Detection and Formation Scenario of Citric Acid, Pyruvic Acid, and Other Possible Metabolism Precursors in Carbonaceous Meteorites

Total Page:16

File Type:pdf, Size:1020Kb

Detection and Formation Scenario of Citric Acid, Pyruvic Acid, and Other Possible Metabolism Precursors in Carbonaceous Meteorites Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites George Coopera,1, Chris Reeda, Dang Nguyena, Malika Cartera, and Yi Wangb aExobiology Branch, Space Science Division, National Aeronautics and Space Administration-Ames Research Center, Moffett Field, CA 94035; and bDevelopment, Planning, Research, and Analysis/ZymaX Forensics Isotope, 600 South Andreasen Drive, Suite B, Escondido, CA 92029 Edited by David Deamer, University of California, Santa Cruz, CA, and accepted by the Editorial Board July 1, 2011 (received for review April 12, 2011) Carbonaceous meteorites deliver a variety of organic compounds chained three-carbon (3C) pyruvic acid through the eight-carbon to Earth that may have played a role in the origin and/or evolution (8C) 7-oxooctanoic acid and the branched 6C acid, 3-methyl- of biochemical pathways. Some apparently ancient and critical 4-oxopentanoic acid (β-methyl levulinic acid), Fig. 1, Table S1. metabolic processes require several compounds, some of which 2-methyl-4-oxopenanoic acid (α-methyl levulinic acid) is tenta- are relatively labile such as keto acids. Therefore, a prebiotic setting tively identified (i.e., identified by mass spectral interpretation for any such individual process would have required either a only). As a group, these keto acids are relatively unusual in that continuous distant source for the entire suite of intact precursor the ketone carbon is located in a terminal-acetyl group rather molecules and/or an energetic and compact local synthesis, parti- than at the second carbon as in most of the more biologically cularly of the more fragile members. To date, compounds such as familiar α-keto acids (e.g., α-keto butyric acid, etc.). Several pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α- additional tentatively identified keto monoacids (Fig. S1A; not ketoglutaric acid (all members of the citric acid cycle) have not been all are indicated) also appear to be terminal-acetyl acids based identified in extraterrestrial sources or, as a group, as part of a “one on the similarity of their mass spectra. The straight-chained keto pot” suite of compounds synthesized under plausibly prebiotic acids are more abundant than their branched isomers: a qualita- conditions. We have identified these compounds and others in tive similarity to the suite of dicarboxylic acids (7) and dicar- GEOPHYSICS carbonaceous meteorites and/or as low temperature (laboratory) boxylic acid amides (8) in Murchison. A keto dicarboxylic acid reaction products of pyruvic acid. In meteorites, we observe many (and dimer of pyruvic acid), 4-hydroxy-4-methyl-2-ketoglutaric as part of three newly reported classes of compounds: keto acids acid (parapyruvic acid), is identified based on GC-MS interpreta- (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid tion of pyruvate reaction products (see below). This compound and homologs), and tricarboxylic acids. Laboratory syntheses using 13 forms readily and is abundant in pyruvate solutions: it is a long C-labeled reactants demonstrate that one compound alone, pyru- known pyruvate condensation product (9–12). To date, the most vic acid, can produce several (nonenzymatic) members of the citric notable report of possible self-condensation products of organic acid cycle including oxaloacetic acid. The isotopic composition of compounds in meteorites involves the glycine peptide glycyl-gly- some of the meteoritic keto acids points to interstellar or presolar cine and its cyclic form, diketopiperazine. They were seen in small origins, indicating