Detection and Formation Scenario of Citric Acid, Pyruvic Acid, and Other Possible Metabolism Precursors in Carbonaceous Meteorites

Total Page:16

File Type:pdf, Size:1020Kb

Detection and Formation Scenario of Citric Acid, Pyruvic Acid, and Other Possible Metabolism Precursors in Carbonaceous Meteorites Detection and formation scenario of citric acid, pyruvic acid, and other possible metabolism precursors in carbonaceous meteorites George Coopera,1, Chris Reeda, Dang Nguyena, Malika Cartera, and Yi Wangb aExobiology Branch, Space Science Division, National Aeronautics and Space Administration-Ames Research Center, Moffett Field, CA 94035; and bDevelopment, Planning, Research, and Analysis/ZymaX Forensics Isotope, 600 South Andreasen Drive, Suite B, Escondido, CA 92029 Edited by David Deamer, University of California, Santa Cruz, CA, and accepted by the Editorial Board July 1, 2011 (received for review April 12, 2011) Carbonaceous meteorites deliver a variety of organic compounds chained three-carbon (3C) pyruvic acid through the eight-carbon to Earth that may have played a role in the origin and/or evolution (8C) 7-oxooctanoic acid and the branched 6C acid, 3-methyl- of biochemical pathways. Some apparently ancient and critical 4-oxopentanoic acid (β-methyl levulinic acid), Fig. 1, Table S1. metabolic processes require several compounds, some of which 2-methyl-4-oxopenanoic acid (α-methyl levulinic acid) is tenta- are relatively labile such as keto acids. Therefore, a prebiotic setting tively identified (i.e., identified by mass spectral interpretation for any such individual process would have required either a only). As a group, these keto acids are relatively unusual in that continuous distant source for the entire suite of intact precursor the ketone carbon is located in a terminal-acetyl group rather molecules and/or an energetic and compact local synthesis, parti- than at the second carbon as in most of the more biologically cularly of the more fragile members. To date, compounds such as familiar α-keto acids (e.g., α-keto butyric acid, etc.). Several pyruvic acid, oxaloacetic acid, citric acid, isocitric acid, and α- additional tentatively identified keto monoacids (Fig. S1A; not ketoglutaric acid (all members of the citric acid cycle) have not been all are indicated) also appear to be terminal-acetyl acids based identified in extraterrestrial sources or, as a group, as part of a “one on the similarity of their mass spectra. The straight-chained keto pot” suite of compounds synthesized under plausibly prebiotic acids are more abundant than their branched isomers: a qualita- conditions. We have identified these compounds and others in tive similarity to the suite of dicarboxylic acids (7) and dicar- GEOPHYSICS carbonaceous meteorites and/or as low temperature (laboratory) boxylic acid amides (8) in Murchison. A keto dicarboxylic acid reaction products of pyruvic acid. In meteorites, we observe many (and dimer of pyruvic acid), 4-hydroxy-4-methyl-2-ketoglutaric as part of three newly reported classes of compounds: keto acids acid (parapyruvic acid), is identified based on GC-MS interpreta- (pyruvic acid and homologs), hydroxy tricarboxylic acids (citric acid tion of pyruvate reaction products (see below). This compound and homologs), and tricarboxylic acids. Laboratory syntheses using 13 forms readily and is abundant in pyruvate solutions: it is a long C-labeled reactants demonstrate that one compound alone, pyru- known pyruvate condensation product (9–12). To date, the most vic acid, can produce several (nonenzymatic) members of the citric notable report of possible self-condensation products of organic acid cycle including oxaloacetic acid. The isotopic composition of compounds in meteorites involves the glycine peptide glycyl-gly- some of the meteoritic keto acids points to interstellar or presolar cine and its cyclic form, diketopiperazine. They were seen in small origins, indicating that such compounds might also exist in other amounts in the Yamato-791198 and Murchison meteorites (13). planetary systems. In the present