The Herpetofauna of the Eastern Afromontane: Evolutionary History, Biogeography and Conservation

Total Page:16

File Type:pdf, Size:1020Kb

The Herpetofauna of the Eastern Afromontane: Evolutionary History, Biogeography and Conservation THE HERPETOFAUNA OF THE EASTERN AFROMONTANE: EVOLUTIONARY HISTORY, BIOGEOGRAPHY AND CONSERVATION M MENEGON PhD 2015 THE HERPETOFAUNA OF THE EASTERN AFROMONTANE: EVOLUTIONARY HISTORY, BIOGEOGRAPHY AND CONSERVATION MICHELE MENEGON A thesis submitted in partial fulfillment of the requirements of the Manchester Metropolitan University for the degree of Doctor of Philosophy Division of Biology and Conservation Ecology School of Science and the Environment Manchester Metropolitan University 2015 Abstract ........................................................................................................................................ 11 Chapter 1 : Introduction ................................................................................................ 14 Overview ...................................................................................................................................... 14 Diversity and ecology of the Herpetofauna ...................................................................... 18 Classification ............................................................................................................................................ 18 Amphibians ............................................................................................................................................... 18 Frogs (Order Anura) ............................................................................................................................. 19 Caecilians (Order Gymnophiona) ..................................................................................................... 20 Reptiles ....................................................................................................................................................... 21 Ecology and breeding behaviour of Amphibians and Reptiles .......................................... 23 Global patterns of herpetofaunal diversity ................................................................................. 24 Dispersal .................................................................................................................................................... 26 Why are Amphibians so threatened? ................................................................................. 28 Habitat loss and land use change .................................................................................................... 29 Emerging diseases ................................................................................................................................. 30 Climate change ........................................................................................................................................ 31 The Eastern Afromontane region ........................................................................................ 33 Biogeography of Africa ........................................................................................................................ 33 The geography of the region and its biodiversity .................................................................... 37 General patterns of diversity in the Eastern Afromontane .................................................. 39 Brief summary of herpetological discoveries in the EAM .................................................... 40 Conservation within the Eastern Afromontane ........................................................................ 41 How to measure herpetological importance in Eastern Afromontane? ................. 43 Traditional and modern taxonomic approaches to species delimitation ...................... 43 Should species be the currency of conservation science? .................................................... 45 Alternative biodiversity metrics ...................................................................................................... 47 Aims and Objectives of the PhD ........................................................................................... 49 References ................................................................................................................................... 51 Chapter 2 : Biological exploration ............................................................................. 78 Herpetological discovery in the Eastern Afromontane: taxonomic and conservation implications .............................................................................................................................................. 78 Abstract ........................................................................................................................................ 78 Introduction ............................................................................................................................... 79 Methods ........................................................................................................................................ 82 Historical review of herpetofaunal research from the late 1800s to 1998 .................. 82 2 Post-1998 surveys by MM and others .......................................................................................... 82 Field sampling techniques ................................................................................................................. 85 Species identification ........................................................................................................................... 88 Molecular-based systematic approaches .................................................................................... 89 Results .......................................................................................................................................... 90 Annotated chronology of herpetofaunal discoveries in the EAR ...................................... 90 Summary: Chronology of early discovery and taxonomy of EA amphibian and reptiles ........................................................................................................................................................ 90 Post-1998 herpetofaunal discoveries by MM and others .................................................... 94 Discussion ................................................................................................................................ 100 Herpetological exploration and its implications for taxonomic approaches to conservation ......................................................................................................................................... 100 Effects on species richness and endemism ............................................................................. 101 Effect on conservation site ranking ............................................................................................ 101 Recommendations for future sampling in the Eastern Afromontane Region .......... 102 References ............................................................................................................................... 107 Appendix 1 Description of a highly endangered forest Viper in the genus Atheris ..................................................................................................................................................... 117 Appendix 2 Description of a range restricted frog in the genus Callulina ......... 130 Appendix 3 Herpetological inventory of the Mahenge Mts. of Tanzania, with comments on biogeography .............................................................................................. 143 Appendix 4. Priority areas for future herpetological researches ......................... 154 1. Gura Ferda plateau, Ethiopia .................................................................................................... 154 2. Imatong Mountains, South Sudan ........................................................................................... 155 3. Itombwe Massif, DRC ................................................................................................................... 155 4. Misotshi-Kabogo range, DRC .................................................................................................... 156 5. Mt. Chiperone, Mozambique ..................................................................................................... 156 Appendix 5. The eField Guide: A key resource for Eastern Afromontane herpetology ............................................................................................................................. 158 Chapter 3 : Biogeography of Amphibians ............................................................. 163 Patterns and drivers of diversity in Eastern Afromontane amphibians ..................... 163 Abstract .................................................................................................................................... 164 Introduction ............................................................................................................................ 165 Material and Methods .......................................................................................................... 167 The study area ...................................................................................................................................... 167 Mountain-restricted amphibian species and the data set ................................................. 169 3 Patterns of diversity .........................................................................................................................