that such compounds might also exist in other amounts in the Yamato-791198 and Murchison meteorites (13). planetary systems. In the present samples α-ketoglutaric acid (2-ketoglutaric acid or 2-oxoglutaric acid) is also a likely constituent based on GC pyruvate ∣ citrate ∣ Murchison meteorite ∣ Alan Hills ∣ interstellar nitriles retention time and the presence of its major fragment ion (Mþ-57 ¼ 431 amu) (see Fig. S1B legend) however its total mass oluble organic compounds detected in carbonaceous meteor- spectrum is less definite than other compounds—due either to Sites include amino acids, carboxylic acids, mono- and poly – low abundances in the samples or low analytical recoveries. hydroxy carboxylic acids, and nitrogen heterocycles (1 3). How- Oxaloacetic acid (Fig. 2B) is possibly present: the GC retention ever, absent from the list of meteoritic organic compounds are time and major ion (417) of oxaloacetic acid (tBDMS derivative) keto acids (e.g., pyruvic acid, acetoacetic acid) and citric acid and matches a compound in ALH 83102, Murray, and Murchison but homologous compounds. Some of these compounds are critically the meteoritic spectra are weaker than those of α-ketoglutaric important to biological processes such as glycolysis and the citric acid: specific analysis for oxaloacetic acid (a labile compound) acid (or “tricarboxylic acid”) cycle—processes considered to be must be done. In a review of GC-MS data from several previous among the earliest in the history of life (4). Using gas chromato- extracts we have observed at least small amounts of the majority graphy-mass spectrometry (GC-MS) to analyze extracts of multi- ple carbonaceous meteorites including Murchison, Murray and of the keto acids in Fig. 1 (including pyruvic acid and acetoacetic acid) even though the analytical procedures (see Materials and Allan Hills (ALH) 83102, we have identified homologous series Methods of keto acids, tricarboxylic acids, and hydroxy tricarboxylic acids ) were usually meant for general identifications and in (Fig. 1). Below, “identified” compounds refers to those whose many cases deleterious to some keto acids. Therefore, we cannot GC retention times and mass spectra match those of laboratory rule out the presence of other keto acids. standards. The vast majority of the compounds have been iden- Pyruvic acid recovered from ALH 83102 corresponds to 15 ∕ tified in several meteorite extracts and as multiple volatile deri- approximately nmole gram. The concentration of its larger vatives: tert-butyldimethylsilyl (tBDMS), trimethylsilyl (TMS), and isopropyl ester (ISP). Although drawn in the acid forms, all Author contributions: G.C. designed research; G.C., C.R., D.N., M.C., and Y.W. performed compounds are salts in the meteorites due to the generally neu- research; Y.W. contributed new reagents/analytic tools; G.C., C.R., D.N., M.C., and Y.W. tral-alkaline conditions of aqueous alteration on the meteorite analyzed data; and G.C. wrote the paper. parent body (5, 6). The authors declare no conflict of interest. This article is a PNAS Direct Submission. D.D. is a guest editor invited by the Editorial Board. Results and Discussion 1To whom correspondence should be addressed. E-mail: [email protected]. Meteoritic Keto Acids. As a suite, keto monoacids were ubiquitous This article contains supporting information online at www.pnas.org/lookup/suppl/ in examined meteorites. Identified members are the straight- doi:10.1073/pnas.1105715108/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1105715108 PNAS Early Edition ∣ 1of6 Downloaded by guest on September 26, 2021 Fig. 1. Compounds indentified in carbonaceous meteorites. Several more related compounds are tentatively identified (Fig. S1A). homolog, levulinic acid, recovered from ALH 83102 and the concentration of citric acid in one sample of Murchison is Murchison is approximately 45 and 5.4 nmole∕gram, respectively approximately 55 pmole∕gram (Table S1). (Table S1). In most homologous series of compounds in meteor- ites the lower molecular weight (MW) members are usually more Meteoritic Tri- and Tetracarboxylic Acids. Identified tricarboxylic abundant—the exception here in ALH 83102 may be due to the acids are shown in Fig. 1. 