Low-Temperature Solution-Phase Synthesis of Chalcogenide and Carbide Materials

Total Page:16

File Type:pdf, Size:1020Kb

Low-Temperature Solution-Phase Synthesis of Chalcogenide and Carbide Materials Low-Temperature Solution-Phase Synthesis of Chalcogenide and Carbide Materials DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Rick Albert Lionel Morasse Graduate Program in Chemistry The Ohio State University 2018 Dissertation Committee: Dr. Joshua E. Goldberger, Advisor Dr. L. Robert Baker Dr. James V. Coe Copyrighted by Rick Albert Lionel Morasse 2018 Abstract Despite the fact that new dimensionally reduced hybrid organic-inorganic compounds have attracted considerable interest due to their unique optical and electronic properties, the rational synthesis of these new materials remains elusive. Here we studied the influence of the major synthetic parameters including temperature, ligand structure, and ligand-to-metal stoichiometry on the preparation of dimensionally reduced TiS2. One-dimensional TiS2 phases tend to form at high ligand-to-metal ratios and relatively lower temperatures, while the parent two-dimensional lattices form at higher temperature. The organic ligand structure dictates the temperature window at which a dimensionally reduced phase can be accessed. Although a small change in ligand structure, such as from ethylenediamine, en, to propylenediamine, pn, will significantly influence the stability of these phases, it will only subtly change the electronic structure. By developing a systematic understanding of the effects of various factors during the synthesis, we provide a pathway to rationally create new dimensionally reduced materials. A second project in this dissertation focuses on the development of a solution-phase route towards germanium carbide materials. We hypothesized metal germanium carbide materials could be created via the transmetallation of precursors that ii contain four C-B(OR)2 bonds with germanium-halogen (Ge-X) bond-containing precursors to form networks containing Ge-C bonds. While this chemistry is an essential step in many well-known organic reaction pathways, it has not been explored for the synthesis of germanium carbide materials in part due to the lack of commercial availability and the complicated synthesis of the C[B(OR)2]4 precursors. To these ends, we established the synthesis of the tetrasubstituted cyclic boronic ester, tetrakis (1,3 propanediolatoboronate) methane, which we denote as C(Bpg)4. We have adapted and improved upon the previously reported route, which utilizes precursors that are not commercially available, and have been able to synthesize this material on the 20 g scale with an overall ~50% yield. Upon establishing the large scale synthesis of C(Bpg)4 precursors, we explored whether GeC can be created. GeC has attracted considerable theoretical interest, yet no such phase currently exists. In these experiments we describe the reactions between C(Bpg)4 with many different germanium precursors across multiple different solvent and temperature conditions. These reactions and subsequent characterizations reveal that an analogous precursor, HC(Bpg)3, generates an amorphous GeCH phase while the C(Bpg)4 precursor does not immediately react and rather forms an oxidized Ge phase. The X-ray diffraction (XRD) of these materials showed no long-range crystallinity, and synchrotron X-ray Pair-distribution function (PDF) identified the presence of Ge-C bonds at 1.86 Å in the amorphous GeCH phase in addition to Ge-O bonds at 1.74 Å in the GeO2 phase. The Raman analysis showed no crystalline modes in the GeCH phase until annealing above 500 oC, at which point graphite and crystalline germanium modes appear. The lack of iii direct reactivity between C(Bpg)4 with tetrasubstituted Ge precursors merits the future exploration of base-activation procedures. In summary, the low-temperature solution-phase syntheses of TiS2(en) and C(Bpg)4 and the progress towards carbides and small-molecule carbide analogues represent progress towards the wider use of solution-phase synthetic methods in order to generate advanced materials. iv This document is dedicated to my family. v Acknowledgments I would sincerely like to thank Dr. Joshua Goldberger for being my advisor during my graduate studies. I am thankful for the countless time he has invested into my professional career through exam, presentation, and dissertation preparation. I am grateful for this opportunity to perform exciting research, and am especially thankful for all the growth and learning that have come from addressing these challenging scientific endeavors. I would also like to thank all of my examination committee members over the years. I am thankful for your dedication to my professional career and for your warm collegiality within the department. Thank you to Dr. Coe and Dr. Wu for serving on my first year oral exam, to Dr. Badu-Tawiah, Dr. Baker, and Dr. Coe for serving on my candidacy committee, and Dr. Baker and Dr. Coe for serving on my PhD committee. Next, I would like to thank everyone in the OSU Department of Chemistry & Biochemistry involved with General Chemistry. During my time as a GTA, I have grown personally and professionally thanks to the guidance of the Lab Supervisors, Dr. Tatz, Dr. Zellmer, and Dr. Moga. Additionally, I am thankful for all of the support from Nate Williams and Tyler Weaver over the years of teaching. vi I am also grateful to the many people who have helped me with research, especially Dr. Ken Kuno, Dr. Jay Giblin, Dr. Ewan Hamilton, Dr. Judith Gallucci, Dr. Tanya Whitmer, Dr. Lisa Alexander, and Dr. Nicole Karn. I would also like to thank all the current and former members of the Goldberger Group for their years of advice, support, and many laughs. I am especially grateful to Dr. Tianyang Li