Thèse Rédigée

Total Page:16

File Type:pdf, Size:1020Kb

Thèse Rédigée ANNEE 2007 THESE : 03 – TOU 3 – 4035 Actualisation des connaissances sur la systématique et la phylogénie des serpents _________________ THESE pour obtenir le grade de DOCTEUR VETERINAIRE DIPLOME D’ETAT présentée et soutenue publiquement en 2007 devant l’Université Paul-Sabatier de Toulouse par Vincent VALLI Né le 25 novembre 1981, à Troyes ___________ Directeur de thèse : M. le Professeur Jacques DUCOS de LAHITTE ___________ JURY PRESIDENT : M. Jean-François MAGNAVAL Professeur à l’Université Paul-Sabatier de TOULOUSE ASSESSEUR : M. Jacques DUCOS de LAHITTE Professeur à l’Ecole Nationale Vétérinaire de TOULOUSE M. Yves LIGNEREUX Professeur à l’Ecole Nationale Vétérinaire de TOULOUSE - 2 - - 3 - - 4 - A notre Président de Thèse Monsieur le Professeur Jean-François MAGNAVAL Professeur des Universités Praticien hospitalier Parasitologie Qui nous a fait l’honneur d’accepter la présidence de notre jury de thèse Hommages respectueux A notre Jury de Thèse Monsieur le Professeur Jacques DUCOS de LAHITTE Professeur de l’Ecole Nationale Vétérinaire de Toulouse Parasitologie et maladies parasitaires Pour la qualité et la précision de son aide au cours de ce travail Qu’il trouve ici l’expression de notre profonde reconnaissance Monsieur le Professeur Yves LIGNEREUX Professeur de l’Ecole Nationale Vétérinaire de Toulouse Anatomie Qui nous a fait l’honneur de participer à notre jury de thèse Qu’il trouve ici la marque de toute notre considération - 5 - A toute ma famille, Et plus particulièrement à mes parents, dont le soutien, à quelque plan que ce soit, n’a jamais faibli. Sachez que je suis fier, chaque jour un peu plus, de l’éducation que vous m’avez donnée, sans laquelle je n’aurais sans doute jamais envisagé d’aller aussi loin… A tout le reste de ma famille également, qui malgré l’éloignement, n’a cessé de me soutenir. Merci pour les bons moments passés en votre présence et pour votre soutien téléphonique et postal. A Alain, Dit Doc, qui m’accueille encore aujourd’hui tout aussi volontiers qu’il le faisait il y a quinze ans et qui, je l’espère, me servira d’exemple pendant encore très longtemps. D’ami, puis de mentor, tu es passé en plus au grade de confrère, ce qui laisse encore une place pour devenir, je l’espère, un futur associé… A Jeff, Frère de cœur et d’âme pendant ces cinq années d’école. La liste des preuves de notre amitié pourrait en soi faire l’objet d’une thèse, je me contenterai donc d’un seul mot : merci. A Tipiak, Que j’ai malheureusement connu un peu tard pour en profiter autant que je l’aurai souhaité, et sans qui ce travail n’aurait peut-être pas pu aboutir. J’espère que le temps que l’on n’a pas passé ensemble à l’école nous reviendra en tant que docteurs vétérinaires. Et à tous les autres, Julot, Lulu, Wilho, Marc, Paco, Aline, Tim, Raph, Milou, Platane, Droopy, Anne-So, Aurélie, Steph, Ange, Caro, JT, Milouze, Simon, Flo, Lol, grande Nabou… sans qui toutes ces années d’études que concluent cette thèse n’auraient pas été aussi agréables. Si je devais ne faire qu’un souhait par ce travail, ce serait de toujours pouvoir se donner l’occasion de rigoler (ou d’être sérieux…) autant qu’on a déjà su le faire. Mais surtout, Je souhaite dédicacer ce travail à mon grand-père, le très estimé Docteur Bredelet, dernier artiste vétérinaire de son temps. Mon seul grand regret dans la vie sera toujours