. Hoser, 9-11. A new genus of Asian Snail-eating Snake (Serpentes:Pareatidae). Raymond T. Hoser, 10-12-15. The dissolution of the genus Rhadinophis Vogt, 1922 (Sepentes:Colubrinae). Raymond T. Hoser, 16-17. Three new species of Stegonotus from New Guinea (Serpentes: Colubridae). Raymond T. Hoser, 18-22. A new genus and new subgenus of snakes from the South African region (Serpentes: Colubridae). Raymond T. Hoser, 23-25. A division of the African Genus Psammophis Boie, 1825 into 4 genera and four further subgenera (Serpentes: Psammophiinae). Raymond T. Hoser, 26-31. A division of the African Tree Viper genus Atheris Cope, 1860 into four subgenera (Serpentes:Viperidae). Raymond T. Hoser, 32-35. A new Subgenus of Giant Snakes (Anaconda) from South America (Serpentes: Boidae). Raymond T. Hoser, 36-39.
    [Show full text]
  • A Division of the African Tree Viper Genus Atheris Cope, 1860 Into Four Subgenera (Serpentes:Viperidae)
    32 Australasian Journal of Herpetology Australasian Journal of Herpetology 12:32-35. ISSN 1836-5698 (Print) ISSN 1836-5779 (Online) Published 30 April 2012. A division of the African Tree Viper genus Atheris Cope, 1860 into four subgenera (Serpentes:Viperidae). Raymond T. Hoser 488 Park Road, Park Orchards, Victoria, 3114, Australia. Phone: +61 3 9812 3322 Fax: 9812 3355 E-mail: [email protected] Received 15 February 2012, Accepted 2 April 2012, Published 30 April 2012. ABSTRACT The African Tree Viper genus Atheris has been of interest to taxonomists in recent years. Significant was the removal of the species superciliaris to the newly created monotypic genus Proatheris and the species hindii to the monotypic genus Montatheris both by Broadley in 1996 gaining widespread acceptance. Marx and Rabb (1965), erected a monotypic genus Adenorhinos for the species barbouri, but this designation has not gained widespread support from other herpetologists, with a number of recent classifications continuing to place the taxon within Atheris (e.g. Menegon et. al. 2011). Phylogenetic studies of the genus Atheris senso lato using molecular methods (e.g. Pyron et. al. 2011) have upheld the validity of the creation of the monotypic genera Proatheris and Montatheris by Broadley. These studies have also shown there to be at least four well-defined groups of species within the genus Atheris as recognized in early 2012, though not as divergent as seen for the snakes placed within Proatheris and Montatheris. As a result, the genus is now subdivided into subgenera using available names for three, with the fourth one being named Woolfvipera subgen.
    [Show full text]
  • Eleutherodactylus Ridens (Pygmy Rainfrog) Predation Tobias Eisenberg
    Sacred Heart University DigitalCommons@SHU Biology Faculty Publications Biology 9-2007 Eleutherodactylus ridens (Pygmy Rainfrog) Predation Tobias Eisenberg Twan Leenders Sacred Heart University Follow this and additional works at: https://digitalcommons.sacredheart.edu/bio_fac Part of the Population Biology Commons, and the Zoology Commons Recommended Citation Eisenberg, T. & Leenders, T. (2007). Eleutherodactylus ridens (Pygmy Rainfrog) predation. Herpetological Review, 38(3), 323. This Article is brought to you for free and open access by the Biology at DigitalCommons@SHU. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of DigitalCommons@SHU. For more information, please contact [email protected], [email protected]. SSAR Officers (2007) HERPETOLOGICAL REVIEW President The Quarterly News-Journal of the Society for the Study of Amphibians and Reptiles ROY MCDIARMID USGS Patuxent Wildlife Research Center Editor Managing Editor National Museum of Natural History ROBERT W. HANSEN THOMAS F. TYNING Washington, DC 20560, USA 16333 Deer Path Lane Berkshire Community College Clovis, California 93619-9735, USA 1350 West Street President-elect [email protected] Pittsfield, Massachusetts 01201, USA BRIAN CROTHER [email protected] Department of Biological Sciences Southeastern Louisiana University Associate Editors Hammond, Louisiana 70402, USA ROBERT E. ESPINOZA CHRISTOPHER A. PHILLIPS DEANNA H. OLSON California State University, Northridge Illinois Natural History Survey USDA Forestry Science Lab Secretary MARION R. PREEST ROBERT N. REED MICHAEL S. GRACE R. BRENT THOMAS Joint Science Department USGS Fort Collins Science Center Florida Institute of Technology Emporia State University The Claremont Colleges Claremont, California 91711, USA EMILY N. TAYLOR GUNTHER KÖHLER MEREDITH J. MAHONEY California Polytechnic State University Forschungsinstitut und Illinois State Museum Naturmuseum Senckenberg Treasurer KIRSTEN E.
