<<

An IMI Video Reproduction of Invited Lectures from the 17th University Glass Conference

Université Montpellier II diffusion in chalcogenide glasses Application in ionics and optics

Michel RIBES and Annie PRADEL

Laboratoire de Physicochimie de la Matière Condensée UMR 5617 CNRS Université Montpellier II, Montpellier FRANCE Chalcogenide Glasses

Chalcogenide glasses are glasses containing (Se, S, Te). Chalcogenide homologous of glasses

SiO2 ; GeO2 --> SiS(e)2 ; GeS(e)2

Ia 0 1 IIa IIIa IVa Va VIa VIIa 2 H He 3 4 5 6 7 8 9 10 Li Be B C N O F Ne 11 12 IIIb IVb Vb VIb VIIB VIIIb Ib IIb 13 14 15 16 17 18 Na Mg Al Si P S Cl Ar 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 55 56 57 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 87 88 89 104 105 106 107 Fr Ra Ac Unq Unp Unh Uns

58 59 60 61 62 63 64 65 66 67 68 69 70 71 Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr Chalcogenide Glasses Presence of S, Se, Te --> polarisable environment with lone-pair (LP)

Specific property of chalcogenide glasses compared to oxide ones They exhibit semiconductor properties and thus form a large group of amorphous semiconductors Intrinsically metastable, they can undergo various structural transformations under the action of external stimuli, in particular light. Semiconductor Photoinduced phenomena

As2S3 glass hn -> hole-electron pair -> change in n -14 -1  ~ 10 Scm Ovshinsky effect Eg ~ 2,15 eV (amorphous state <-> crystalline state) Transparency in the IR Application of ion diffusion in chalcogenide glasses

Interface ion exchange Ion sensors

 Diffusion under E Electrochemical energy storage : batteries

 Diffusion under photons hn Photoinduced phenomena

 Diffusion under E and hn PMC memories Ion exchange : Chemical Sensor

Principle of a sensor

CHEMICAL or PHYSICAL SENSOR

Characteristic analysis Analyte information Transductor Electrical sensitive part and signal treatment system

Membrane Potentiometric FET

Sensitivity, reversibility, selectivity and stability Ion-selective electrode determination of e.m.f between the ISE and a reference electrode.

Potentiometric analysis of a chemical sensor depends on the relationship between the concentration of the species and the e.m.f. The ideal relationship is known as the Nernst equation : RT E  E0  Log ai ziF

Linear range and detection limit

Slope of the response

Typical calibration curve of an ion- selective electrode obtained with the well D. L. known addition method. Development of ISE chemical microsensors

Analytical device for Cu2+ ion detection

based on (1-X)Sb12Ge28Se60 - XCu glassy thin films. ion-sensitive membrane epoxy resine paste Cr connection Si/Si N 3 4 substrate

metal connection epoxy resine ion-sensitive membrane . 10 cm C.Cali,D.Foix,E.Siebert,D.Gombeau,A.Pradel, M. Ribes; Solid. State. Engineering C21 (2002) 3-8 Elaboration of the (Sb-Ge-Se)/(Cu) material

Thin films produced by r.f. sputtering of a composite target

Target Chemical composition of thin films (Sb12Ge28Se60) copper

1 (Sb11.3Ge30.4Se58.3)40(Cu)60

2 (Sb11Ge29Se60)50(Cu)50

S.E.M cross sectional view of a thin film

Film thickness varies from 0.4 to 1 µm depending on sputtering conditions and sputtering time. Electrode response

160 The material with x = 0.6 gives 140  29 mV / pCu the best electrode performance.

120

100 Mixed solution method with constant a x=0.5 80 interfering ion concentration.

E (mV) vs ECS vs (mV) E

60 x=0.6 D. L.  810 - 7 mol.l -1 2+ Log [Cu ] Interfering Ion log K Cu2+ / j 40

-7 -6 -5 -4 -3 + 130 K -5.1 Log [Cu2+] + 120 10-2 mol.l -1 Na -5.3 110 Ca2+ -5.1

100 Ni2+ -4.1 -3 -1 2+ 90 10 mol.l Cd -4.1 80 Pb2+ -2.5 70 Mn2+ -3.4 10-4 mol.l-1 60

E (mV) vs. ECS vs. (mV) E 50 40 10-5 mol.l -1 Influence of pH on electrode 30 pH response 20 2 3 4 5 6 Diffusion under E : chemical energy storage