qu’il n’en puisse pas voir la consécration. Merci de m’avoir transmis, malgré toi, ta passion. - 6 - Table des matières Partie I – Evolution, phylogénie et taxonomie 17 I-1 – Définitions et buts de la phylogénie 17 I-1-1 – Présentation des arbres phylogénétiques 17 I-1-2 – Relations entre les différents phylums de l’arbre 19 I-1-3 – Monophylie, paraphylie et polyphylie : le cas des reptiles 20 I-1-4 – Buts de la phylogénie 24 I-2 – Phylogénie et taxonomie 27 I-2-1 – Les différents rangs taxonomiques 27 I-2-2 – Le concept d’espèce 28 I-2-2-1 – Le concept d’« espèce biologique » 28 I-2-2-2 – Le concept d’« espèce évolutive » 29 I-2-2-3 – Le concept d’« espèce phylogénétique » 30 I-2-3 – Règles de nomenclature 31 I-3 – Construction d’un arbre phylogénétique 35 I-3-1 – Moyens et limites de la phylogénie 35 I-3-1-1 – Phylogénie morphologique 35 I-3-1-2 – Phylogénie génétique 37 I-3-2 – Construction des arbres phylogénétiques 40 I-3-2-1 – Le modèle de « maximum parsimony » (MP) 40 I-3-2-2 – Le modèle de « maximum likelihood » (ML) 41 I-3-2-3 – Le modèle de « neighbor joining » (NJ) 42 I-3-2-4 – La méthode par « Bayesian inference » (BI) 43 I-3-3 – « Ingroup » et « outgroup » 43 I-3-4 – Estimation du degré de confiance des arbres 44 I-4 – Etablissement de la phylogénie des serpents supérieurs 46 Partie II – Situation des Colubroidea 48 II-1 – Relations supérieures au sein des reptiles (arbre 1) 48 II-2 – Relations supérieures au sein des Lepidosauria (arbre 2) 50 II-2-1 – Groupes morphologiques de squamates 50 II-2-1-1 – Position des Iguania 51 II-2-1-2 – Relations entre les groupes apodes 52 II-2-1-3 – Serpents : fouisseurs ou marins ? 55 II-2-2 – Apports récents de la phylogénie moléculaire 56 II-2-3 – Relations supérieures actualisées des Lepidosauria 57 II-2-3-1 – Ordre des Rhynchocephalia 57 II-2-3-2 – Ordre des Squamata 57 II-2-3-2-1 – Infra-ordre des Gekkota 58 II-2-3-2-2 – Scincomorpha et Amphisbaenia 59 II-2-3-2-3 – Nouveau groupe des Toxicofera 61 II-2-3-2-3-1 – Monophylie 61 II-2-3-2-3-2 – Classe des Anguimorpha 64 II-2-3-2-3-3 – Classe des Iguania 65 II-2-3-2-3-4 – Classe des Serpentes 66 II-2-3-3 – Résumé des changements taxonomiques 68 II-2-3-4 – Rangs taxonomiques possibles 69 - 8 - II-3 – Relations supérieures au sein des serpents (arbre 3) 71 II-3-1 – Infra-ordre des Scolecophidia 71 II-3-2 – Classe des Alethinophidia 73 II-3-2-1 – Groupe des Henophidia 74 II-3-2-1-1 – Anilioidea , Tropidophiidae , Bolyeridae 75 II-3-2-1-2 – Loxocemidae , Xenopeltidae , Pythoninae 76 II-3-2-1-3 – Erycinae , Boinae 77 II-3-2-1-4 – Résumé des changements taxonomiques 77 II-3-2-2 – Classe des Caenophidia 79 II-3-3 – Taxonomie proposée des serpents 80 Partie III – Phylogénie des Colubroidea 82 III-1 – Relations supérieures au sein des Colubroidea (arbre 4) 82 III-1-1 – Classification des serpents selon leur dentition 83 III-1-1-1 – Systématique actuelle 83 III-1-1-2 – Phylogénie proposée par cette classification 84 III-1-2 – Consensus sur les familles de Colubroidea 86 III-1-2-1 – Cas des Viperidae 87 III-1-2-2 – Cas des Atractaspididae 88 III-1-2-3 – Cas des Elapidae 90 III-1-2-4 – Problème de la famille des Colubridae 91 III-1-2-4-1 – Considérations morphologiques 91 III-1-2-4-2 – Analyse moléculaire de Lawson et al . (2005) 93 III-1-2-4-3 – Autres preuves moléculaires 94 III-1-3 – Révisions taxonomiques des Colubroidea 96 III-1-4 – Nouvelle phylogénie des Colubroidea 99 III-1-4-1 – Relations supérieures au sein du « groupe basal » 99 III-1-4-2 – Relations supérieures au sein des Elapidae 101 III-1-4-3 – Relations supérieures au sein des Colubridae 103 III-2 – Relations inférieures au sein des Colubroidea 105 III-2-1 – Famille des Xenodermatidae 106 III-2-2 – Famille des Viperidae 109 III-2-2-1 – Sous-famille des Crotalinae 109 III-2-2-1-1- Relations supérieures au sein des Crotalinae (arbre 5) 110 III-2-2-1-1-1 – Crotales du Nouveau Monde 111 III-2-2-1-1-1-1 – Genres Crotalus , Sistrurus , Agkistrodon 111 III-2-2-1-1-1-2 – Complexes Bothrops et Porthidium 113 III-2-2-1-1-1-3 – Genres Lachesis , Ophryacus , Bothriechis 114 III-2-2-1-1-2 – Crotales de l’Ancien Monde 116 III-2-2-1-1-2-1 – Genres Hypnale , Calloselasma 116 III-2-2-1-1-2-2 – Genres Deinagkistrodon , Tropidolaemus 117 III-2-2-1-1-2-3 – Complexe Trimeresurus 117 III-2-2-1-1-2-4 – Complexe Protobothrops 118 III-2-2-1-1-2-5 – Complexe Gloydius 119 - 9 - III-2-2-1-2 – Relations au sein du complexe Trimeresurus (arbre 6) 121 III-2-2-1-2-1 – Genre Trimeresurus sensu stricto 122 III-2-2-1-2-2 – Genre Parias 123 III-2-2-1-2-3 – Genre Cryptelytrops 124 III-2-2-1-2-4 – Genre Popeia 126 III-2-2-1-2-5 – Genre Viridovipera 127 III-2-2-1-2-6 – Genre Himalayophis 128 III-2-2-1-2-7 – Genre Peltopeltor 128 III-2-2-1-2-8 – Relations entre ces genres 129 III-2-2-1-3 – Relations au sein de la tribu des Crotalini (arbre 7) 129 III-2-2-1-3-1 – Genre Sistrurus 129 III-2-2-1-3-2 – Groupe triseriatus 130 III-2-2-1-3-3 – Crotalus ravus , C. cerastes , C. polystictus 130 III-2-2-1-3-4 – Groupe durissus 131 III-2-2-1-3-5 – Groupe atrox 132 III-2-2-1-3-6 – Groupe viridis 133 III-2-2-1-3-7 – Groupe intermedius 135 III-2-2-1-3-8 – Autres espèces 135 III-2-2-1-4 – Relations au sein des lignées bothropoïdes 136 III-2-2-1-4-1 – Genre Bothriechis 136 III-2-2-1-4-2 – Complexe Porthidium (arbre 8) 137 III-2-2-1-4-2-1 – Genre Atropoides 138 III-2-2-1-4-2-2 – Genre Porthidium 139 III-2-2-1-4-2-3 – Genre Cerrophidion 140 III-2-2-1-4-2-4 – Relations entre ces genres 141 III-2-2-1-4-3 – Complexe Bothrops (arbre 9) 141 III-2-2-1-4-3-1 – Groupes alternatus , neuwiedi , atrox 142 III-2-2-1-4-3-2 – Genre Bothriopsis , groupe jararacussu 143 III-2-2-1-4-3-3 – Relations basales du complexe 144 III-2-2-1-4-3-3 – Relations au sein du groupe atrox 145 III-2-2-2 – Sous-famille des Viperinae 147 III-2-2-2-1 – Relations supérieures au sein des Viperinae (arbre 10) 147 III-2-2-2-2 – Genre Cerastes 148 III-2-2-2-3 – Genre Echis 148 III-2-2-2-4 – Genre Bitis 149 III-2-2-2-5 – Tribu des Atherini 150 III-2-2-2-6 – Classe des vipères eurasiennes (arbre 11) 151 III-2-2-2-6-1 – Vipères touraniennes 152 III-2-2-2-6-2 – Vipères orientales 152 III-2-2-2-6-3 – Vipères européennes 154 III-2-3 – Famille des Pareatidae 155 III-2-4 – Famille
Recommended publications
  • Phylogenetic Diversity, Habitat Loss and Conservation in South
    Diversity and Distributions, (Diversity Distrib.) (2014) 20, 1108–1119 BIODIVERSITY Phylogenetic diversity, habitat loss and RESEARCH conservation in South American pitvipers (Crotalinae: Bothrops and Bothrocophias) Jessica Fenker1, Leonardo G. Tedeschi1, Robert Alexander Pyron2 and Cristiano de C. Nogueira1*,† 1Departamento de Zoologia, Universidade de ABSTRACT Brasılia, 70910-9004 Brasılia, Distrito Aim To analyze impacts of habitat loss on evolutionary diversity and to test Federal, Brazil, 2Department of Biological widely