and Zachary Baum for their many years of collaboration. They have helped me with countless experiments. Additionally, I would like to thank Dr. Maxx Arguilla and Nick Cultrara for timely help when running measurements. Most importantly, I would like to thank Maxx and Nick for the many culinary adventures. I could not have completed all of these years of study without the love, support, prayer, and encouragement of my friends and family. I am thankful for the friendships formed at the University of Notre Dame and the St. Thomas More Newman Center at OSU. Special thanks to Sean and Laura Puscas and Chris Schreyer. I would also like to thank my loving and patient girlfriend, Rachel, for all of her support during graduate school. Finally, thanks to my entire family, grandparents, parents, Pat and Paul, and brother, Mark. vii Vita June 2008 .......................................................Lakeshore Catholic High School May 2012 .......................................................B.S., Chemistry, University of Notre Dame 2012 to present ..............................................Graduate Teaching Associate, Department of Chemistry & Biochemistry, The Ohio State University Publications Morasse, R. A. L., Li, T., Baum, Z., Goldberger, J. E., “Rational Synthesis of Dimensionally Reduced TiS2 Phases” Chem. Mater., 2014, 26, 4776–4780. Fields of Study Major Field: Chemistry viii Table of Contents Abstract ............................................................................................................................... ii Acknowledgments.............................................................................................................. vi Vita ................................................................................................................................... viii Publications ...................................................................................................................... viii Fields of Study ................................................................................................................. viii Table of Contents ............................................................................................................... ix List of Tables .................................................................................................................... xii List of Reactions .............................................................................................................. xiii List of Figures .................................................................................................................. xiv Chapter 1 Introduction ................................................................................................... 1 1.1 Conventional Solid-State Synthesis Methods ........................................................... 2 1.2 Solution-Phase Synthesis Methods ........................................................................... 4 1.3 Overview of Dimensional Reduction ........................................................................ 9 1.4 TiS2 and Derivatives................................................................................................ 15 1.4.1 Structure and Applications of TiS2 ................................................................... 15 ix 1.4.2 Dimensional Reduction of TiS2 ........................................................................ 15 1.4.3 Solution-Phase Synthesis of TiS2 Derivatives .................................................. 18 1.5 Carbide Materials .................................................................................................... 19 1.5.1 Applications of Carbides .................................................................................. 19 1.5.2 Applications of Germanium Carbide ...............................................................
Recommended publications
  • Conductive-Bridging Random Access Memory
    Jana et al. Nanoscale Research Letters (2015) 10:188 DOI 10.1186/s11671-015-0880-9 NANO REVIEW Open Access Conductive-bridging random access memory: challenges and opportunity for 3D architecture Debanjan Jana1, Sourav Roy1, Rajeswar Panja1, Mrinmoy Dutta1, Sheikh Ziaur Rahaman1, Rajat Mahapatra1,2 and Siddheswar Maikap1* Abstract The performances of conductive-bridging random access memory (CBRAM) have been reviewed for different switching materials such as chalcogenides, oxides, and bilayers in different structures. The structure consists of an inert electrode and one oxidized electrode of copper (Cu) or silver (Ag). The switching mechanism is the formation/dissolution of a metallic filament in the switching materials under external bias. However, the growth dynamics of the metallic filament in different switching materials are still debated. All CBRAM devices are switching under an operation current of 0.1 μAto 1mA,andanoperationvoltageof±2Visalsoneeded.Thedevice can reach a low current of 5 pA; however, current compliance-dependent reliability is a challenging issue. Although a chalcogenide-based material has opportunity to have better endurance as compared to an oxide-based material, data retention and integration with the complementary metal-oxide-semiconductor (CMOS) process are also issues. Devices with bilayer switching materials show better resistive switching characteristics as compared to those with a single switching layer, especially a program/erase endurance of >105 cycles with a high speed of few nanoseconds. Multi-level cell operation is possible, but the stability of the high resistance state is also an important reliability concern. These devices show a good data retention of >105 s at >85°C. However, more study is needed to achieve a 10-year guarantee of data retention for non-volatile memory application.