samples α-ketoglutaric acid (2-ketoglutaric acid or 2-oxoglutaric acid) is also a likely constituent based on GC pyruvate ∣ citrate ∣ Murchison meteorite ∣ Alan Hills ∣ interstellar nitriles retention time and the presence of its major fragment ion (Mþ-57 ¼ 431 amu) (see Fig. S1B legend) however its total mass oluble organic compounds detected in carbonaceous meteor- spectrum is less definite than other compounds—due either to Sites include amino acids, carboxylic acids, mono- and poly – low abundances in the samples or low analytical recoveries. hydroxy carboxylic acids, and nitrogen heterocycles (1 3). How- Oxaloacetic acid (Fig. 2B) is possibly present: the GC retention ever, absent from the list of meteoritic organic compounds are time and major ion (417) of oxaloacetic acid (tBDMS derivative) keto acids (e.g., pyruvic acid, acetoacetic acid) and citric acid and matches a compound in ALH 83102, Murray, and Murchison but homologous compounds. Some of these compounds are critically the meteoritic spectra are weaker than those of α-ketoglutaric important to biological processes such as glycolysis and the citric acid: specific analysis for oxaloacetic acid (a labile compound) acid (or “tricarboxylic acid”) cycle—processes considered to be must be done. In a review of GC-MS data from several previous among the earliest in the history of life (4). Using gas chromato- extracts we have observed at least small amounts of the majority graphy-mass spectrometry (GC-MS) to analyze extracts of multi- ple carbonaceous meteorites including Murchison, Murray and of the keto acids in Fig. 1 (including pyruvic acid and acetoacetic acid) even though the analytical procedures (see Materials and Allan Hills (ALH) 83102, we have identified homologous series Methods of keto acids, tricarboxylic acids, and hydroxy tricarboxylic acids ) were usually meant for general identifications and in (Fig. 1). Below, “identified” compounds refers to those whose many cases deleterious to some keto acids. Therefore, we cannot GC retention times and mass spectra match those of laboratory rule out the presence of other keto acids. standards. The vast majority of the compounds have been iden- Pyruvic acid recovered from ALH 83102 corresponds to 15 ∕ tified in several meteorite extracts and as multiple volatile deri- approximately nmole gram. The concentration of its larger vatives: tert-butyldimethylsilyl (tBDMS), trimethylsilyl (TMS), and isopropyl ester (ISP). Although drawn in the acid forms, all Author contributions: G.C. designed research; G.C., C.R., D.N., M.C., and Y.W. performed compounds are salts in the meteorites due to the generally neu- research; Y.W. contributed new reagents/analytic tools; G.C., C.R., D.N., M.C., and Y.W. tral-alkaline conditions of aqueous alteration on the meteorite analyzed data; and G.C. wrote the paper. parent body (5, 6). The authors declare no conflict of interest. This article is a PNAS Direct Submission. D.D. is a guest editor invited by the Editorial Board. Results and Discussion 1To whom correspondence should be addressed. E-mail: [email protected]. Meteoritic Keto Acids. As a suite, keto monoacids were ubiquitous This article contains supporting information online at www.pnas.org/lookup/suppl/ in examined meteorites. Identified members are the straight- doi:10.1073/pnas.1105715108/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1105715108 PNAS Early Edition ∣ 1of6 Downloaded by guest on September 24, 2021 Fig. 1. Compounds indentified in carbonaceous meteorites. Several more related compounds are tentatively identified (Fig. S1A). homolog, levulinic acid, recovered from ALH 83102 and the concentration of citric acid in one sample of Murchison is Murchison is approximately 45 and 5.4 nmole∕gram, respectively approximately 55 pmole∕gram (Table S1). (Table S1). In most homologous series of compounds in meteor- ites the lower molecular weight (MW) members are usually more Meteoritic Tri- and Tetracarboxylic Acids. Identified tricarboxylic abundant—the exception here in ALH 83102 may be due to the acids are shown in Fig. 1. 