EFFECT of MODIFIER Superionic Conductive Glasses x M S-(1-x) GeS -2 2 2 Ag

-3 )

1 -4 - Li Conductivity 100-1000 times larger

-5 Na than that of their oxide counterpart (Scm

-6 

-7 Log Log -8 r > 10 (Weak electrolyte theory) -9 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7  ~ 10-2 Scm-1 X (M2 S) Ag+ 2 -3 -1  Li+ ~ 10 Scm

Application: all solid state batteries based on solid electrolytes

Rocking-chair Li-ion batteries for various portable equipments

Safety: prevent from igniting and leaking (liquid combustible organic solvent) miniaturisation e- e- Li+ Li+ Li-ion battery e- Li+ e- e- Li+ e- Li+ Collector collector   Anode Electrolyte Cathode   

At the begining: Li batteries  our first works (1983) Li/LiI-Li2S-GeS2(g)/V2O5 Eveready (USA)(90 ’s) Li/ (oxysulfide) (g)/various cathodic materials

Now Li-ion batteries (mainly japanese teams) Minami-Tatsumisago group (Osaka) In/Li2S-P2S5glass-ceramics/LiCoO2 (Chem.Letters 2002) Takada et al (NIMS-Tsukuba) C/LiI-Li2S-P2S5 (g)//Li3PO3-Li2S-SiS2(g)/ LiCoO2 (SSI 2003) Li (or Li-ion) microbattery Reduction of power supply of electronics devices Active power sources: implantable medical devices, remote sensors, miniature transmitters, smart cards  Standby power sources: CMOS-SRAM memory devices (few mWh.cm-2 are required to back up a CMOS memory chip) Thin-films battery developped at ORNL

Neudecker BJ, Dudney NJ and Bates JB ; J. Electrochem. Soc. 147 (2000) 517 Levasseur group Bordeaux Fr; Industrialization HEF Group (SVF Gazette du Vide 2 march 2003) Diffusion under photons hn: Photoinduced phenomena Photodissolution (« photodoping »)

Illumination of a chalcogenide film in contact with silver -> rapid penetration of the metal into the semiconductor(Kostyshin (1966))

Typical features :

•large amount of Ag can be dissolved 30-40 at%, and even 57% in GeS3 •rate of dissolution depends on chalcogenide composition (excess in ) Light Mechanism Ag film  ionization of Ag (semiconductor  presence of holes or electrons) Ag + h+ Ag+ Ag  Ag+ + e- Ag+  reduction of chalcogenide ° 2Ag + Se  Ag2Se DG 298 ~ -25 kJ/mol ° 4Ag + 2As2Se3  2Ag2Se + As4Se4 DG 298 ~ -12 kJ/mol hn close to bandgap energy Photo-enhanced solid state reaction T. Kawaguchi, K. Tanaka and S.R.Elliott; Handbook of advanced electronic and photonic materials and devices AP, N.H Nalwa ed. (2001) p 91 Application of photodissolution

 Very sharp edges between doped and undoped regions

Local creation of pairs « electron-hole » + small diffusion length of free carriers

Hardly any lateral diffusion

 Solubility of doped region in alkaline solvents much reduced

Local change in chemical composition

photoresists

etched gratings Photomigration - Photodeposition Phenomenon observed in highly doped chalcogenide: Ag-Ge-S(e),

Ag-As-S(e). For example in (Ge0.3S0.7)100-xAgx films when x > 0.45 Illumination lower silver content (x < 0.45) higher silver content (Ag45As15S40) increase in Ag density precipitation of Ag in the illuminated part

200mW/cm2 530mW/cm2 Small clusters or crystals 10nm in diameter and 1nm in thickness Reversible process Annealing  dissolution of the Ag clusters

T. Kawaguchi et al JNCS 212 (1997) 1666 Mechanism of photomigration-photodeposition

Point of view of physicist Ag Light Particle Illumination Ag+ creation of pair « electron-hole »