Recommended publications
  • Molecular Characterization of Three Novel Phospholipase A2 Proteins from the Venom of Atheris Chlorechis, Atheris Nitschei and Atheris Squamigera
    toxins Article Molecular Characterization of Three Novel Phospholipase A2 Proteins from the Venom of Atheris chlorechis, Atheris nitschei and Atheris squamigera He Wang 1,*, Xiaole Chen 2,*, Mei Zhou 3, Lei Wang 3, Tianbao Chen 3 and Chris Shaw 3 1 School of Integrative Medicine, Fujian University of Traditional Chinese Medicine, No.1 Qiu Yang Road, Shangjie Town, Fuzhou 350122, Fujian, China 2 School of Pharmacy, Fujian Medical University, No.1 Xueyuan Road, Shangjie Town, Fuzhou 350004, Fujian, China 3 Natural Drug Discovery Group, School of Pharmacy, Queen’s University Belfast, University Road, Belfast BT7 1NN, UK; [email protected] (M.Z.); [email protected] (L.W.); [email protected] (T.C.); [email protected] (C.S.) * Correspondence: [email protected] or [email protected] (H.W.); [email protected] (X.C.); Tel.: +86-591-2286-1151 (H.W.); +86-591-2286-2692 (X.C.) Academic Editor: Bryan Grieg Fry Received: 24 February 2016; Accepted: 20 May 2016; Published: 1 June 2016 Abstract: Secretory phospholipase A2 (sPLA2) is known as a major component of snake venoms and displays higher-order catalytic hydrolysis functions as well as a wide range of pathological effects. Atheris is not a notoriously dangerous genus of snakes although there are some reports of fatal cases after envenomation due to the effects of coagulation disturbances and hemorrhaging. Molecular characterization of Atheris venom enzymes is incomplete and there are only a few reports in the literature. Here, we report, for the first time, the cloning and characterization of three novel cDNAs encoding phospholipase A2 precursors (one each) from the venoms of the Western bush viper (Atheris chlorechis), the Great Lakes bush viper (Atheris nitschei) and the Variable bush viper (Atheris squamigera), using a “shotgun cloning” strategy.
    [Show full text]
  • Cop13 Analyses Cover 29 Jul 04.Qxd
    IUCN/TRAFFIC Analyses of the Proposals to Amend the CITES Appendices at the 13th Meeting of the Conference of the Parties Bangkok, Thailand 2-14 October 2004 Prepared by IUCN Species Survival Commission and TRAFFIC Production of the 2004 IUCN/TRAFFIC Analyses of the Proposals to Amend the CITES Appendices was made possible through the support of: The Commission of the European Union Canadian Wildlife Service Ministry of Agriculture, Nature and Food Quality, Department for Nature, the Netherlands Federal Agency for Nature Conservation, Germany Federal Veterinary Office, Switzerland Ministerio de Medio Ambiente, Dirección General para la Biodiversidad (Spain) Ministère de l'écologie et du développement durable, Direction de la nature et des paysages (France) IUCN-The World Conservation Union IUCN-The World Conservation Union brings together states, government agencies and a diverse range of non-governmental organizations in a unique global partnership - over 1 000 members in some 140 countries. As a Union, IUCN seeks to influence, encourage and assist societies throughout the world to conserve the integrity and diversity of nature and to ensure that any use of natural resources is equitable and ecologically sustainable. IUCN builds on the strengths of its members, networks and partners to enhance their capacity and to support global alliances to safeguard natural resources at local, regional and global levels. The Species Survival Commission (SSC) is the largest of IUCN’s six volunteer commissions. With 8 000 scientists, field researchers, government officials and conservation leaders, the SSC membership is an unmatched source of information about biodiversity conservation. SSC members provide technical and scientific advice to conservation activities throughout the world and to governments, international conventions and conservation organizations.