1, 2, 3-propanetricarboxylic acid (tri- much greater reactivity (on the meteorite parent body) of pyru- carballylic acid) at approximately 2 nmole∕gram in ALH 83102 vate (see pyruvate reactions below). Reactivity may also account and 371 pmole/gram in Murchison is the dominant member of for the apparently low amount of oxaloacetic acid (if this com- the series: it is much less abundant than succinic acid, the most pound is confirmed). In order to perform isotope measurements abundant meteoritic dicarboxylic acid (2). The tricarboxylic on some keto acids, the keto acid extract shown in Fig. S1A was acids consist of at least 25 members and extend to at least 10C Materials and Methods (Fig. S1A; not all identified homologs are shown). As with the further purified by ion chromatography ( ) “ ” to isolate individual compounds (e.g., Fig. S2). We measured keto monoacids the straight-chained (referring to the noncar- the 13C∕12C values of levulinic acid, 5-oxo-hexanoic acid, and boxyl carbons) compounds apparently predominate. The one ob- served tetracarboxylic acid (1, 2, 3, 4-butanetetracarboxylic acid) 6-oxo-heptanoic acid, and the D/H ratio of levulinic acid; all were (Fig. 1), to date, has been seen in only one extract. However, the from Murchison and were measured as their TMS derivatives. analytical procedures used, generally for lower molecular weight The resulting δ13C values (‰) were þ17.04, þ15.24, and þ12.94, compounds, must be developed or changed to search specifically respectively; the δD of levulinic acid was þ425‰ (Table S1). for other possible tetracarboxylic acids. All of these values are more positive than the typical range of ’ Earth s organic compounds and point to low temperature extra- Interstellar Formation Mechanisms. Although there may be multiple δ13 terrestrial synthesis (2). The C values are comparable to values formation mechanisms for all soluble meteoritic organic com- of meteoritic amino acids having the same carbon number. The pounds, the chemistry of interstellar nitriles, HCN/CN, ketene, δD value of levulinic acid is near the lower end of the range of and water may have played an important role in the formation of values for meteoritic carboxylic acids (2). at least some compound classes (Fig. 2A). A range of straight- chained nitriles (e.g., CCN, HCCN, CCCN, etc.), ketene, CN, Meteoritic Hydroxy Tricarboxylic Acids.
Recommended publications
  • Antioxidants and Second Messengers of Free Radicals
    antioxidants Antioxidants and Second Messengers of Free Radicals Edited by Neven Zarkovic Printed Edition of the Special Issue Published in Antioxidants www.mdpi.com/journal/antioxidants Antioxidants and Second Messengers of Free Radicals Antioxidants and Second Messengers of Free Radicals Special Issue Editor Neven Zarkovic MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Neven Zarkovic Rudjer Boskovic Institute Croatia Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Antioxidants (ISSN 2076-3921) from 2018 (available at: https://www.mdpi.com/journal/ antioxidants/special issues/second messengers free radicals) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-533-5 (Pbk) ISBN 978-3-03897-534-2 (PDF) c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Preface to ”Antioxidants and Second Messengers of Free Radicals” ................ ix Neven Zarkovic Antioxidants and Second Messengers of Free Radicals Reprinted from: Antioxidants 2018, 7, 158, doi:10.3390/antiox7110158 ...............