Ag+ + e-  Ag h+ moves away from illuminated spot Ag+

Point of view of chemist

Photodecomposition = decomposition of an oversaturated Ag solid solution

Under illumination the metastable system approaches equilibrium with excess Ag segregation. Annealing at higher temperature allows Ag to dissolve again in the solid solution Application of photomigration-phodeposition

Increased reflectivity for Ag rich region photoexpansion Gratings/ microlenses Optical memories

X= S X= S X= Se x=60 x=60 x=35 as-prepared illuminated illuminated 5 min 30 min

Agx(Ge0.3X0.7)100-x 110 mW/cm2

Au addition  increase in the photosensitivity of photodeposition by two orders of magnitude (Au clusters = nucleation centers for Ag) T. Kawaguchi, K. Tanaka and S.R.Elliott; Handbook of advanced electronic and photonic Materials and devices AP, N.H Nalwa ed. (2001) p 91 Photocrystallisation (phase change) Ge-Sb-Te (GST-Ge Sb Te ) Exist in chalcogenide with or without ion 2 2 5 Ag-In-Sb-Te (AIST)

Ordered state Disordered state

crystalline amorphous

AgSbTe2 AgSbTe2 + + amorphous amorphous In-Sb In-Sb hn laser beam Critical cooling rate 3.4 K/ns

Different reflectivity for amorphous and crystalline AgSbTe2 Application of photocrystallisation

Rewritable optical disk memory Phase change: Write/Erase phenomena

Laser-induced annealing/melting

Pulse structure Ge-edge data (Ge2Sb2Te5) The transition between the crystalline and amorphous states can be viewed as an umbrella-switch of Ge atoms from a octahedral to tetrahedral symmetry position Very big change in EXAFS and XANES within the Te fcc sublattice

A.Kolobov et al, 2004, Nature Mater. 3, 703 Real disc structure

UV resin Reflection layer (heat sink)

Protection layer ZnS-SiO2 Active layer (GST, AIST)

Protection layer ZnS-SiO2 Polycarbonate disc

T. Ohta, JOAM 2001 WHY PHOTOSTRUCTURAL CHANGES OCCUR ONLY IN AMORPHOUS CHALCOGENIDES?

•Excitation of lone-pair electrons is a trigger of the structural change - presence of LP-electrons is crucial - group VI elements (chalcogens); •Localization of photo-excited carriers and hence disorder is important - amorphous; •Low coordination number is beneficial since it makes the structure floppy.

Amorphous chalcogenides are the only materials that satisfy all these requirements Diffusion under E and hn : PMC memories « Programmable Metallization Cell Memory Devices »  bias accumulation of silver metal creating a conductive link (« on » state) -Ag is oxidised at the anode and reduced at the cathode  Reversing the bias breaks down the silver and restore the initial resistive state (« off » state)

Anode: Ag or Ag-containing material

Solid electrolyte: Ag photodissolution in GeS(Se)y Cathode: inert metal (Cr,Ni..) M. N. Kozicki, M. Mitkova, M. Park, M. Balakrishnan, C. Gopalan, Superlattices and Microstructures 34 (2003) 459. Ionic conductive chalcogenide glasses

Glasses exist in large composition domains M+ M+ Former Modifier X- X-

YX2 + M2X X Y X Y X (Glass) (Y = Si, Ge…X = S, Se) (M = Li, Na, Ag..) X- X- + M+ Covalent bonds Ionic bonds M

Ag (Na)- based chalcogenide glasses

Ag2S - GeS2 Ag2S – GeS - GeS2 Ag (Na) content varying * Ag2Se - GeSe2 from 0.01 - 30 at% Ag2S - As2S3 Na2S - GeS2 evolution of conductivity with composition non-Arrhenius behaviour (log   1/T)

*M.Kawasaki, Kawamura J, Y. Nakamura and M. Aniya; SSI 123 (1999) 259 M.A. Urena, A.A Piarristeguy. M. Fontana and B. Arcondo; SSI 176 (2005) 505 Variation of conductivity (298 K) with Ag(Na) content (at %) in Ag(Na)-X-Y glasses (X=Ge,As; Y=S,Se)

