<<

Paper : 05 Metabolism of Lipids Module: 25 Oxidation of Lipids V

Principal Investigator Dr. Sunil Kumar Khare, Professor,

Department of Chemistry, IIT-Delhi

Paper Coordinator and Dr. Suaib Luqman, Scientist (CSIR-CIMAP) Content Writer & Assistant Professor (AcSIR) CSIR-CIMAP, Lucknow

Content Reviewer Prof. Prashant Mishra, Professor, Department of Biochemical Engineering

andDr. Biotechnology, Vijaya Khader IIT-Delhi Dr. MC Varadaraj

1

METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V

DESCRIPTION OF MODULE

Subject Name Biochemistry

Paper Name 05 Metabolism of Lipids

Module Name/Title 25 Lipids-Oxidation V

2

METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V

1. Objectives

 To understand the and bodies formation

 How is dilapidated

 What is the fate of phospholipids, sphingomyelin degradation

2. Concept Map

3

METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V

3. Description

Ketone bodies and the Ketosis Phenomenon

In the normal animal degradation and synthesis proceed without significant accumulation of

intermediates. Under some circumstances certain products accumulate in the blood which is traditionally but

inaccurately termed “”. These are acetoacetic acid, β-hydroxybutyric acid and . All these

products stem from acetoacetyl CoA, a normal intermediate in the oxidation of fatty acid. Moreover it is readily

formed by the reversal of the reaction.

2 Acetyl CoA Acetoacetyl Coa + CoA

The major fate of acetoacetyl CoA in liver is conversion to β-hydroxy-β-methylglutaryl CoA, an important

intermediate in the biogenesis of cholesterol and and in the degradation of .

The two carbon fragments (acetyl-Co A) derived from β-oxidation may then enter the for

complete oxidation or they may recombine (condense) to form acetoacetyl-Co A (active acetoacetate) and other

. The production of ketone bodies under normal conditions is minimal rather acetyl-CoA condenses with

oxaloacetate and enters the citric acid cycle for complete oxidation. Acetoacetyl-CoA is readily converted in the

liver to free acetoacetic acid because this organ only contains deacylase. The free acetoacetic acid then diffuses

into the blood and is carried to the peripheral tissues where it may then be oxidized. This is depicted in the figure

below.

4

METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V

Fate of Acetyl CoA and Acetoacetyl CoA

β-Ketothiolase

CH3-CO~S-CoA + CH3-CO~S-CoA CH3-CO-CH2-CO~S-CoA + CoA.SH

2 moles of acetyl CoA Acetoacetyl-CoA Free CoA

Deacylase

CH3-CO-CH2-CO~S-CoA CH3-CO-CH2-COOH + CoA.SH Liver only Acetoacetyl-CoA Free acetoacetic acid

CH3-CO-CH 2-CO~S-CoA + CH3-CO-CH 2-CO~S-CoA + H2O

COOH-CH2-C-(OH) (CH3)- CH 2-CO~S-CoA + CoA.SH

5

METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V

6

METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V

Pathways of Ketogenesis in Liver

Although the parent compound of the ketone bodies, acetoacetyl CoA, is a normal intermediate in both fatty acid

degradation and cholesterol synthesis, certain facets of its metabolism merit special mention, particularly

because of its importance in ketosis. In figure some of the primary interrelationships of lipid metabolism are

shown. The key factors would appear to be the central role of acetyl CoA and β-hydroxy-β-methylglutaryl CoA.

In the case of acetyl CoA, the three major fates are oxidation cia the citric acid cycle, formation of acetoacetyl

CoA, and synthesis of fatty acids, primarily via the malonyl CoA pathway. The release of acetoacetate by liver

is a continuing normal process. The total ketone body concentration in blood, expressed as β-hydroxybutyrate, is

normally 1mg per 100 mL and the average total daily excretion in the urine is approximately 20mg. This is

because of efficient mechanism for removal of acetoacetic acid by peripheral tissues, especially muscle which

can derive a sizable fraction of its total energy requirement from this nutrient. In order to be utilized acetoacetic

acid must first be reconverted into its CoA derivative by transfer of a CoA residue from succinyl CoA by the

action of a specific thiophorase. The acetoaceyl Coa thus formed may then be cleaved by thiolase yielding two

molecules of acetyl CoA which then enter the citric acid cycle.

7

METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V

Ketone Bodies Synthesis in Liver and its Use in Peripheral Tissues

An elevation of the concentration of ketone bodies in the blood above normal levels is called ketonemia. If the

blood level exceeds the renal threshold and appreciable amounts of ketone bodies appear in the urine,

is said to exist. Of the ketone bodies, acetone alone has a significant vapour pressure, and whenever a marked

degree of ketonemia and ketonuria exist, the odor of acetone is likely to be detected in the exhaled air. This triad

of ketonemia, ketonuria and acetone odor of the breath is commonly termed ketosis.