1, 2, 3-propanetricarboxylic acid (tri- much greater reactivity (on the meteorite parent body) of pyru- carballylic acid) at approximately 2 nmole∕gram in ALH 83102 vate (see pyruvate reactions below). Reactivity may also account and 371 pmole/gram in Murchison is the dominant member of for the apparently low amount of oxaloacetic acid (if this com- the series: it is much less abundant than succinic acid, the most pound is confirmed). In order to perform isotope measurements abundant meteoritic dicarboxylic acid (2). The tricarboxylic on some keto acids, the keto acid extract shown in Fig. S1A was acids consist of at least 25 members and extend to at least 10C Materials and Methods (Fig. S1A; not all identified homologs are shown). As with the further purified by ion chromatography ( ) “ ” to isolate individual compounds (e.g., Fig. S2). We measured keto monoacids the straight-chained (referring to the noncar- the 13C∕12C values of levulinic acid, 5-oxo-hexanoic acid, and boxyl carbons) compounds apparently predominate. The one ob- served tetracarboxylic acid (1, 2, 3, 4-butanetetracarboxylic acid) 6-oxo-heptanoic acid, and the D/H ratio of levulinic acid; all were (Fig. 1), to date, has been seen in only one extract. However, the from Murchison and were measured as their TMS derivatives. analytical procedures used, generally for lower molecular weight The resulting δ13C values (‰) were þ17.04, þ15.24, and þ12.94, compounds, must be developed or changed to search specifically respectively; the δD of levulinic acid was þ425‰ (Table S1). for other possible tetracarboxylic acids. All of these values are more positive than the typical range of ’ Earth s organic compounds and point to low temperature extra- Interstellar Formation Mechanisms. Although there may be multiple δ13 terrestrial synthesis (2). The C values are comparable to values formation mechanisms for all soluble meteoritic organic com- of meteoritic amino acids having the same carbon number. The pounds, the chemistry of interstellar nitriles, HCN/CN, ketene, δD value of levulinic acid is near the lower end of the range of and water may have played an important role in the formation of values for meteoritic carboxylic acids (2). at least some compound classes (Fig. 2A). A range of straight- chained nitriles (e.g., CCN, HCCN, CCCN, etc.), ketene, CN, Meteoritic Hydroxy Tricarboxylic Acids.
Recommended publications
  • The Mechanism of Aconitase Action Iii. Kinetic Analysis Using Dl-Isocitric Acid-2-C 14
    TheJournal of Biochemistry, Vol.41, No. 5, 1954 THE MECHANISM OF ACONITASE ACTION III. KINETICANALYSIS USING DL-ISOCITRIC ACID-2-C14 By JUN-ICHI TOMIZAWA (Fromthe NationalInstitute of Health,Tokyo) (Receivedfor publication,June 24, 1954). In the previous reports (1, 2, 3), the author came to a conclusion that aconitase would be a single enzyme, and one enzyme and one activated complex theory was proposed. In the present communication, some additional proofs of the theory using labeled substrates will be reported. EXPERIMENTAL The Enzyme Preparation and the Methods of Analysis The preparation of the rabbit liver enzyme was the same as reported previously (1) except it was centrifuged at 120,000 x g for 30 minutes and the supernatant was kept. General properties of the enzyme preparation were not changed by this treat ment. The preparation and the analysis of non-labeled substrates were previously reported. The Preparation of DL-Isocitric Acid-2-C14 Usually DL-isocitric acid was prepared by hydrolysis of trichloromethylparaconic acid. It was, however, rather difficult to prepare the carbon-2 labeled compound by this method. Therefore, the compound was prepared by an entirely new process. Ethyl Formate-C14•\Formic acid was prepared by the usual method from labeled barium carbonate. Its ethyl ester was prepared by esterification of the sodium salt as was done in the preparation of its methyl ester according to Me1viIIeetal. (4, 5). The yield was about 80per cent. Diethyl Formyl-succinate-l-C14-This compound was prepared by the method of Sugazawa (6). 0.6g. of ethyl formate-C14 and 1.2g.