used biodiversity metrics as surrogates for phylogenetic diversity, we Sciences, The George Washington University, 2023 G. St. NW, Washington, DC 20052, study spatial and taxonomic patterns of phylogenetic diversity in a wide-rang- USA ing endemic Neotropical snake lineage. Location South America and the Antilles. Methods We updated distribution maps for 41 taxa, using species distribution A Journal of Conservation Biogeography models and a revised presence-records database. We estimated evolutionary dis- tinctiveness (ED) for each taxon using recent molecular and morphological phylogenies and weighted these values with two measures of extinction risk: percentages of habitat loss and IUCN threat status. We mapped phylogenetic diversity and richness levels and compared phylogenetic distances in pitviper subsets selected via endemism, richness, threat, habitat loss, biome type and the presence in biodiversity hotspots to values obtained in randomized assemblages. Results Evolutionary distinctiveness differed according to the phylogeny used, and conservation assessment ranks varied according to the chosen proxy of extinction risk. Two of the three main areas of high phylogenetic diversity were coincident with areas of high species richness. A third area was identified only by one phylogeny and was not a richness hotspot. Faunal assemblages identified by level of endemism, habitat loss, biome type or the presence in biodiversity hotspots captured phylogenetic diversity levels no better than random assem- blages.
    [Show full text]
  • Redalyc.ACCIÓN DEL ANTIVENENO BOTRÓPICO POLIVALENTE
    Revista Peruana de Medicina Experimental y Salud Pública ISSN: 1726-4642 [email protected] Instituto Nacional de Salud Perú Yarlequé, Armando; Vivas, Dan; Inga, Rosío; Rodríguez, Edith; Adolfo Sandoval, Gustavo; Pessah, Silvia; Bonilla, César ACCIÓN DEL ANTIVENENO BOTRÓPICO POLIVALENTE SOBRE LAS ACTIVIDADES PROTEOLÍTICAS PRESENTES EN LOS VENENOS DE SERPIENTES PERUANAS Revista Peruana de Medicina Experimental y Salud Pública, vol. 25, núm. 2, 2008, pp. 169-173 Instituto Nacional de Salud Lima, Perú Disponible en: http://www.redalyc.org/articulo.oa?id=36311608002 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Rev Peru Med Exp Salud Publica. 2008; 25(2):169-73. ARTÍCULO ORIGINAL ACCIÓN DEL ANTIVENENO BOTRÓPICO POLIVALENTE SOBRE LAS ACTIVIDADES PROTEOLÍTICAS PRESENTES EN LOS VENENOS DE SERPIENTES PERUANAS Armando Yarlequé1,a, Dan Vivas1,a, Rosío Inga1,a, Edith Rodríguez1,a, Gustavo Adolfo Sandoval1,a, Silvia Pessah2,b, César Bonilla2,a RESUMEN Los venenos de las serpientes peruanas causantes de la mayoría de accidentes ofídicos, contienen enzimas proteolíticas que pueden degradar proteínas tisulares y plasmáticas, así como causar hipotensión y coagulación sanguínea. Objetivos. Evaluar la capacidad inhibitoria del antiveneno botrópico polivalente al estado líquido producido por el Instituto Nacional de Salud del Perú (INS) sobre las actividades caseinolítica, coagulante y amidolítica de los venenos de Bothrops atrox, Bothrops brazili, Bothrops pictus y Bothrops barnetti. Materiales y métodos. Se usaron en cada caso sustratos como caseína, fibrinógeno bovino y el cromógeno benzoil-arginil-p-nitroanilida (BApNA) respectivamente, y se midieron los cambios en los valores de la actividad enzimática a ½, 1 y 2 dosis del antiveneno tanto al estado natural como calentado a 37 °C durante cinco días.