-2 -2 Ag2S – GeS2 -4 -4 -4 Ag2S-GeS-GeS2 Ag2S – As2S3 Na2S – GeS2

-6 -6 -6 Ag-Ge-Se

)

1 - -8 -8 -8

(Scm -10 -10 -10

 t = 1.93 -12

-12 -12 log log

-14 -14 GeS -14 0.001 0.01 0.1 1 10 100 60GeS-40GeS2 -16 -16 0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100 Ag (Na) concentration (Atomic %) A. Pradel, N. Kuwata, M. Ribes, 2003, J.Phys.: Cond. Mat. 15, S1561; M.A. Urena, A.A Piarristeguy. M. Fontana and B. Arcondo; SSI 176 (2005) 505

3 different behaviours  Na2S-GeS2 : Change in the transport regime at about 1 at % in sodium (electronic to ionic ?)  Ag2S-GeS-GeS2 and Ag-based glasses: Change in the transport regime at about 5-8 at % in silver  Ag-based glasses:large increase of 4-5 orders of magnitude in the conductivity at about 5-8 at % in silver Ag2S-GeS-GeS2 and Ag-based glasses Structural studies (microscopic, nanoscopic scale)

FE-SEM (Field Effect - Scanning Electron Microscopy)

Chemical inhomogeneities

EFM (Electric Force Microscopy) Surface potential imaging and surface electric modification

Electrical inhomogeneities FE-SEM 0.8at.% 5.8at.% (LEO-982 )

Ag2S-GeS-GeS2

No phase separation

-2 8.3at.%

-4 Ag2S-GeS-GeS2

1 -

-6

Scm )

-8

-10

t = 1.93 Conductivity ( 16.7at.%

-12 Log

-14

60GeS-40GeS 2 -16 0.001 0.01 0.1 1 10 100 Ag-based glasses showing a large increase (4-5 orders of magnitude) in the conductivity at about 5-8 at % in silver

-2

Ag2S-GeS2 -4

1 Ag2S-As2S3 -

-6 Ag-Ge-Se

Scm ) -8

-10

Conductivity (

-12 Log

-14 GeS2

-16 0.001 0.01 0.1 1 10 100 Silver Concentration At[ .%] FE-SEM (LEO-982 )

1.2at.% 4at.% Ag2S - As2S3 Glasses are phase separated

Ag-rich phase 7at.% 9.8at.%

Ag-poor phase

the change in the conductivity regime occurs when the Ag-rich phase starts connecting FE-SEM (LEO-982 ) 1at.% 2at.% 3at.%

Ag2S - GeS2

Glasses are phase 4at.% 5at.% 5at.% separated

Ag-rich phase

Ag-poor phase 7at.% 15at.% 33at.%

the change in the conductivity regime occurs when the Ag-rich phase starts connecting Comparison FE-SEM / EFM (Ag2S-GeS2 glasses)

. Weak conductivity domain : Ag-poor phase connected . High conductivity domain : Ag-rich phase connected

5%Ag 15%Ag Clear areas Dark areas (Ag-rich (Ag-poor phase) phase) d~0,3µm d~0,8-0,9µm

5 EFM -3V 5 5%Ag 15%Ag EFM -3V 4 Dark areas 4 3 (Ag-rich Clear-areas 3 phase) (Ag poor

Y[µm]

2 Y[µm] phase) 2

1 1

0 0 0 1 2 3 4 5 0 1 2 3 4 5 X[µm] X[µm] (Ge25Se75)Ag:10% Electrons retrodiffusés

5

4 Clear areas (Ag- rich phase in a 3 Ag-poor matrix) Y[µm] 2

1

0 0 1 2 3 4 5

X[µm]

EFM

-3V +5V Topo Dark areas in a clear matrix but a weaker contrast !