    [Show full text]
  • EFFECT of INOCULUM on KINETICS and YIELD of CITRIC ACIDS PRODUCTION on GLUCOSE by Yarrowia Lipolytica A-101
    .\ C T A ALIMENTARIA POLONI C A Vol. XVII/ XLI ! No. 2 1991 MARIA WOJTATOWICZ WALDEMAR RYMOWICZ EFFECT OF INOCULUM ON KINETICS AND YIELD OF CITRIC ACIDS PRODUCTION ON GLUCOSE BY Yarrowia Lipolytica A-101 Departmcnt of Biotechnology and Food Microbiology, Academy of Agriculture, Wrocław Key word s: Yarrowia fipo(1 'fin,1 /\-1 O1 , citric and isodtric acid, glucosc, nitrogen deficient medium The cffcct of two differcnt inocula on growth and production parameters in citric acid fcrmcntation (on glucose) by Yarrowia lipolytica A-101 was studied. For inoculum prcpared in full growth medium the total acids yield was 5-12% higher and · biomass yield about 10 % higher than for inoculum prepared in a nitrogen-deficient medium. The latter inoeulum, however, !cd to about 10-30% highcr acid producti.on and glucosc consumption rates. Until the early I 970s practically the only organisms used to produce citric acid were Aspergillus niger and a few other fungi. Today we know that many kinds of yeasts can accumulate substantial amounts of citric acid in their growth media. The most cfficient citric acid producers belong to the Candida genus, and the strains used most often are C. lipolytica, C. zeylanoides, C. parapsilosis, C. tropicalis, C. guilliermondii, C. oleophila, C. petrophilum and C. intermedia [10]. Yeasts can produce citric acid more rapidly than fungi and in a greater variety of substrates including n-alkanes, n-alkenes, glucose, molasses, acetate, alcohols, fatty acids and natura) oils [4, 8, 9, 17, 18]. The product yield on n-alkanes and vegetable oils may be as high as 1.6 g/g [4, 9]; on glucose it is usually comparable to that in proccsses involving filamentous molds [4-6].
    [Show full text]
  • D-Isocitric Acid (D-Isocitrate)
    www.megazyme.com D-ISOCITRIC ACID (D-ISOCITRATE) ASSAY PROCEDURE K-ISOC 11/19 (*100 Manual Assays per Kit) or (1000 Auto-Analyser Assays per Kit) or (1000 Microplate Assays per Kit) * The number of tests per kit can be doubled if all volumes are halved © Megazyme 2019 INTRODUCTION: D-Isocitric acid is an organic acid found in most fruit juices. It is an important marker in multicomponent procedures for the evaluation of authenticity and quality of fruit products; high citric/isocitric acid ratios can be used as an indicator of citric acid addition in some juices. PRINCIPLE: D-Isocitric acid is oxidised by nicotinamide-adenine dinucleotide + phosphate (NADP ) to 2-oxoglutarate and CO2 in the presence of isocitrate dehydrogenase (ICDH), with the formation of reduced nicotinamide-adenine dinucleotide phosphate (NADPH) (1). (ICDH) + + (1) D-Isocitric acid + NADP 2-oxoglutarate + CO2 + NADPH + H The amount of NADPH formed in this reaction is stoichiometric with the amount of D-isocitric acid. It is the NADPH which is measured by the increase in absorbance at 340 nm. Bound D-isocitric acid is released by alkaline hydrolysis (2), (3), and then measured using the same principle (1). (pH 9-10) (2) D-Isocitric acid ester + H2O D-isocitric acid + alcohol (pH 9-10) (3) D-Isocitric acid lactone + H2O D-isocitric acid SPECIFICITY, SENSITIVITY, LINEARITY AND PRECISION: The assay is specific for D-isocitric acid. D-malic acid, L-lactic acid, L-aspartic acid and fumaric acid do not react. The smallest differentiating absorbance for the assay is 0.005 absorbance units. This corresponds to 0.177 mg/L of sample solution at the maximum sample volume of 2.00 mL (or to 3.54 mg/L with a sample volume of 0.1 mL).