    [Show full text]
  • WILDLIFE in a CHANGING WORLD an Analysis of the 2008 IUCN Red List of Threatened Species™
    WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ Edited by Jean-Christophe Vié, Craig Hilton-Taylor and Simon N. Stuart coberta.indd 1 07/07/2009 9:02:47 WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ first_pages.indd I 13/07/2009 11:27:01 first_pages.indd II 13/07/2009 11:27:07 WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ Edited by Jean-Christophe Vié, Craig Hilton-Taylor and Simon N. Stuart first_pages.indd III 13/07/2009 11:27:07 The designation of geographical entities in this book, and the presentation of the material, do not imply the expressions of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily refl ect those of IUCN. This publication has been made possible in part by funding from the French Ministry of Foreign and European Affairs. Published by: IUCN, Gland, Switzerland Red List logo: © 2008 Copyright: © 2009 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Vié, J.-C., Hilton-Taylor, C.
    [Show full text]
  • Eastern Afromontane Biodiversity Hotspot
    Ecosystem Profile EASTERN AFROMONTANE BIODIVERSITY HOTSPOT FINAL VERSION 24 JANUARY 2012 Prepared by: BirdLife International with the technical support of: Conservation International / Science and Knowledge Division IUCN Global Species Programme – Freshwater Unit IUCN –Eastern Africa Plant Red List Authority Saudi Wildlife Authority Royal Botanic Garden Edinburgh, Centre for Middle Eastern Plants The Cirrus Group UNEP World Conservation Monitoring Centre WWF - Eastern and Southern Africa Regional Programme Office Critical Ecosystem Partnership Fund And support from the International Advisory Committee Neville Ash, UNEP Division of Environmental Policy Implementation; Elisabeth Chadri, MacArthur Foundation; Fabian Haas, International Centre of Insect Physiology and Ecology; Matthew Hall, Royal Botanic Garden Edinburgh, Centre for Middle Eastern Plants; Sam Kanyamibwa, Albertine Rift Conservation Society; Jean-Marc Froment, African Parks Foundation; Kiunga Kareko, WWF, Eastern and Southern Africa Regional Programme Office; Karen Laurenson, Frankfurt Zoological Society; Leo Niskanen, IUCN Eastern & Southern Africa Regional Programme; Andy Plumptre, Wildlife Conservation Society; Sarah Saunders, Royal Society for the Protection of Birds; Lucy Waruingi, African Conservation Centre. Drafted by the ecosystem profiling team: Ian Gordon, Richard Grimmett, Sharif Jbour, Maaike Manten, Ian May, Gill Bunting (BirdLife International) Pierre Carret, Nina Marshall, John Watkin (CEPF) Naamal de Silva, Tesfay Woldemariam, Matt Foster (Conservation International)
    [Show full text]
  • Calibrating the Tree of Vipers Under the Fossilized Birth-Death Model Jiří Šmíd 1,2,3,4 & Krystal A
    www.nature.com/scientificreports OPEN Calibrating the tree of vipers under the fossilized birth-death model Jiří Šmíd 1,2,3,4 & Krystal A. Tolley 1,5 Scaling evolutionary trees to time is essential for understanding the origins of clades. Recently Received: 18 September 2018 developed methods allow including the entire fossil record known for the group of interest and Accepted: 15 February 2019 eliminated the need for specifying prior distributions for node ages. Here we apply the fossilized birth- Published: xx xx xxxx death (FBD) approach to reconstruct the diversifcation timeline of the viperines (subfamily Viperinae). Viperinae are an Old World snake subfamily comprising 102 species from 13 genera. The fossil record of vipers is fairly rich and well assignable to clades due to the unique vertebral and fang morphology. We use an unprecedented sampling of 83 modern species and 13 genetic markers in combination with 197 fossils representing 28 extinct taxa to reconstruct a time-calibrated phylogeny of the Viperinae. Our results suggest a late Eocene-early Oligocene origin with several diversifcation events following soon after the group’s establishment. The age estimates inferred with the FBD model correspond to those from previous studies that were based on node dating but FBD provides notably narrower credible intervals around the node ages. Viperines comprise two African and an Eurasian clade, but the ancestral origin of the subfamily is ambiguous. The most parsimonious scenarios require two transoceanic dispersals over the Tethys Sea during the Oligocene. Scaling phylogenetic trees to time is one of the major challenges in evolutionary biology. Reliable estimates for the age of evolutionary events are essential for addressing a wide array of questions, such as deciphering micro- and macroevolutionary processes, identifying drivers of biodiversity patterns, or understanding the origins of life1.