Causes of Ketosis

A diminution in the quantity of carbohydrate catabolised may cause ketosis. Perhaps the most readily understood

condition is starvation. When no food is allowed, the organism rapidly consumes its own stores of glycogen in

the liver, and thereafter it survives largely upon energy derived from its depot lipid. A starvation result in a

lipemia which reflects migration of excessive quantities of lipid from the depots to the liver, and this in turn

produces a fatty liver. The degradation of fatty acids in the liver proceeds at greater than usual rate. As a

consequence, there is a pleothora of acetoacetyl Coa, which results in an excess of acetoacetate and its products,

acetone and β-hydroxybutyrate. Ketone incident to starvation is most frequently encountered clinically in

gastrointestinal disturbances in infancy or pregnancy.

8

METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V

Ketone Bodies: Formation, Utilization and Excretion

9

METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V

Cholesterol Degradation

Direct degradation of cholesterol does not occur because of the ring structure, therefore its elimination is the

possible way to regulate it yet before elimination it is converted to bile acids and bile salts which are excreted

through feces. Little cholesterol is modified by bacteria before excretion in the intestine. A large portion of the

cholesterol in lymph and in blood plasma is found in chylomicra.

10

METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V

Structure of cholesterol and its ester

Since the dispersed fate of these fat droplets is due chiefly to their content in phosphatide, it is not surprising that

the ratio of phosphatide to cholesterol in the blood remains fairly constant. Of the cholesterol in plasma, roughly

to thirds exists esterified with fatty acids. The maintenance of this ratio is a function of liver, and decreases in

this value due to lowering of cholesterol ester concentration are seen in liver disease. The liver serves both as the

chief synthetic source and the chief agent for disposal of plasma cholesterol, a portion of that removed from the

blood appearing in the bile.

Enterohepatic circulation of bile salts and bile acids

Though sparingly soluble in water, cholesterol readily dissolves in aqueos bile salt solutions, probably because

of the formation of choleric acids, soecific coordination compounds of bile acids and sterols. In the gall bladder,

both water and bile salts are reabsorbed by the action of the cholecystic mucosa and if this process continues

excessively, cholesterol crystals separate from the bile. Either biliary stasis or inflammatory disease of the gall

bladder can lead to this situation. Concretions made of chiefly of cholesterol crystals are among the common 11

METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V

calculi of the biliary duct, the disease being termed cholelithiasis. Such calculi in the gall bladder may be

undetected (silent), but if they descend the biliary tract and particularly if they occlude the common bile duct, a

variety of clinically important events ensue. Cholesterol enters the intestinal tract by direct excretion across the

intestinal mucosa as well as via the bile. In the lumen of the gut a portion is reduced microbially to coprosterol

via the following steps and thereby excluded from reabsorption.

Catabolism of Cholesterol  Conversion to bile acids

Only a fraction of the cholesterol metabolized daily is excreted as sterols in the faeces. Virtually none appears in

the urine. It emerges that cholesterol serves as precursors for a variety of biologically important structurally

related steroids.

Gallbladder with gallstones

12

METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V

Approximately 80% of the cholesterol metabolized is transformed by liver tissues into various bile acids.

Experimental evidence indicates that hydroxylation of cholesterol is more or less completed before the

degradation of the side chain is finished.

Synthesis of HMG-CoA

13

METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V

14

METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V

Degradation of Phospholipids

Phosphoglyceride degradation occurs by the action of phospholipase. Phospholipases serve as messenger for

example IP3 and DAG or arachidonic acid which is acted by COX and LOX to generate a variety of signaling

molecules. Phospholipase A1 and A2 cleave fatty acids from membrane bound phospholipids that can be

replaced by different fatty acid through the catalysis of fatty acyl CoA transferase. This mode is one of the route

to create unique lung surfactant, DPCC [Dipalmitoylphosphatidylcholine].

Degradation of Sphingomyelin

It is degradaed by sphingomyelinase which is a lysosomal enzyme catalyzing a hydrolytic removal of

phosphorylcholine leaving behind ceramide. Ceramide is degraded by ceramidase into sphingosine and free fatty

acid. Both the sphingosine and ceramide regulate signal transduction pathways and thus influences Protein

kinase C promoting apoptosis. Niemann-Pick disease is caused by the defect in catalyzing sphingomyelin and it

is an autosomal recessive disease. The enzyme responsible is sphingomyelinase (a type of phospholipase C).

Infants with lysosomal storage disease containing sphingomyelin in the central nervous system die early

Bile acids and Bile salts

Bile consists of a watery mixture of inorganic and organic molecules. The organic part consists of mainly

phosphatidylcholine and bile salts (conjugated form of bile acids). Bile salts are the only means for cholesterol

degradation both as a solubilizer of cholesterol in bile as well as metabolic product of cholesterol.

15

METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V

4. Summary

In this lecture we learnt about:

 The formation of ketone bodies and ketosis phenomenon.

 How cholesterol is broken down.

 The fate of phospholipid, sphingomyelin and bile acid/salts. Catabolism.

16

METABOLISM OF LIPIDS Biochemistry Lipids-Oxidation V