    [Show full text]
  • Bacterial Metabolism of Glycine and Alanine David Paretsky Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1948 Bacterial metabolism of glycine and alanine David Paretsky Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Biochemistry Commons, and the Microbiology Commons Recommended Citation Paretsky, David, "Bacterial metabolism of glycine and alanine " (1948). Retrospective Theses and Dissertations. 13762. https://lib.dr.iastate.edu/rtd/13762 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. NOTE TO USERS This reproduction is the best copy available. UMI BAG1ERIAL METABOLISM OP GL^CIKE AND ALANINE by David Paretsky A Itieais Submitted to the Graduate Faculty for the Degree of DOCTOR OP PHILOSOPHY Major Subjects physiological Bacteriology Approved? Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Heaa'of' "la'jo'r 'Departn^en t Signature was redacted for privacy. Dean or Graduate -Golleg^ Iowa State College 1948 UMI Number: DP12896 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • Cellular Respiration Process by Which Cells Transfer Energy from Food To
    Cellular Respiration Process by which cells transfer energy from food to ATP Cells rely heavily on Oxygen Can be Aerobic or Anaerobic Brain cells cannot produce energy anaerobicly Heart Cells have a minimal ability to produce energy anaerobicly Glycolysis, Krebs cycle, Electron Transport Carb Metabolism Only food the can create energy through Anaerobic metabolism Preferred food of the body, uses least amount of oxygen Glucose- 6-carbon sugar C6H12O6 Break down= Glucose + Oxygen = Water + Carbon Dioxide + Energy Excess Glucose stored as Glycogen stored in the liver & muscles Stage 1- Glycolysis Prepares glucose to enter the next stage Converts Glucose to Pyruvic Acid (Aerobic) or Lactic Acid (Anaerobic) ATP is produced 2 ATP used in the first steps (Only 1 if glycogen) 2 ATP produced end steps 2 NAD FAD & NAD similar to a taxi (Transport Oxygen) 6 Carbon Glucose broken down to 2 3-carbon cells Lactic Acid- Glycogen (Anaerobic) Pyruvic acid- Glucose (Aerobic) Stage 2- Formation of Acetyl Coenzyme A Converts Pyruvate to Acetyl Coenzyme A No ATP is used or produced 2 NAD (4 NAD) Stage 3- Krebs Cycle Begins & ends with the same substance No ATP is used 2 ATP Made (2 Cells) Hydrogen’s spilt for Electron Transport 6 NAD Stage 4- Electron Transport System Hydrogen taken from FAD & NAD to make water Electrons are dropped off and then pick up- repeats 3 times One ATP for each for each pair of Hydrogen’s Each NAD makes 3ATP Each FAD makes 2 ATP Total Stage 1 – Glycolysis-2 ATP, NAD but can’t be used in skeletal muscle (FAD uses electron in skeletal
    [Show full text]
  • "Changes in Pyruvic Acid Content and GPT Activity in Chilling-Sensitive
    HORTSCIENCE 25(8):952-953. 1990. into -80C methanol (mixture of solid CO2 and methanol); the acid was then extracted with 0.6 M HPO3 at 0C. After adding 2,4- Changes in Pyruvic Acid Content and dinitrophenylhydrazine to the extraction, the mixture was allowed to stand for 3 hr at room GPT Activity in Chilling-sensitive and temperature in darkness. Finally, the hydra- zone produced was dissolved in 2 ml of ab- Nonsensitive Crops solute methanol. To separate and quantify the pyruvic acid in the keto acids, a 10-µl Hironobu Tsuchida and Cheng Dan-Hong aliquot of the solution was directly subjected Faculty of Agriculture, Kobe University, Rokkodai-cho, Nadaku, Kobe, to high-performance liquid chromatography Japan (HPLC) . A Gaskuro Kogyo (Tokyo) liquid chro- Kazuko Inoue matograph (Model-570B) equipped with a sampling valve with a 20-µl loop (Rheodyne Consumer Economic Research Institute, 6-28, 1-cho, Nakatsu, Model 7120) was used. The chromato- Ooyodo-ku, Osaka, Japan graphic column (4.0 i-d. × 250 mm) was of stainless steel and packed with Unicil Q- Nobuyuki Kozukue 30 (particle diameter 5 µm, Gaskuro Kog- Department of Home Economics, Kenmei Junior College, 68-Honmachi, yo). The UV detector was set-at 254 nm. A Himeji City, Japan mobile phase [50 chloroform : 5 n-butanol : 5 acetic acid : 50 water (by volume)] was Susumu Mizuno pumped through the column at a flow rate of 1 ml·min-1. The chart speed was adjusted Faculty of Agriculture, Kobe University, Rokkodai-cho, Nadaku, Kobe, -1 to 5 mm·min . Analytical-grade sodium Japan pyruvate was purchased from Wako Pure Additional index words.