1.0µm 1.0µm (Ge25Se75)Ag:15%

Electrons retrodiffusés

d~1µm

EFM

-3V +4V Topo

1.0µm 1.0µm 1.0µm (Ge25Se75)Ag:25%

Electrons retrodiffusés

EFM

-3V +5V Topo

1.0µm 1.0µm 1.0µm Variation of conductivity (298 K) with Ag content (at %)

in Ag2S - GeS2 and Ag2S - As2S3 glasses

The glasses are phase separated

The jump in the conductivity occurs when the phase previously embedded in the connecting phase becomes the connecting one

percolation threshold with the Ag- poor phase (Ag-rich phase) being responsible for the conductivity at low silver (high silver) content

At low Ag content, power law dependence:  = Cxt

Nature of the charge carriers (electrons to )? EMF <---> Tracer diffusion coefficient Ag2S - As2S3 glasses

Conductivity 110mAg tracer diffusion coefficient )

1 -4 - 118.8°C -6 Log-log plots 25°C -8

-10 tD = 0.78 Conductivity (S cm (S Conductivity t = -0.29 -12 D

-14 0.01 0.1 1 10 100 Silver Concentration (at. %) t   Cx tD = t - 1 tD low silver content: conductivity mainly ionic D  CDx high silver content: conductivity purely ionic t > 0.99 (same conclusions for: Ag2S-GeS2 and Ag2S-GeS-GeS2) Bychkov E, Tsegelnik V, Vlasov Y, Pradel A and Ribes M., JNCS 208 (1996) 1. Bychkov E, Bychkov A, Pradel A and Ribes M., SSI 113-115 (1998) 691. Non-Arrhenius behaviour (log   1/T) in glasses and more generally in super-ionic conductors Arrhenius plots of  for different « superionic » glasses (temperatures below Tg) 2 0.5Ag2S+0.5GeS2 0.8Na2S+0.2B2S3 0.56Li2S+0.44SiS2 0 0.7Li2S+0.3B2S3 0.525Ag2S+0.475(B2S3:SiS2) 0.2AgI+0.8[0.525Ag2S+0.475(B2S3:SiS2)] -2 0.3AgI+0.7[0.525Ag2S+0.475(B2S3:SiS2)] 0.4AgI+0.6[0.525Ag2S+0.475(B2S3:SiS2)] 60AgI+13.3Ag2O+26.7MoO3 74AgI+8.7Ag2O+17.3MoO3 -4

-6

-8

-10

-12 0 2 4 6 8 10 12 1000/T Arrhenius plots of  for different « superionic » Crystallised phases

Ag7GeSe5I Renaud Ag7GeSe5I Abdel 2 Ag8GeSe6 Ag7PSe6 Ag8SnSe6 0 Ag8SiSe6 Li0.5La0.5TiO3 Nab"Al2O3 Ag7GeS5I -2 a-AgI RbAg4I5 BiMeVOx1 BiMeVOx2 -4 BiMeVOx3 BiMeVOx4 SnCl2 -6 CaF2 SrF2 BaF2

-8

-10

-12 0 2 4 6 8 10 12 1000/T [K -1] Because of super-Arrhenius behaviour below Tg in glasses one can think that it exists a « Mobile ion » glass transition

Such a transition cannot be observed easily because its weakness. (To date it has only been reported by Hahashi and Ojuni – AgPO3-AgI glass at ~80K).

It is also possible to imagine a « mobile ion Tg »for superionic crystalline compounds with disorder in the mobile ion sub-lattice (for temperature higher than this hypothetical temperature ions move in a quasi-liquid sub-lattice) F

For temperature greater than that of « mobile ion Tg » cooperative cation motions super-Arrhenius behaviour Scaled Arrhenius plots of  for different « superionic » Glass and Crystalline compounds In the absence of experimental data one can tentatively take for « mobile ion Tg » the temperature where the conductivity is about 10-9 Scm-1, allowing a scaling of the variation of the conductivity (log   T(= 10-9) / T) 1 Ag7GeSe5I Renaud Ag7GeSe5I Abdel 0 BiMeVOx1 BiMeVOx2 BiMeVOx3 -1 BiMeVOx4 0.8Na2S+0.2B2S3 -2 0.56Li2S+0.44SiS2 0.7Li2S+0.3B2S3 60AgI+13.3Ag2O+26.7MoO3 -3 74AgI+8.7Ag2O+17.3MoO3 Li0.5La0.5TiO3 Ag8GeSe6 -4 Ag7PSe6 Ag8SnSe6 Ag8SiSe6 -5 SnCl2

-6 Work done with

-7 Austen Angell ASU - Tempe -8

-9 T10-9/T 0 0.2 0.4 0.6 0.8 1