    [Show full text]
  • US EPA Inert (Other) Pesticide Ingredients
    U.S. Environmental Protection Agency Office of Pesticide Programs List of Inert Pesticide Ingredients List 3 - Inerts of unknown toxicity - By Chemical Name UpdatedAugust 2004 Inert Ingredients Ordered Alphabetically by Chemical Name - List 3 Updated August 2004 CAS PREFIX NAME List No. 6798-76-1 Abietic acid, zinc salt 3 14351-66-7 Abietic acids, sodium salts 3 123-86-4 Acetic acid, butyl ester 3 108419-35-8 Acetic acid, C11-14 branched, alkyl ester 3 90438-79-2 Acetic acid, C6-8-branched alkyl esters 3 108419-32-5 Acetic acid, C7-9 branched, alkyl ester C8-rich 3 2016-56-0 Acetic acid, dodecylamine salt 3 110-19-0 Acetic acid, isobutyl ester 3 141-97-9 Acetoacetic acid, ethyl ester 3 93-08-3 2'- Acetonaphthone 3 67-64-1 Acetone 3 828-00-2 6- Acetoxy-2,4-dimethyl-m-dioxane 3 32388-55-9 Acetyl cedrene 3 1506-02-1 6- Acetyl-1,1,2,4,4,7-hexamethyl tetralin 3 21145-77-7 Acetyl-1,1,3,4,4,6-hexamethyltetralin 3 61788-48-5 Acetylated lanolin 3 74-86-2 Acetylene 3 141754-64-5 Acrylic acid, isopropanol telomer, ammonium salt 3 25136-75-8 Acrylic acid, polymer with acrylamide and diallyldimethylam 3 25084-90-6 Acrylic acid, t-butyl ester, polymer with ethylene 3 25036-25-3 Acrylonitrile-methyl methacrylate-vinylidene chloride copoly 3 1406-16-2 Activated ergosterol 3 124-04-9 Adipic acid 3 9010-89-3 Adipic acid, polymer with diethylene glycol 3 9002-18-0 Agar 3 61791-56-8 beta- Alanine, N-(2-carboxyethyl)-, N-tallow alkyl derivs., disodium3 14960-06-6 beta- Alanine, N-(2-carboxyethyl)-N-dodecyl-, monosodium salt 3 Alanine, N-coco alkyl derivs.
    [Show full text]
  • Detection and Formation Scenario of Citric Acid, Pyruvic Acid, and Other Possible Metabolism Precursors in Carbonaceous Meteorites
    Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites George Coopera,1, Chris Reeda, Dang Nguyena, Malika Cartera, and Yi Wangb aExobiology Branch, Space Science Division, National Aeronautics and Space Administration-Ames Research Center, Moffett Field, CA 94035; and bDevelopment, Planning, Research, and Analysis/ZymaX Forensics Isotope, 600 South Andreasen Drive, Suite B, Escondido, CA 92029 Edited by David Deamer, University of California, Santa Cruz, CA, and accepted by the Editorial Board July 1, 2011 (received for review April 12, 2011) Carbonaceous meteorites deliver a variety of organic compounds chained three-carbon (3C) pyruvic acid through the eight-carbon to Earth that may have played a role in the origin and/or evolution (8C) 7-oxooctanoic acid and the branched 6C acid, 3-methyl- of biochemical pathways. Some apparently ancient and critical 4-oxopentanoic acid (β-methyl levulinic acid), Fig. 1, Table S1. metabolic processes require several compounds, some of which 2-methyl-4-oxopenanoic acid (α-methyl levulinic acid) is tenta- are relatively labile such as keto acids. Therefore, a prebiotic setting tively identified (i.e., identified by mass spectral interpretation for any such individual process would have required either a only). As a group, these keto acids are relatively unusual in that continuous distant source for the entire suite of intact precursor the ketone carbon is located in a terminal-acetyl group rather molecules and/or an energetic and compact local synthesis, parti- than at the second carbon as in most of the more biologically cularly of the more fragile members.