    [Show full text]
  • Pyruvic Acid
    FT-N12450 Pyruvic acid Product Information Chemical name: Pyruvic acid, Sodium salt Other names: 2-oxopropanoic acid , α-ketopropionic acid, acetylformic acid, pyroracemic acid, Pyr Cat.# : N12450, 100 g N12451,250 g N12452, 1Kg Larger quantities: inquire Structure: CH3COCO2Na CAS: 127-17-3 Molecular Weight: 110.05 Storage: Room temperature, protected from moisture Safety: EU classification: Highly toxic (T+) ; Dangerous for the environment (N) R-phrases: R21, R26, R28, R32, R50, R53 S-Phrases: S1, S2, S28, S45, S60, S61 Test Specification/ Spécification Appearance: white white crystalline powder Solubility: In water (20%) Clear, colorless Purity: >99% Loss on drying: <0.5% Melting point: >320°C Contact your local distributor Uptima, powered by [email protected] P.1 FT-N12450 Physical datas Pyruvic acid is a colorless liquid with a smell similar to acetic acid. It is miscible with water, and soluble in ethanol and diethyl ether. Cell Biology role Pyruvate is an important chemical compound in biochemistry. It is even is suspected of providing the fertile basis for the formation of life.. Pyruvate is the output of the metabolism of glucose known as glycolysis. One molecule of glucose breaks down into two molecules of pyruvic acid, which are then used to provide further energy, in one of two ways. Provided that sufficient oxygen is available, pyruvic acid is converted into acetyl- coenzyme A, which is the main input for a series of reactions known as the Krebs cycle. Pyruvate is also converted to oxaloacetate by an anaplerotic reaction and then further broken down to carbon dioxide. The cycle is also called the citric acid cycle, because citric acid is one of the intermediate compounds formed during the reactions.
    [Show full text]
  • The Role of Some of the Krebs Cycle Reactions in the Biosynthetic Functions of Thiobacillus Thioparus
    AN ABSTRACT OF THE THESIS OF Gerald G. Still for the PhD in Chemistry (Name) (Degree) (Major) Date thesis is presented May 14, 1965 Title THE ROLE OF SOME OF THE KREBS CYCLE REACTIONS IN THE BIOSYNTHETIC FUNCTIONS OF THIOBACILLUS THIOPARUS Abstract approved Redacted for Privacy (Major professor) Aseptic radiorespirometry has been used to examine the utilization of external carbon sources by proliferat- ing Thiobacillus thioparus cells. These studies reveal that glucose, galactose, mannose, fructose, ribose, DL- glutamate, and L- aspartate were not utilized by this chemoautotrophic organism. However, it has been shown that trace amounts of acetate, glycine, DL- serine, DL- alanine, succinate and fumarate can be utilized by T. thioparus cells. To elucidate the nature of the biosynthetic pathways operative in this bacteria, proliferating cell cultures were allowed to metabolize specifically 14C labeled substrates. The resulting 14C labeled cells were sub- sequently hydrolyzed, their amino acids isolated and subjected to degradation experiments. Examination of the respective fates of the label in DL- alanine- 2 -14C, acetate- 1 -14C, or acetate -2 -14C in the cellular metabolism revealed that the Krebs Cycle path- way is not functioning as a respiratory mechanism in T. thioparus. However, most of the reactions of the Krebs Cycle pathway are involved in the biosynthesis of carbon skeletons for various amino acids. A CO2 fixa- tion pathway of the C3 +C1 type is instrumental in provid- ing C4 dicarboxylic acids and those amino acids derived therefrom. Acetate can be incorporated into a -keto- glutarate and those amino acids derived therefrom, but cannot be incorporated into the C4 dicarboxylic acids.