    [Show full text]
  • Nyika and Vwaza Reptiles & Amphibians Checklist
    LIST OF REPTILES AND AMPHIBIANS OF NYIKA NATIONAL PARK AND VWAZA MARSH WILDLIFE RESERVE This checklist of all reptile and amphibian species recorded from the Nyika National Park and immediate surrounds (both in Malawi and Zambia) and from the Vwaza Marsh Wildlife Reserve was compiled by Dr Donald Broadley of the Natural History Museum of Zimbabwe in Bulawayo, Zimbabwe, in November 2013. It is arranged in zoological order by scientific name; common names are given in brackets. The notes indicate where are the records are from. Endemic species (that is species only known from this area) are indicated by an E before the scientific name. Further details of names and the sources of the records are available on request from the Nyika Vwaza Trust Secretariat. REPTILES TORTOISES & TERRAPINS Family Pelomedusidae Pelusios rhodesianus (Variable Hinged Terrapin) Vwaza LIZARDS Family Agamidae Acanthocercus branchi (Branch's Tree Agama) Nyika Agama kirkii kirkii (Kirk's Rock Agama) Vwaza Agama armata (Eastern Spiny Agama) Nyika Family Chamaeleonidae Rhampholeon nchisiensis (Nchisi Pygmy Chameleon) Nyika Chamaeleo dilepis (Common Flap-necked Chameleon) Nyika(Nchenachena), Vwaza Trioceros goetzei nyikae (Nyika Whistling Chameleon) Nyika(Nchenachena) Trioceros incornutus (Ukinga Hornless Chameleon) Nyika Family Gekkonidae Lygodactylus angularis (Angle-throated Dwarf Gecko) Nyika Lygodactylus capensis (Cape Dwarf Gecko) Nyika(Nchenachena), Vwaza Hemidactylus mabouia (Tropical House Gecko) Nyika Family Scincidae Trachylepis varia (Variable Skink) Nyika,
    [Show full text]
  • Journal of the East Africa Natural History Society and National Museum
    JOURNAL OF THE EAST AFRICA NATURAL HISTORY SOCIETY AND NATIONAL MUSEUM 15 October, 1978 Vol. 31 No. 167 A CHECKLIST OF mE SNAKES OF KENYA Stephen Spawls 35 WQodland Rise, Muswell Hill, London NIO, England ABSTRACT Loveridge (1957) lists 161 species and subspecies of snake from East Mrica. Eighty-nine of these belonging to some 41 genera were recorded from Kenya. The new list contains some 106 forms of 46 genera. - Three full species have been deleted from Loveridge's original checklist. Typhlops b. blanfordii has been synonymised with Typhlops I. lineolatus, Typhlops kaimosae has been synonymised with Typhlops angolensis (Roux-Esteve 1974) and Co/uber citeroii has been synonymised with Meizodon semiornatus (Lanza 1963). Of the 20 forms added to the list, 12 are forms collected for the first time in Kenya but occurring outside its political boundaries and one, Atheris desaixi is a new species, the holotype and paratypes being collected within Kenya. There has also been a large number of changes amongst the 89 original species as a result of revisionary systematic studies. This accounts for the other additions to the list. INTRODUCTION The most recent checklist dealing with the snakes of Kenya is Loveridge (1957). Since that date there has been a significant number of developments in the Kenyan herpetological field. This paper intends to update the nomenclature in the part of the checklist that concerns the snakes of Kenya and to extend the list to include all the species now known to occur within the political boundaries of Kenya. It also provides the range of each species within Kenya with specific locality records .