    [Show full text]
  • Xenosaurus Tzacualtipantecus. the Zacualtipán Knob-Scaled Lizard Is Endemic to the Sierra Madre Oriental of Eastern Mexico
    Xenosaurus tzacualtipantecus. The Zacualtipán knob-scaled lizard is endemic to the Sierra Madre Oriental of eastern Mexico. This medium-large lizard (female holotype measures 188 mm in total length) is known only from the vicinity of the type locality in eastern Hidalgo, at an elevation of 1,900 m in pine-oak forest, and a nearby locality at 2,000 m in northern Veracruz (Woolrich- Piña and Smith 2012). Xenosaurus tzacualtipantecus is thought to belong to the northern clade of the genus, which also contains X. newmanorum and X. platyceps (Bhullar 2011). As with its congeners, X. tzacualtipantecus is an inhabitant of crevices in limestone rocks. This species consumes beetles and lepidopteran larvae and gives birth to living young. The habitat of this lizard in the vicinity of the type locality is being deforested, and people in nearby towns have created an open garbage dump in this area. We determined its EVS as 17, in the middle of the high vulnerability category (see text for explanation), and its status by the IUCN and SEMAR- NAT presently are undetermined. This newly described endemic species is one of nine known species in the monogeneric family Xenosauridae, which is endemic to northern Mesoamerica (Mexico from Tamaulipas to Chiapas and into the montane portions of Alta Verapaz, Guatemala). All but one of these nine species is endemic to Mexico. Photo by Christian Berriozabal-Islas. amphibian-reptile-conservation.org 01 June 2013 | Volume 7 | Number 1 | e61 Copyright: © 2013 Wilson et al. This is an open-access article distributed under the terms of the Creative Com- mons Attribution–NonCommercial–NoDerivs 3.0 Unported License, which permits unrestricted use for non-com- Amphibian & Reptile Conservation 7(1): 1–47.
    [Show full text]
  • Blumgart Et Al 2017- Herpetological Survey Nosy Komba
    Journal of Natural History ISSN: 0022-2933 (Print) 1464-5262 (Online) Journal homepage: http://www.tandfonline.com/loi/tnah20 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy To cite this article: Dan Blumgart, Julia Dolhem & Christopher J. Raxworthy (2017): Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar, Journal of Natural History, DOI: 10.1080/00222933.2017.1287312 To link to this article: http://dx.doi.org/10.1080/00222933.2017.1287312 Published online: 28 Feb 2017. Submit your article to this journal Article views: 23 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnah20 Download by: [BBSRC] Date: 21 March 2017, At: 02:56 JOURNAL OF NATURAL HISTORY, 2017 http://dx.doi.org/10.1080/00222933.2017.1287312 Herpetological diversity across intact and modified habitats of Nosy Komba Island, Madagascar Dan Blumgart a, Julia Dolhema and Christopher J. Raxworthyb aMadagascar Research and Conservation Institute, BP 270, Hellville, Nosy Be, Madagascar; bDivision of Vertebrate Zoology, American, Museum of Natural History, New York, NY, USA ABSTRACT ARTICLE HISTORY A six month herpetological survey was undertaken between March Received 16 August 2016 and September 2015 on Nosy Komba, an island off of the north- Accepted 17 January 2017 west coast of mainland Madagascar which has undergone con- KEYWORDS fi siderable anthropogenic modi cation. A total of 14 species were Herpetofauna; conservation; found that have not been previously recorded on Nosy Komba, Madagascar; Nosy Komba; bringing the total island diversity to 52 (41 reptiles and 11 frogs).
    [Show full text]
  • Zoologische Mededelingen Uitgegeven Door Het
    ZOOLOGISCHE MEDEDELINGEN UITGEGEVEN DOOR HET RIJKSMUSEUM VAN NATUURLIJKE HISTORIE TE LEIDEN (MINISTERIE VAN CULTUUR, RECREATIE EN MAATSCHAPPELIJK WERK) Deel 56 no. 10 7 mei 1982 NOMENCLATURAL PROBLEMS RELATING TO ATRACTUS TRILINEATUS WAGLER, 1828 by M. S. HOOGMOED Rijksmuseum van Natuurlijke Historie, Leiden, The Netherlands INTRODUCTION The Rijksmuseum van Natuurlijke Historie material of Brachyorrhos albus (L., 1758), which had been on loan to Dr. S. B. McDowell, New York, was returned to us with the remark that reg.no. RMNH 48 from Java certainly did not belong to that species. Dr. McDowell suggested it might be an Atractus, and following his suggestion I examined this specimen. It soon became evident that Dr. McDowell had been right and that the specimen did belong to Atractus trilineatus Wagler, a species only known from Trinidad, eastern Venezuela and western Guyana (Hoogmoed, 1979: 275). HISTORY The specimen concerned (RMNH 48) belongs to the oldest part of the collec- tion of the RMNH. It turned out to have been investigated by many ancient authors and it was discovered that it is a type specimen of several nominal species. Before trying to reconstruct the history of this specimen it seems useful to give a short description. It is a female with a total length of 205 mm, the snout-vent length is 194 mm, the tail length 11 mm. Ventrals 142, anal undivid- ed, 11 subcaudals in two rows. Upper labials eight, of which the fourth and the fifth touch the eye, two postoculars, no preocular, temporals 1 + 2, lower labials eight, of which four are in contact with the chinshields.