    [Show full text]
  • Aqueous Phase Photochemistry of Α-Keto Acids As a Function of Ph
    Aqueous Phase Photochemistry of α-Keto Acids as a Function of pH Michael Ryan Dooley Department of Chemistry and Biochemistry University of Colorado at Boulder March 21 2017 Advisor: Dr. Veronica Vaida, Department of Chemistry and Biochemistry Committee: Dr. Veronica Vaida, Department of Chemistry and Biochemistry Dr. Robert Parson, Department of Chemistry and Biochemistry Dr. Chris Bowman, Department of Chemical and Biological Engineering 1 Tables of Contents Abstract……………………………………………………………………………………..page 2 Introduction…………………………………………………………………………………page 2 Experimental Methods………………………………………………………………….…..page 9 Materials……………………………………………………………………….……page 9 Titration – Debye-Huckel Extended Method……………………………………….page 9 Photolysis of Pyruvic Acid……………………………...…………………………page 11 Ultraviolet-Visible Spectroscopy……………………………………….…………page 12 1HNMR…………………………………………………………………………….page 12 Electrospray Ionization Mass Spectrometry……………..………………………...page 13 Results and Discussion…………………………………………...………………..………page 13 Determination of Acid Dissociation Constants…………………………………….page 13 Dependence of Keto-Diol Ratio on pH…………………………………………….page 16 Dark Processing of Pre-Photolysis Solutions…………………………………..….page 18 Photolysis of Pyruvic Acid………………………………….……………………..page 21 Conclusions and Future Directions…………...…………………………………………....page 27 References…………………………………………………………………….……………page 29 2 Abstract α-Keto acids react in solution in the presence of sunlight to form complex organic oligomers that can contribute to the formation of organic atmospheric aerosols.
    [Show full text]
  • Oxaloacetate As the Hill Oxidant in Mesophyll Cells of Plants Possessing
    Proc. Nat. Acad. Sci. USA Vol. 70, No. 12, Part II, pp. 3730-3734, December 1973 Oxaloacetate as the Hill Oxidant in Mesophyll Cells of Plants Possessing the C4-Dicarboxylic Acid Cycle of Leaf Photosynthesis (CO2 fixation/uncoupler/photochemical reactions/electron transport/02 evolution) MARVIN L. SALIN, WILBUR H. CAMPBELL, AND CLANTON C. BLACK, JR. Department of Biochemistry, University of Georgia, Athens, Ga. 30602 Communicated by Harland G. Wood, August 16, 1973 ABSTRACT Isolated mesophyll cells from leaves of NADP+-dependent malic dehydrogenase (10) is in the meso- plants that use the C4 dicarboxylic acid pathway of CO2 fixation have been used to demonstrate that oxaloacetic phyll cells (9, 11). Therefore, one could reason that in meso- acid reduction to malic acid is coupled to the photo- phyll cells the carboxylation of PEP should be coupled to the chemical evolution of oxygen through the presumed pro- reduction of OAA and the required reduced pyridine nucleo- duction ofNADPH. The major acid-stable product oflight- tide should be produced photosynthetically as follows: dependent CO2 fixation is shown to be malic acid. In the presence of phosphoenolpyruvate and bicarbonate the PEP stoichiometry of CO2 fixation into acid-stable products to HC03- + PEP OAA + Pi [1] 02 evolution is shown to be near 1.0. Thus oxaloacetic acid carboxylase acts directly as the Hill oxidant in mesophyll cell chloro- light plasts. The experiments are taken as a firm demonstration that the dicarboxylic acid cycle of photosynthesis is the NADP++H20 NADPH+ 1/202+H+ [2] C4 mesophyll cell major pathway for the fixation of CO2 in mesophyll cells chloroplasts of plants having this pathway.