    [Show full text]
  • Atheris Squamigera
    Atheris squamigera Atheris squamigera (common names: green bush viper,[2][3] variable bush viper,[4][5] leaf viper,[5] and others) is a venomous viper species endemic to west and central Africa. No subspecies are currently recognized.[6] Description A. squamigera grows to an average total length (body + tail) of 46 to 60 cm (about 18 to 24 inches), with a maximum total length that sometimes exceeds 78 cm (about 31 inches). Females are usually larger than males.[2] Scientific Classification The head is broad and flat, distinct from the neck. The mouth has a very large gape. The head is thickly covered with keeled, imbricate scales. Kingdom: Anamalia The rostral scale is not visible from above. A very small scale just above Phylum: Cordata the rostral is flanked by very large scales on either side. The nostrils are Class: Reptilia lateral. The eye and the nasal are separated by 2 scales. Across the top of Order: Squamata the head, there are 7 to 9 interorbital scales. There are 10 to 18 circumorbital scales. There are 2 (rarely 1 or more than 2) rows of Suborder: Serpentes scales that separate the eyes from the labials. There are 9 to Family: viperidae 12 supralabials and 9 to 12 sublabials. Of the latter, the anterior 2 or 3 Genus: Atheris touch the chin shields, of which there is only one small pair. The gular [2] Subgenus: A. squamigera scales are keeled. Midbody there are 15 to 23 rows of dorsal scales, 11 to 17 posteriorly. Binomial Name There are 152 to 175 ventral scales and 45 to 67 undivided subcaudals.
    [Show full text]
  • Inclusion in Appendix II, Bush Viper
    Original language: English and French CoP17 Prop. XX CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________________ Seventeenth meeting of the Conference of the Parties Johannesburg (South Africa), 24 September - 5 October 2016 CONSIDERATION OF PROPOSALS FOR AMENDMENT OF APPENDICES I AND II A. Proposal Inclusion of the Mt. Kenya Bush Viper Atheris desaixi in Appendix II in accordance with Article II, paragraph 2 (a), of the Convention and Resolution Conf. 9.24 (Rev. CoP16), Annex 2 a. B. Proponent Kenya C. Supporting statement 1. Taxonomy 1.1. Class: Reptilia 1.2. Order: Squamata 1.3. Family: Viperidae 1.4. Genus and species: Atheris desaixi (Ashe, 1968) 1.5. Scientific synonyms: None 1.6. Common names: English Mt. Kenya Bush Viper, Ashe’s Viper 1.7. Code number: Not applicable 2. Overview This proposal seeks to list Mt Kenya bush viper in CITES Appendix to help regulate trade and enhance enforcement for its conservation. Mt. Kenya Bush viper is endemic to Kenya and has a restricted range in mid-attitude forests in central Kenya. The species is reported to be in decline in its known sites to the extent of depletion as a result of habitat degradation and illegal collection. Natural densities are very low and census is very difficult to carry out. No meaningful monitoring of trade is possible without a CITES listing and no records exist as all the trade is illegal. There is evidence of international live trade to meet demands for zoos and private collections mainly in CoP17 Prop. XX – p. 1 Europe and USA.
    [Show full text]
  • Biogeography of the Reptiles of the Central African Republic
    African Journal of Herpetology, 2006 55(1): 23-59. ©Herpetological Association of Africa Original article Biogeography of the Reptiles of the Central African Republic LAURENT CHIRIO AND IVAN INEICH Muséum National d’Histoire Naturelle Département de Systématique et Evolution (Reptiles) – USM 602, Case Postale 30, 25, rue Cuvier, F-75005 Paris, France This work is dedicated to the memory of our friend and colleague Jens B. Rasmussen, Curator of Reptiles at the Zoological Museum of Copenhagen, Denmark Abstract.—A large number of reptiles from the Central African Republic (CAR) were collected during recent surveys conducted over six years (October 1990 to June 1996) and deposited at the Paris Natural History Museum (MNHN). This large collection of 4873 specimens comprises 86 terrapins and tortois- es, five crocodiles, 1814 lizards, 38 amphisbaenids and 2930 snakes, totalling 183 species from 78 local- ities within the CAR. A total of 62 taxa were recorded for the first time in the CAR, the occurrence of numerous others was confirmed, and the known distribution of several taxa is greatly extended. Based on this material and an additional six species known to occur in, or immediately adjacent to, the coun- try from other sources, we present a biogeographical analysis of the 189 species of reptiles in the CAR. Key words.—Central African Republic, reptile fauna, biogeography, distribution. he majority of African countries have been improved; known distributions of many species Tthe subject of several reptile studies (see are greatly expanded and distributions of some for example LeBreton 1999 for Cameroon). species are questioned in light of our results.