    [Show full text]
  • Crystallization of Malonic and Succinic Acids on Sams: Toward the General Mechanism of Oriented Nucleation on Organic Monolayers†
    pubs.acs.org/Langmuir © 2009 American Chemical Society Crystallization of Malonic and Succinic Acids on SAMs: Toward the General Mechanism of Oriented Nucleation on Organic Monolayers† Boaz Pokroy,‡ Victoria Fay Chernow, and Joanna Aizenberg* School of Engineering and Applied Sciences, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138. ‡ Current address: Department of Materials Engineering, Israel Institute of Technology, Haifa 32000, Israel. Received July 25, 2009. Revised Manuscript Received September 2, 2009 Self-assembled monolayers (SAMs) were shown to induce very specific oriented growth of simple organic and inorganic crystals. Here we present a detailed study of the mechanism by which SAMs control the oriented nucleation by examining a more complex case of crystallization of bifunctional organic molecules. Malonic and succinic acids were grown on the SAMs of HS(CH2)10CO2H and HS(CH2)11CO2H supported on gold films. Each SAM induced a very controlled, specific orientation of the crystals. The preferred nucleating planes always exhibited an alignment of one of the carboxylic acid groups in the molecules of the growing crystal with the carboxylic acid groups on the surface of the SAMs. These results suggest that the translation of the structural information through the interface occurs by stereochemical registry such that the functional groups in the SAM play the role of an oriented surrogate layer for the nucleating crystal. These findings are very important to the understanding of the underlying principles by which various organic surfaces;and most probably also biological templates;control the crystallization process. Introduction templates to control the formation of both organic and inorganic An understanding of crystal nucleation and growth and the materials.
    [Show full text]
  • Succinic Acid
    ENVIRONMENTAL FACTSHEET: SUCCINIC ACID PRODUCT INFORMATION Succinic acid (COOH(CH2)2COOH) is a carboxylic acid used in food (as an acidulant), pharmaceutical (as an excipient), personal care (soaps) and chemical (pesticides, dyes and lacquers) industries. Bio-based succinic acid is seen as an important platform chemical for the production of biodegradable plastics and as a substitute of several chemicals (such as adipic acid) [1]. Lignocellulosic Crops and Starch Crops Sugar Crops Today succinic acid is mainly produced Type of Type Biomass Residues from fossil resources through maleic acid hydrogenation. It can also be produced through fermentation of sugars. In that Cultivation and Harvesting case, in addition to succinic acid, other Biomass carboxylic acids (such as lactic acid, formic Production acid, propionic acid) and alcohols (such as ethanol) are also obtained. The production Starch Sugar Pretreatment Extraction & Extraction & ratios of these by-product compounds Separation Separation depend on the microorganism strain used and on the operation conditions. Several Hemicellulose Food Food Feed companies and industrial consortiums Lignin Cellulose Starch Feed Saccharose started bio-based production of succinic acid at demonstration scale (up to 70 ktonnes/year of full capacity, per Hydrolysis production plant [2]). Two strategies are being used for succinic acid fermentation [1]: (1) Use of bacteria strains, isolated Glucose from rumen. This strains are excellent Biomass Conversion Biomass natural succinic acid producers and their yields can be improved, though metabolic engineering; (2) Use of well-known Fermentation industrial microorganisms (such as Escherichia coli or Saccharomyces cervisiae) and modify their minor succinic acid production capability into high yields Succinic Acid through metabolic engineering.
    [Show full text]
  • Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses
    life Review Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses Inseok Choi , Hyewon Son and Jea-Hyun Baek * School of Life Science, Handong Global University, Pohang, Gyeongbuk 37554, Korea; [email protected] (I.C.); [email protected] (H.S.) * Correspondence: [email protected]; Tel.: +82-54-260-1347 Abstract: The tricarboxylic acid cycle (TCA) is a series of chemical reactions used in aerobic organisms to generate energy via the oxidation of acetylcoenzyme A (CoA) derived from carbohydrates, fatty acids and proteins. In the eukaryotic system, the TCA cycle occurs completely in mitochondria, while the intermediates of the TCA cycle are retained inside mitochondria due to their polarity and hydrophilicity. Under cell stress conditions, mitochondria can become disrupted and release their contents, which act as danger signals in the cytosol. Of note, the TCA cycle intermediates may also leak from dysfunctioning mitochondria and regulate cellular processes. Increasing evidence shows that the metabolites of the TCA cycle are substantially involved in the regulation of immune responses. In this review, we aimed to provide a comprehensive systematic overview of the molecular mechanisms of each TCA cycle intermediate that may play key roles in regulating cellular immunity in cell stress and discuss its implication for immune activation and suppression. Keywords: Krebs cycle; tricarboxylic acid cycle; cellular immunity; immunometabolism 1. Introduction The tricarboxylic acid cycle (TCA, also known as the Krebs cycle or the citric acid Citation: Choi, I.; Son, H.; Baek, J.-H. Tricarboxylic Acid (TCA) Cycle cycle) is a series of chemical reactions used in aerobic organisms (pro- and eukaryotes) to Intermediates: Regulators of Immune generate energy via the oxidation of acetyl-coenzyme A (CoA) derived from carbohydrates, Responses.