    [Show full text]
  • AMPHIBIAN and REPTILE TRADE in TEXAS: CURRENT STATUS and TRENDS a Thesis by HEATHER LEE PRESTRIDGE Submitted to the Office of Gr
    AMPHIBIAN AND REPTILE TRADE IN TEXAS: CURRENT STATUS AND TRENDS A Thesis by HEATHER LEE PRESTRIDGE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 2009 Major Subject: Wildlife and Fisheries Sciences AMPHIBIAN AND REPTILE TRADE IN TEXAS: CURRENT STATUS AND TRENDS A Thesis by HEATHER LEE PRESTRIDGE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Approved by: Chair of Committee, Lee A. Fitzgerald Committee Members, James R. Dixon Toby J. Hibbitts Ulrike Gretzel Head of Department, Thomas E. Lacher August 2009 Major Subject: Wildlife and Fisheries Sciences iii ABSTRACT Amphibian and Reptile Trade in Texas: Current Status and Trends. (August 2009) Heather Lee Prestridge, B.S., Texas A&M University Chair of Advisory Committee: Dr. Lee A. Fitzgerald The non-game wildlife trade poses a risk to our natural landscape, natural heritage, economy, and security. Specifically, the trade in non-game reptiles and amphibians exploits native populations, and is likely not sustainable for many species. Exotic amphibian and reptile species pose risk of invasion and directly or indirectly alter the native landscape. The extent of non-game amphibian and reptile trade is not fully understood and is poorly documented. To quantitatively describe the trade in Texas, I solicited data from the United States Fish and Wildlife Service’s (USFWS) Law Enforcement Management Information System (LEMIS) and Texas Parks and Wildlife Department’s (TPWD) non-game dealer permits.
    [Show full text]
  • Table S3.1. Habitat Use of Sampled Snakes. Taxonomic Nomenclature
    Table S3.1. Habitat use of sampled snakes. Taxonomic nomenclature follows the current classification indexed in the Reptile Database ( http://www.reptile-database.org/ ). For some species, references may reflect outdated taxonomic status. Individual species are coded for habitat association according to Table 3.1. References for this table are listed below. Habitat use for species without a reference were inferred from sister taxa. Broad Habitat Specific Habit Species Association Association References Acanthophis antarcticus Semifossorial Terrestrial-Fossorial Cogger, 2014 Acanthophis laevis Semifossorial Terrestrial-Fossorial O'Shea, 1996 Acanthophis praelongus Semifossorial Terrestrial-Fossorial Cogger, 2014 Acanthophis pyrrhus Semifossorial Terrestrial-Fossorial Cogger, 2014 Acanthophis rugosus Semifossorial Terrestrial-Fossorial Cogger, 2014 Acanthophis wellsi Semifossorial Terrestrial-Fossorial Cogger, 2014 Achalinus meiguensis Semifossorial Subterranean-Debris Wang et al., 2009 Achalinus rufescens Semifossorial Subterranean-Debris Das, 2010 Acrantophis dumerili Terrestrial Terrestrial Andreone & Luiselli, 2000 Acrantophis madagascariensis Terrestrial Terrestrial Andreone & Luiselli, 2000 Acrochordus arafurae Aquatic-Mixed Intertidal Murphy, 2012 Acrochordus granulatus Aquatic-Mixed Intertidal Lang & Vogel, 2005 Acrochordus javanicus Aquatic-Mixed Intertidal Lang & Vogel, 2005 Acutotyphlops kunuaensis Fossorial Subterranean-Burrower Hedges et al., 2014 Acutotyphlops subocularis Fossorial Subterranean-Burrower Hedges et al., 2014
    [Show full text]
  • GUIDELINES for the Prevention and Clinical Management of Snakebite in Africa
    WHO/AFR/EDM/EDP/10.01 G U I D E L I N E S for the Prevention and Clinical Management of Snakebite in Africa GUIDELINES for the Prevention and Clinical Management of Snakebite in Africa WORLD HEALTH ORGANIZATION Regional Office for Africa Brazzaville ● 2010 Cover photo: Black mamba, Dendroaspis polylepis, Zimbabwe © David A. Warrell Guidelines for the Prevention and Clinical Management of Snakebite in Africa © WHO Regional Office for Africa 2010 All rights reserved The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use.