    [Show full text]
  • Thomas Barbour 1884-1946 by Henry B
    NATIONAL ACADEMY OF SCIENCES T H O M A S B A R B OUR 1884—1946 A Biographical Memoir by H ENRY B. BIGELO W Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1952 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. THOMAS BARBOUR 1884-1946 BY HENRY B. BIGELOW Thomas Barbour was born on Martha's Vineyard, August 19, 1884, the son of William and Adelaide (Sprague) Barbour of New York City. In 1906 he married Rosamond Pierce of Brookline, Massachusetts, and his married life was full and harmonious, but saddened by the death of his oldest daughter Martha and of his only son William. During the last two years of his life he was in failing health, following a blood clot that had developed while he was in Miami. He was at the Museum of Comparative Zoology as usual on January 4, 1946, and in happy mood at home in Boston that evening. But he was stricken later in the night with cerebral hemorrhage, and died on January 8, without regaining consciousness. He is survived by his wife; three daughters, Mrs. Mary Bigelow Kidder, Mrs. Julia Adelaide Hallowell, and Mrs. Louisa Bowditch Parker; and two brothers, Robert and Frederick K. Barbour. Barbour prepared for college under private tutors and at Brownings School in New York City. It had been planned for him to go to Princeton, but a boyhood visit to the Museum of Comparative Zoology determined him to choose Harvard, which he entered as a freshman in the autumn of 1902.
    [Show full text]
  • Monitoring Lesser- Known Biodiversity
    ZSL SCIENCE REVIEW | IMPACT AREAS Monitoring lesser- IMPACT known biodiversity AREA Determining the status of the world’s species is important to track progress towards global environmental targets – and IoZ leads the way. IoZ is at the forefront of monitoring global in putting reptile conservation in the biodiversity and developing scientifically international spotlight. robust indicators to track progress towards Our recent work focused on predicting targets such as the Aichi Targets of the extinction risk by investigating species- Convention on Biological Diversity, assessing specific factors that correlate with conservation actions and measuring human extinction risk, and by employing novel impact on biodiversity. machine-learning techniques to determine Monitoring species with very few the true extinction risk of species currently data, such as less well-studied reptiles, listed as Data Deficient. In addition to reptile invertebrates and plants, is a challenge for species with a smaller range size having science. Over recent years, IoZ has increased a higher risk of extinction, our research our knowledge of the extinction risk of found that at smaller range sizes, habitat reptiles, freshwater molluscs, dung beetles specialisation and accessibility of a species Main image: reptiles and crayfish, among others. Reptiles provide range to humans became important in the conservation us with an excellent group for testing how predictors of extinction risk (Böhm et al. spotlight: lyre head lizard to assess and monitor species 2016a). This
    [Show full text]
  • An Evaluation of the Science System in Kenya
    AN EVALUATION OF THE SCIENCE SYSTEM IN KENYA Agnes Omulyebi Lutomiah Thesis submitted to Stellenbosch University for the degree of Doctor of Philosophy (PhD) in Science and Technology Studies in the Faculty of Arts and Social Sciences Supervisor: Professor Johann Mouton Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this dissertation electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated) that production and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entire or in part submitted it for obtaining any qualification. March 2020 Copyright © 2020 Stellenbosch University All rights reserved i Stellenbosch University https://scholar.sun.ac.za Abstract Evaluation of science systems has been on the increase in the recent past following government calls for accountability of the public investment in research development. The government and other funders also call for the evaluation of science for decision making on the amounts to invest in research development. This study set out to conduct an evaluation of the Kenyan science system. Using a case study research design, the study combined standard research and development indicators, bibliometric data, survey data and interview data to evaluate Kenya’s research investment, research capacity and research performance – research output, research collaboration, and citation impact. The standard research and development indicators revealed minimal investment in research development in Kenya, an investment that is still below the government’s target of investing about 1-2% of GDP to research and development.