    [Show full text]
  • Quantifying the Conservation Value of Plantation Forests for a Madagascan Herpetofauna
    Herpetological Conservation and Biology 14(1):269–287. Submitted: 6 March 2018; Accepted: 28 March 2019; Published: 30 April 2019. QUANTIFYING THE CONSERVATION VALUE OF PLANTATION FORESTS FOR A MADAGASCAN HERPETOFAUNA BETH EVANS Madagascar Research and Conservation Institute, Nosy Komba, Madagascar current address: 121 Heathway, Erith, Kent DA8 3LZ, UK, email: [email protected] Abstract.—Plantations are becoming a dominant component of the forest landscape of Madagascar, yet there is very little information available regarding the implications of different forms of plantation agriculture for Madagascan reptiles and amphibians. I determined the conservation value of bamboo, secondary, open-canopy plantation, and closed-canopy plantation forests for reptiles and amphibians on the island of Nosy Komba, in the Sambirano region of north-west Madagascar. Assistants and I conducted 220 Visual Encounter Surveys between 29 January 2016 and 5 July 2017 and recorded 3,113 reptiles (32 species) and 751 amphibians (nine species). Closed-canopy plantation supported levels of alpha diversity and community compositions reflective of natural forest, including several threatened and forest-specialist species. Open-canopy plantation exhibited diminished herpetofaunal diversity and a distinct community composition dominated by disturbance-resistant generalist species. Woody tree density and bamboo density were positively correlated with herpetofaunal species richness, and plantation species richness, plantation species density, sapling density, and the proportion of wood ground cover were negatively associated with herpetofaunal diversity. I recommend the integration of closed-canopy plantations on Nosy Komba, and across wider Madagascar, to help mitigate the negative effects of secondary forest conversion for agriculture on Madagascan herpetofauna; however, it will be necessary to retain areas of natural forest to act as sources of biodiversity for agroforestry plantations.
    [Show full text]
  • Controlled Animals
    Environment and Sustainable Resource Development Fish and Wildlife Policy Division Controlled Animals Wildlife Regulation, Schedule 5, Part 1-4: Controlled Animals Subject to the Wildlife Act, a person must not be in possession of a wildlife or controlled animal unless authorized by a permit to do so, the animal was lawfully acquired, was lawfully exported from a jurisdiction outside of Alberta and was lawfully imported into Alberta. NOTES: 1 Animals listed in this Schedule, as a general rule, are described in the left hand column by reference to common or descriptive names and in the right hand column by reference to scientific names. But, in the event of any conflict as to the kind of animals that are listed, a scientific name in the right hand column prevails over the corresponding common or descriptive name in the left hand column. 2 Also included in this Schedule is any animal that is the hybrid offspring resulting from the crossing, whether before or after the commencement of this Schedule, of 2 animals at least one of which is or was an animal of a kind that is a controlled animal by virtue of this Schedule. 3 This Schedule excludes all wildlife animals, and therefore if a wildlife animal would, but for this Note, be included in this Schedule, it is hereby excluded from being a controlled animal. Part 1 Mammals (Class Mammalia) 1. AMERICAN OPOSSUMS (Family Didelphidae) Virginia Opossum Didelphis virginiana 2. SHREWS (Family Soricidae) Long-tailed Shrews Genus Sorex Arboreal Brown-toothed Shrew Episoriculus macrurus North American Least Shrew Cryptotis parva Old World Water Shrews Genus Neomys Ussuri White-toothed Shrew Crocidura lasiura Greater White-toothed Shrew Crocidura russula Siberian Shrew Crocidura sibirica Piebald Shrew Diplomesodon pulchellum 3.