    [Show full text]
  • Production of Succinic Acid by E.Coli from Mixtures of Glucose
    2005:230 CIV MASTER’S THESIS Production of Succinic Acid by E. coli from Mixtures of Glucose and Fructose ANDREAS LENNARTSSON MASTER OF SCIENCE PROGRAMME Chemical Engineering Luleå University of Technology Department of Chemical Engineering and Geosciences Division of Biochemical and Chemical Engineering 2005:230 CIV • ISSN: 1402 - 1617 • ISRN: LTU - EX - - 05/230 - - SE Abstract Succinic acid, derived from fermentation of renewable feedstocks, has the possibility of replacing petrochemicals as a building block chemical. Another interesting advantage with biobased succinic acid is that the production does not contribute to the accumulation of CO2 to the environment. The produced succinic acid can therefore be considered as a “green” chemical. The bacterium used in this project is a strain of Escherichia coli called AFP184 that has been metabolically engineered to produce succinic acid in large quantities from glucose during anaerobic conditions. The objective with this thesis work was to evaluate whether AFP184 can utilise fructose, both alone and in mixtures with glucose, as a carbon source for the production of succinic acid. Hydrolysis of sucrose yields a mixture of fructose and glucose in equal ratio. Sucrose is a common sugar and the hydrolysate is therefore an interesting feedstock for the production of succinic acid. Fermentations with an initial sugar concentration of 100 g/L were conducted. The sugar ratios used were 100 % fructose, 100 % glucose and a mixture with 50 % fructose and glucose, respectively. The fermentation media used was a lean, low- cost media based on corn steep liquor and a minimal addition of inorganic salts. Fermentations were performed with a 12 L bioreactor and the acid and sugar concentrations were analysed with an HPLC system.
    [Show full text]
  • Oxaloacetate As the Hill Oxidant in Mesophyll Cells of Plants Possessing
    Proc. Nat. Acad. Sci. USA Vol. 70, No. 12, Part II, pp. 3730-3734, December 1973 Oxaloacetate as the Hill Oxidant in Mesophyll Cells of Plants Possessing the C4-Dicarboxylic Acid Cycle of Leaf Photosynthesis (CO2 fixation/uncoupler/photochemical reactions/electron transport/02 evolution) MARVIN L. SALIN, WILBUR H. CAMPBELL, AND CLANTON C. BLACK, JR. Department of Biochemistry, University of Georgia, Athens, Ga. 30602 Communicated by Harland G. Wood, August 16, 1973 ABSTRACT Isolated mesophyll cells from leaves of NADP+-dependent malic dehydrogenase (10) is in the meso- plants that use the C4 dicarboxylic acid pathway of CO2 fixation have been used to demonstrate that oxaloacetic phyll cells (9, 11). Therefore, one could reason that in meso- acid reduction to malic acid is coupled to the photo- phyll cells the carboxylation of PEP should be coupled to the chemical evolution of oxygen through the presumed pro- reduction of OAA and the required reduced pyridine nucleo- duction ofNADPH. The major acid-stable product oflight- tide should be produced photosynthetically as follows: dependent CO2 fixation is shown to be malic acid. In the presence of phosphoenolpyruvate and bicarbonate the PEP stoichiometry of CO2 fixation into acid-stable products to HC03- + PEP OAA + Pi [1] 02 evolution is shown to be near 1.0. Thus oxaloacetic acid carboxylase acts directly as the Hill oxidant in mesophyll cell chloro- light plasts. The experiments are taken as a firm demonstration that the dicarboxylic acid cycle of photosynthesis is the NADP++H20 NADPH+ 1/202+H+ [2] C4 mesophyll cell major pathway for the fixation of CO2 in mesophyll cells chloroplasts of plants having this pathway.