    [Show full text]
  • 1.KOUADIO Atta Léonard, ASSEMIAN N'guessan Emmanuel, OUSSOU
    Human Journals Research Article April 2021 Vol.:18, Issue:2 © All rights are reserved by ASSEMIAN N’guessan Emmanuel et al. New Record of Four Snakes in Taï National Park (South-West, Côte D'ivoire) Keywords: Ophidians, Primary forests, Secondary forests, Taï National Park and Ivory Coast ABSTRACT KOUADIO Atta Léonard1, ASSEMIAN N’guessan 1* .1 The objective of this study is to confirm the presence of Emmanuel , OUSSOU Konan Hervé four (4) Ophidian species (Atractaspis aterrina, 1Laboratoire de Biodiversité et Gestion Durable des Hapsidrophys smaragdina, Leptotyphlops albiventer, and Ecosystèmes Tropicaux de l'UFR Environnement de Lycophidion irroratum) in the Taï National Park and to l'Université Jean Lorougnon Guédé, BP 150 Daloa, Côte collect additional data on their morphological d'Ivoire. characteristics and habitats. The habitats prospected are secondary forests, characterized by the presence of Submitted : 20 March 2021 herbaceous plants, shrubs and dwellings, and primary Accepted : 27 March 2021 forests, marked by the presence of large trees with a Published: 30 April 2021 canopy more than 80% closed and a ground covered with more than 90% dead leaves. Ophidian sampling in the park took place throughout twenty-five (25) days (May 15 to October 25, 2018). The presence of these species in the primary and secondary forests of Taï National Park would www.ijsrm.humanjournals.com be related to their ecological plasticity. www.ijsrm.humanjournals.com INTRODUCTION Atractaspis aterrima, Hapsidrophys smaragdinus, Lycophidion irroratum and Myriopholis albiventer are Ophidian species belonging respectively to the families Atractaspidae, Colubridae, Lamprophidae and Leptotyphlopidae. They have a wide distribution and are found in West Africa, Central Africa, South Africa and East Africa [1].
    [Show full text]
  • Zimbabwe Zambia Malawi Species Checklist Africa Vegetation Map
    ZIMBABWE ZAMBIA MALAWI SPECIES CHECKLIST AFRICA VEGETATION MAP BIOMES DeserT (Namib; Sahara; Danakil) Semi-deserT (Karoo; Sahel; Chalbi) Arid SAvannah (Kalahari; Masai Steppe; Ogaden) Grassland (Highveld; Abyssinian) SEYCHELLES Mediterranean SCruB / Fynbos East AFrican Coastal FOrest & SCruB DrY Woodland (including Mopane) Moist woodland (including Miombo) Tropical Rainforest (Congo Basin; upper Guinea) AFrO-Montane FOrest & Grassland (Drakensberg; Nyika; Albertine rift; Abyssinian Highlands) Granitic Indian Ocean IslandS (Seychelles) INTRODUCTION The idea of this booklet is to enable you, as a Wilderness guest, to keep a detailed record of the mammals, birds, reptiles and amphibians that you observe during your travels. It also serves as a compact record of your African journey for future reference that hopefully sparks interest in other wildlife spheres when you return home or when travelling elsewhere on our fragile planet. Although always exciting to see, especially for the first-time Africa visitor, once you move beyond the cliché of the ‘Big Five’ you will soon realise that our wilderness areas offer much more than certain flagship animal species. Africa’s large mammals are certainly a big attraction that one never tires of, but it’s often the smaller mammals, diverse birdlife and incredible reptiles that draw one back again and again for another unparalleled visit. Seeing a breeding herd of elephant for instance will always be special but there is a certain thrill in seeing a Lichtenstein’s hartebeest, cheetah or a Lilian’s lovebird – to name but a few. As a globally discerning traveller, look beyond the obvious, and challenge yourself to learn as much about all wildlife aspects and the ecosystems through which you will travel on your safari.
    [Show full text]