    [Show full text]
  • Globally Threatened Biodiversity of the Eastern Arc Mountains and Coastal Forests of Kenya and Tanzania
    Journal of East African Natural History 105(1): 115–201 (2016) GLOBALLY THREATENED BIODIVERSITY OF THE EASTERN ARC MOUNTAINS AND COASTAL FORESTS OF KENYA AND TANZANIA Roy E. Gereau Missouri Botanical Garden P.O. Box 299, St. Louis, MO 63116-0299, USA [email protected] Neil Cumberlidge Department of Biology, Northern Michigan University Marquette, MI 49855-5376, USA [email protected] Claudia Hemp Department of Animal Ecology & Tropical Biology Biocenter University of Würzburg am Hubland 97074 Würzburg, Germany [email protected] Axel Hochkirch Biogeography, Trier University 54286 Trier, Germany [email protected] Trevor Jones Southern Tanzania Elephant Program P.O. Box 2494, Iringa, Tanzania [email protected] Mercy Kariuki Africa Partnership Secretariat, BirdLife International P.O. Box 3502-00100, Nairobi, Kenya [email protected] Charles N. Lange Zoology Department, National Museums of Kenya P.O. Box 40658, Nairobi, Kenya [email protected] Simon P. Loader Department of Life Sciences, University of Roehampton London, SW15 4JD, United Kingdom [email protected] Patrick K. Malonza Zoology Department, National Museums of Kenya 116 R.E. Gereau et al. P.O. Box 40658, Nairobi, Kenya [email protected] Michele Menegon Tropical Biodiversity Section, MUSE—Museo delle Scienze Corso del Lavoro e della Scienza 3 38122 Trento, Italy [email protected] P. Kariuki Ndang’ang’a Africa Partnership Secretariat, BirdLife International P.O. Box 3502-00100, Nairobi, Kenya [email protected] Francesco Rovero Tropical Biodiversity Section, MUSE—Museo delle Scienze Corso del Lavoro e della Scienza 3 38122 Trento, Italy Udzungwa Ecological Monitoring Centre Udzungwa Mountains National Park P.O.
    [Show full text]
  • Broadening the Coverage of Biodiversity Assessments
    BROADENING THE COVERAGE OF BIODIVERSITY ASSESSMENTS Ben Collen, Mala Ram, Nadia Dewhurst, Viola Clausnitzer, Vincent Kalkman, Neil Cumberlidge, Jonathan E. M. Baillie The IUCN Red List of Threatened Species™ Acknowledgements: This publication is part of The 2008 Review of The IUCN Red List of Threatened Species. The IUCN Red List is compiled and produced by the IUCN Species Programme based on contributions from a network of thousands of scientifi c experts around the world. These include members of the IUCN Species Survival Commission Specialist Groups, Red List Partners (currently Conservation International, BirdLife International, NatureServe and the Zoological Society of London), and many others including experts from universities, museums, research institutes and non-governmental organizations. The long list of people, partners and donors who made this review possible can be found at the following address: www.iucn.org/redlist/ Citation: Collen, B., Ram, M., Dewhurst, N., Clausnitzer, V., Kalkman, V., Cumberlidge, N. and Baillie, J.E.M. 2008. Broadening the coverage of biodiversity assessments. In: J.-C. Vié, C. Hilton-Taylor and S.N. Stuart (eds). The 2008 Review of The IUCN Red List of Threatened Species. IUCN Gland, Switzerland. Credits: Published by IUCN, Gland, Switzerland Chief Editor: Jean-Christophe Vié Editors: Craig Hilton-Taylor and Simon N. Stuart ISBN (The 2008 Review of The IUCN Red List of Threatened): 978-2-8317-1063-1 Layout: Lynx Edicions, Barcelona, Spain © 2008 International Union for Conservation of Nature and Natural Resources Cover photo: The Spiny Flanked Chameleon Chamaeleo laterispinis (Vulnerable) is endemic to the Udzungwa region of the Eastern Arc Mountains in Tanzania.
    [Show full text]