    [Show full text]
  • Challenges in Analysis of Hydrophilic Metabolites Using Chromatography Coupled with Mass Spectrometry
    Journal of Analysis and Testing https://doi.org/10.1007/s41664-020-00126-z REVIEW Challenges in Analysis of Hydrophilic Metabolites Using Chromatography Coupled with Mass Spectrometry Qingyu Hu1,2,3 · Huiru Tang3 · Yulan Wang4 Received: 2 February 2020 / Accepted: 26 March 2020 © The Nonferrous Metals Society of China 2020 Abstract Hydrophilic metabolites play important roles in cellular energy metabolism, signal transduction, immunity. However, there are challenges in both identifcation and quantifcation of the hydrophilic metabolites due to their weak interactions with C18-reversed-phase liquid chromatography (RPLC), leading to poor retention of hydrophilic metabolites on the columns. Many strategies have been put forward to increase the retention behavior of hydrophilic metabolites in the RPLC system. Non- derivatization methods are mainly focused on the development of new chromatographic techniques with diferent separation mechanisms, such as capillary electrophoresis, ion-pairing RPLC etc. Derivatization methods improve the hydrophobicity of metabolites and can enhance the MS response. This review mainly focused on the illustration of challenges of LCMS in the analysis of hydrophilic metabolomics feld, and summarized the non-derivatization and derivatization strategies, with the intention of providing multiple choices for analysis of hydrophilic metabolites. Keywords Hydrophilic metabolites · Hydrophilic interaction chromatography · Ion-pairing reversed-phase liquid chromatography · Ion chromatography · Capillary electrophoresis ·
    [Show full text]
  • Continuous Citric Acid Secretion by a High Specific Ph Dependent Active Transport System in Yeast Candida Oleophila ATCC 20177
    Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.8 No.2, Issue of August 15, 2005 © 2005 by Pontificia Universidad Católica de Valparaíso -- Chile Received November 22, 2004 / Accepted March 28, 2005 RESEARCH ARTICLE Continuous citric acid secretion by a high specific pH dependent active transport system in yeast Candida oleophila ATCC 20177 Savas Anastassiadis*# Department of Environmental Engineering School of Engineering Democritus University of Thrace 67100 Xanthi, Greece E-mail: [email protected] Hans-Jürgen Rehm Institute of Microbiology University of Münster Corrensstr. 3, 48149 Münster, Germany (retired Professor) Website: http://www.greekbiotechnologycenter.gr Financial support: Part of the work that has been carried out at the Institute of Biotechnology 2 of Research Centre Jülich (Germany) was financed by Haarmann and Reimer, a daughter company of the company Bayer, Leverkusen, Germany. Keywords: active citrate export, citric acid fermentation, energy consuming citric acid secretion, specific active transport system. Present address: #Research in Biotechnology, Co., Vat. #: 108851559. Avgi/Sohos, 57002 Thessaloniki, Greece; Tel. +30-2395-051324; +30-6973- 801395 (cellular); Tel./Fax. +30-2395-051470, E-mail: [email protected]. The pH influence on continuous citric acid secretion was similarities between A. niger and yeast strains in investigated in Candida oleophila ATCC 20177 (var.) mechanism of citric acid synthesis, however, differences + under NH4 limiting state steady conditions, using still exist in terms of triggering out and regulation of citrate glucose. Highest citric acid concentration of 57.8 g/l, overproduction. Many models have been developed citrate/isocitrate ratio of 15.6, space-time yield of 0.96 describing the biochemistry of citrate synthesis, using g/(l x hr) and biomass specific productivity of 0.041 g/(g glucose and other carbon sources, however a complete x hr) were obtained at pH 5 and 60 hrs residence time.
    [Show full text]