    [Show full text]
  • BIO-BASED SUCCINIC ACID by Sudeep Vaswani (December 2010)
    PEP Review 2010-14 BIO-BASED SUCCINIC ACID By Sudeep Vaswani (December 2010) ABSTRACT In a U.S. Department of Energy report published in 2004, succinic acid was identified as one of the top twelve building-block chemicals that could be produced from renewable feedstocks. Currently, succinic acid uses a petroleum-derived maleic anhydride route for its production, which is both costly and environmentally unfriendly. As a result, there is a growing interest towards discovering a more economical and environmentally cleaner way for its production. One methodology that has been receiving increased attention is the use of bacterial microorganisms. This technology takes advantage of the fermentative capabilities of various microorganisms and utilizes a renewable substrate as a carbon source for acid formation. Succinic acid production from microbial organisms has tremendous potential as a building block for commodity chemicals with applications in several industries. Some of the succinic acid derivatives include: tetrahydrofuran (THF), 1,4-butanediol (BDO), succindiamide, succinonitrile, dimethylsuccinate, N-methyl-pyrrolidone, 2-pyrrolidone, and 1,4-diaminobutane. This PEP Review discusses and provides a detailed techno-economic analysis for bio-based succinic acid production with a capacity of 82.7 million lb/year (37,500 mt/yr). Additionally, it covers information regarding genetic engineering mechanisms, regulation of specific enzymes, and purification of succinic acid to provide a cost-competitive alternative to fossil fuels. © SRI Consulting PEP Review 2010-14 A private report by the Process Economics Program Review No. 2010-14 BIO-BASED SUCCINIC ACID by Sudeep Vaswani December 2010 Menlo Park, California 94025 SRIC agrees to assign professionally qualified personnel to the preparation of the Process Economics Program’s reports and will perform the work in conformance with generally accepted professional standards.
    [Show full text]
  • Transamination in Tumors, Fetal Tissues, and Regenerating Liver* Philip P
    Transamination in Tumors, Fetal Tissues, and Regenerating Liver* Philip P. Cohen, M.D., and G. Leverne Hekhuis (From the Laboratory o~ Physiological Chemistry, Yale University School of Medicine, New Haven, Connecticut) (Received for publication June 9, I94I) von Euler and co-workers (22), on the basis of TISSUE SOURCES results of essentially qualitative experiments, first re- Tumors.--The mouse tumors employed in this in- ported that the transaminase activity ot~ tumors was vestigation were the following: low. These investigators, using Jensen sarcoma and normal muscle, measured the rate of disappearance of I. United States Public Health Service No. ~7-- oxaloacetic acid in the following reaction: originally described as a neuroepithelioma (20). 1 2. Sarcoma 37 .1 3. Yale No. xuan estrogen-induced ,) 1( + )-glutamic acid + oxaloacetic acid a mammary adenocarcinoma (5). 1 4. No. x5o9I-A - ~'b a-ketoglutaric acid + aspartic acid spontaneous mammary medullary adenocarcinoma In addition to studies of reaction I in tumors, Braun- (6) "1 5- No. 42--glioblastoma multiforme. 2 6. No. stein and Azarkh (2) studied the reaction: i o8--rhabdomyosarcoma. 2 The tumors were transplanted at regular intervals 2) glutamic acid+a-keto acid to insure a uniform supply. a-ketoglutaric acid + amino acid "-b- Fetal, kitten, and adult cat tissues.--Two pregnant cats provided the fetal tissue. The length of the preg- The amino acids investigated in the case of reaction nancy was uncertain, but was estimated to be in the 2b were the d- and l-forms of alanine, valine, leucine, last trimester in both instances. Hemihysterectomies and isoleucine. The rate of reaction za in which both were performed under nembutal anesthesia and 2 d(--)- and l(+)-glutamic acid were used, plus fetuses removed from each animal.