    [Show full text]
  • A Molecular Phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia)
    Zootaxa 1945: 51–66 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) Dissecting the major African snake radiation: a molecular phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia) NICOLAS VIDAL1,10, WILLIAM R. BRANCH2, OLIVIER S.G. PAUWELS3,4, S. BLAIR HEDGES5, DONALD G. BROADLEY6, MICHAEL WINK7, CORINNE CRUAUD8, ULRICH JOGER9 & ZOLTÁN TAMÁS NAGY3 1UMR 7138, Systématique, Evolution, Adaptation, Département Systématique et Evolution, C. P. 26, Muséum National d’Histoire Naturelle, 43 Rue Cuvier, Paris 75005, France. E-mail: [email protected] 2Bayworld, P.O. Box 13147, Humewood 6013, South Africa. E-mail: [email protected] 3 Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium. E-mail: [email protected], [email protected] 4Smithsonian Institution, Center for Conservation Education and Sustainability, B.P. 48, Gamba, Gabon. 5Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802-5301 USA. E-mail: [email protected] 6Biodiversity Foundation for Africa, P.O. Box FM 730, Bulawayo, Zimbabwe. E-mail: [email protected] 7 Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, INF 364, D-69120 Heidelberg, Germany. E-mail: [email protected] 8Centre national de séquençage, Genoscope, 2 rue Gaston-Crémieux, CP5706, 91057 Evry cedex, France. E-mail: www.genoscope.fr 9Staatliches Naturhistorisches Museum, Pockelsstr. 10, 38106 Braunschweig, Germany. E-mail: [email protected] 10Corresponding author Abstract The Elapoidea includes the Elapidae and a large (~60 genera, 280 sp.) and mostly African (including Madagascar) radia- tion termed Lamprophiidae by Vidal et al.
    [Show full text]
  • The Herpetofauna of the Cubango, Cuito, and Lower Cuando River Catchments of South-Eastern Angola
    Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 10(2) [Special Section]: 6–36 (e126). The herpetofauna of the Cubango, Cuito, and lower Cuando river catchments of south-eastern Angola 1,2,*Werner Conradie, 2Roger Bills, and 1,3William R. Branch 1Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood 6013, SOUTH AFRICA 2South African Institute for Aquatic Bio- diversity, P/Bag 1015, Grahamstown 6140, SOUTH AFRICA 3Research Associate, Department of Zoology, P O Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, SOUTH AFRICA Abstract.—Angola’s herpetofauna has been neglected for many years, but recent surveys have revealed unknown diversity and a consequent increase in the number of species recorded for the country. Most historical Angola surveys focused on the north-eastern and south-western parts of the country, with the south-east, now comprising the Kuando-Kubango Province, neglected. To address this gap a series of rapid biodiversity surveys of the upper Cubango-Okavango basin were conducted from 2012‒2015. This report presents the results of these surveys, together with a herpetological checklist of current and historical records for the Angolan drainage of the Cubango, Cuito, and Cuando Rivers. In summary 111 species are known from the region, comprising 38 snakes, 32 lizards, five chelonians, a single crocodile and 34 amphibians. The Cubango is the most western catchment and has the greatest herpetofaunal diversity (54 species). This is a reflection of both its easier access, and thus greatest number of historical records, and also the greater habitat and topographical diversity associated with the rocky headwaters.
    [Show full text]
  • Phylogenetic Relationships of Terrestrial Australo-Papuan Elapid Snakes (Subfamily Hydrophiinae) Based on Cytochrome B and 16S Rrna Sequences J
    MOLECULAR PHYLOGENETICS AND EVOLUTION Vol. 10, No. 1, August, pp. 67–81, 1998 ARTICLE NO. FY970471 Phylogenetic Relationships of Terrestrial Australo-Papuan Elapid Snakes (Subfamily Hydrophiinae) Based on Cytochrome b and 16S rRNA Sequences J. Scott Keogh,*,†,1 Richard Shine,* and Steve Donnellan† *School of Biological Sciences A08, University of Sydney, Sydney, New South Wales 2006, Australia; and †Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia Received April 24, 1997; revised September 4, 1997 quence data support many of the conclusions reached Phylogenetic relationships among the venomous Aus- by earlier studies using other types of data, but addi- tralo-Papuan elapid snake radiation remain poorly tional information will be needed before the phylog- resolved, despite the application of diverse data sets. eny of the Australian elapids can be fully resolved. To examine phylogenetic relationships among this ௠ 1998 Academic Press enigmatic group, portions of the cytochrome b and 16S Key Words: mitochondrial DNA; cytochrome b; 16S rRNA mitochondrial DNA genes were sequenced from rRNA; reptile; snake; elapid; sea snake; Australia; New 19 of the 20 terrestrial Australian genera and 6 of the 7 Guinea; Pacific; Asia; biogeography. terrestrial Melanesian genera, plus a sea krait (Lati- cauda) and a true sea snake (Hydrelaps). These data clarify several significant issues in elapid phylogeny. First, Melanesian elapids form sister groups to Austra- INTRODUCTION lian species, indicating that the ancestors of the Austra- lian radiation came via Asia, rather than representing The diverse, cosmopolitan, and medically important a relict Gondwanan radiation. Second, the two major elapid snakes are a monophyletic clade of approxi- groups of sea snakes (sea kraits and true sea snakes) mately 300 species and 61 genera (Golay et al., 1993) represent independent invasions of the marine envi- primarily defined by their unique venom delivery sys- ronment.
    [Show full text]
  • Marine Reptiles Arne R
    Virginia Commonwealth University VCU Scholars Compass Study of Biological Complexity Publications Center for the Study of Biological Complexity 2011 Marine Reptiles Arne R. Rasmessen The Royal Danish Academy of Fine Arts John D. Murphy Field Museum of Natural History Medy Ompi Sam Ratulangi University J. Whitfield iG bbons University of Georgia Peter Uetz Virginia Commonwealth University, [email protected] Follow this and additional works at: http://scholarscompass.vcu.edu/csbc_pubs Part of the Life Sciences Commons Copyright: © 2011 Rasmussen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Downloaded from http://scholarscompass.vcu.edu/csbc_pubs/20 This Article is brought to you for free and open access by the Center for the Study of Biological Complexity at VCU Scholars Compass. It has been accepted for inclusion in Study of Biological Complexity Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Review Marine Reptiles Arne Redsted Rasmussen1, John C. Murphy2, Medy Ompi3, J. Whitfield Gibbons4, Peter Uetz5* 1 School of Conservation, The Royal Danish Academy of Fine Arts, Copenhagen, Denmark, 2 Division of Amphibians and Reptiles, Field Museum of Natural History, Chicago, Illinois, United States of America, 3 Marine Biology Laboratory, Faculty of Fisheries and Marine Sciences, Sam Ratulangi University, Manado, North Sulawesi, Indonesia, 4 Savannah River Ecology Lab, University of Georgia, Aiken, South Carolina, United States of America, 5 Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America Of the more than 12,000 species and subspecies of extant Caribbean, although some species occasionally travel as far north reptiles, about 100 have re-entered the ocean.
    [Show full text]
  • Download Download
    HAMADRYAD Vol. 27. No. 2. August, 2003 Date of issue: 31 August, 2003 ISSN 0972-205X CONTENTS T. -M. LEONG,L.L.GRISMER &MUMPUNI. Preliminary checklists of the herpetofauna of the Anambas and Natuna Islands (South China Sea) ..................................................165–174 T.-M. LEONG & C-F. LIM. The tadpole of Rana miopus Boulenger, 1918 from Peninsular Malaysia ...............175–178 N. D. RATHNAYAKE,N.D.HERATH,K.K.HEWAMATHES &S.JAYALATH. The thermal behaviour, diurnal activity pattern and body temperature of Varanus salvator in central Sri Lanka .........................179–184 B. TRIPATHY,B.PANDAV &R.C.PANIGRAHY. Hatching success and orientation in Lepidochelys olivacea (Eschscholtz, 1829) at Rushikulya Rookery, Orissa, India ......................................185–192 L. QUYET &T.ZIEGLER. First record of the Chinese crocodile lizard from outside of China: report on a population of Shinisaurus crocodilurus Ahl, 1930 from north-eastern Vietnam ..................193–199 O. S. G. PAUWELS,V.MAMONEKENE,P.DUMONT,W.R.BRANCH,M.BURGER &S.LAVOUÉ. Diet records for Crocodylus cataphractus (Reptilia: Crocodylidae) at Lake Divangui, Ogooué-Maritime Province, south-western Gabon......................................................200–204 A. M. BAUER. On the status of the name Oligodon taeniolatus (Jerdon, 1853) and its long-ignored senior synonym and secondary homonym, Oligodon taeniolatus (Daudin, 1803) ........................205–213 W. P. MCCORD,O.S.G.PAUWELS,R.BOUR,F.CHÉROT,J.IVERSON,P.C.H.PRITCHARD,K.THIRAKHUPT, W. KITIMASAK &T.BUNDHITWONGRUT. Chitra burmanica sensu Jaruthanin, 2002 (Testudines: Trionychidae): an unavailable name ............................................................214–216 V. GIRI,A.M.BAUER &N.CHATURVEDI. Notes on the distribution, natural history and variation of Hemidactylus giganteus Stoliczka, 1871 ................................................217–221 V. WALLACH.
    [Show full text]