    [Show full text]
  • Oxaloacetic Acid Supplementation As a Mimic of Calorie Restriction Alan Cash*
    22 Open Longevity Science, 2009, 3, 22-27 Open Access Oxaloacetic Acid Supplementation as a Mimic of Calorie Restriction Alan Cash* Terra Biological LLC, San Diego, CA 92130, USA Abstract: The reduction in dietary intake leads to changes in metabolism and gene expression that increase lifespan, re- duce the incidence of heart disease, kidney disease, Alzheimer’s disease, type-2 diabetes and cancer. While all the mo- lecular pathways which result in extended lifespan as a result of calorie restriction are not fully understood, some of these pathways that have resulted in lifespan expansion have been identified. Three molecular pathways activated by calorie re- striction are also shown to be activated by supplementing the diet with the metabolite oxaloacetic acid. Animal studies supplementing oxaloacetic acid show an increase in lifespan and other substantial health benefits including mitochondrial DNA protection, and protection of retinal, neural and pancreatic tissues. Human studies indicate a substantial reduction in fasting glucose levels and improvement in insulin resistance. Supplementation with oxaloacetic acid may be a safer method to mimic calorie restriction than the use of traditional diabetes drugs. INTRODUCTION citric acid cycle, and is found in every cell in the body. Fig. (1) shows a schematic diagram of the citric acid cycle and For over 75 years, scientists have known how to increase the position of oxaloacetate within the cycle. average and maximal lifespan; reduce dietary intake of calo- ries by 25 to 40% over ad libitum baseline values while maintaining adequate nutrition. This reduction in dietary intake leads to changes in metabolism and gene expression Oxaloacetate Citrate that increase lifespan, and also been reported to reduce the incidence of heart disease, kidney disease, Alzheimer’s dis- Malate ease, type-2 diabetes and cancer in animals [1-3].
    [Show full text]
  • Production of Malonic Acid Through the Fermentation of Glucose
    University of Pennsylvania ScholarlyCommons Department of Chemical & Biomolecular Senior Design Reports (CBE) Engineering 4-20-2018 Production of Malonic Acid through the Fermentation of Glucose Emily P. Peters University of Pennsylvania, [email protected] Gabrielle J. Schlakman University of Pennsylvania, [email protected] Elise N. Yang University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/cbe_sdr Part of the Biochemical and Biomolecular Engineering Commons Peters, Emily P.; Schlakman, Gabrielle J.; and Yang, Elise N., "Production of Malonic Acid through the Fermentation of Glucose" (2018). Senior Design Reports (CBE). 107. https://repository.upenn.edu/cbe_sdr/107 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cbe_sdr/107 For more information, please contact [email protected]. Production of Malonic Acid through the Fermentation of Glucose Abstract The overall process to produce malonic acid has not drastically changed in the past 50 years. The current process is damaging to the environment and costly, requiring high market prices. Lygos, Inc., a lab in Berkeley, California, has published a patent describing a way to produce malonic acid through the biological fermentation of genetically modified easty cells. This proposed technology is appealing as it is both better for the environment and economically friendly. For the process discussed in this report, genetically modified Pichia Kudriavzevii yeast cells will be purchased from the Lygos lab along with the negotiation of exclusive licensing rights to the technology. The cells will be grown in fermentation vessels, while being constantly fed oxygen, glucose and fermentation media. The cells will excrete malonic acid in the 101 hour fermentation process.
    [Show full text]