    [Show full text]
  • Heat Sink Design for Optimal Performance
    © 2019 JETIR January 2019, Volume 6, Issue 1 www.jetir.org (ISSN-2349-5162) Heat Sink Design for Optimal Performance Arjun Kumar, Department of Mechanical Engineering, Galgotias University, Yamuna Expressway Greater Noida, Uttar Pradesh Email ID: [email protected] ABSTRACT- The regularly rising transistor densities and exchanging speeds in chip have been went with an emotional increment in the system heat motion and force dissemination. Right now rising IC densities joined with significantly increasingly stringent execution and unwavering quality necessity have made warm administration issues perpetually unmistakable in the plan of modern microelectronic systems. So as to accomplish a high degree power dissemination expelled heat sinks, various research works have been done in most recent two decades. It is seen that segments of present day versatile electronic gadgets with expanding heat loads with decline in the space accessible for heat dispersal. The expanding heat heap of the gadget should be expelled for keeping up the proficient exhibition of the gadget. The exponential increment in warm burden in air cooling gadgets requires the warm administration system to be advanced to achieve the best in the given space. In the current paper a survey report on far reaching portrayal for warm conditions for cooling reason inside the Heat sink for electronic gadgets has been condensed. Keywords: CFD, Cooling System, Heat Sink, Heat Transfer, Heat Pipe. INTRODUCTION In the here and now of logical time, the fast advancement of electronic innovation, gadgets and apparatuses assumes a significant position in our everyday lives. Be that as it may, as the part size therapists there is an emotional addition in the Heat transition per unit region, because of which the working temperature of the electronic segments may surpass the ideal temperature level.
    [Show full text]
  • UCLA Electronic Theses and Dissertations
    UCLA UCLA Electronic Theses and Dissertations Title Electrochemical Performance of Titanium Disulfide and Molybdenum Disulfide Nanoplatelets Permalink https://escholarship.org/uc/item/73h6h1z6 Author Siordia, Andrew F. Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Los Angeles Electrochemical Performance of Titanium Disulfide and Molybdenum Disulfide Nanoplatelets A thesis submitted in partial satisfaction of the requirements of the degree Master of Science in Materials Science and Engineering by Andrew Francisco Siordia 2016 ABSTRACT OF THESIS Electrochemical Performance of Titanium Disulfide and Molybdenum Disulfide Nanoplatelets by Andrew Francisco Siordia Master of Science in Materials Science and Engineering University of California, Los Angeles, 2016 Professor Bruce S. Dunn, Chair Single layer crystalline materials, often termed two-dimension (2D) materials, have quickly become a popular topic of research interest due to their extraordinary properties. The intrinsic electrical, mechanical, and optical properties of graphene were found to be remarkably distinct from graphite, its bulk counterpart. In conjunction with newfound processing techniques, there is renewed interest in elucidating the structure-property relationships of other 2D materials ii like the transition metal dichalcogenides (TMDCs). The energy storage capability of 2D nanoplatelets of TiS2 and MoS2 are studied here providing a contrast with investigations of corresponding bulk materials in the early 1970s. TiS2 was synthesized into nanoplatelets using a hot injection route which provided a capacity of ~143mAhg-1 from thin film electrodes as determined by cyclic voltammetry measurements. Phase identification using X-ray diffraction, scanning electron microscopy, and transmission electron microscopy to complement the electrochemical performance and impurity identification is presented.
    [Show full text]
  • L. Arulmurugan, M. Ilangkumaran " Experimental Study on Graphene/Transition Metal Chalcogenide Based Energy Storage and Conversion
    Journal of Ovonic Research Vol. 16, No. 4, July - August 2020, p. 197 - 211 EXPERIMENTAL STUDY ON GRAPHENE/TRANSITION METAL CHALCOGENIDE BASED ENERGY STORAGE AND CONVERSION L. ARULMURUGANa, *, M. ILANGKUMARANb, aDepartment of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Sathyamangalam, Erode, Tamilnadu, India bDepartment of Mechatronics Engineering, K S Rangasamy College of Technology, Tiruchengode, Tamilnadu, India The ever-increasing energy demand and the shortage of fossil fuels force the researchers to do research on utilization and conversion of renewable energy sources. In Recent years, the graphene and Transition Metal Chalcogenide (TMC) based Phase Change material (PCM) have been reviewed towards the future energy storage and energy conversion. This PCM is considered as a promising pathway to alleviate the energy crisis. The TMC material is considered as an emerging material due to their optoelectronic behavior and stability of the material. Moreover, the integration of TMC with graphene, significantly improve the performance of the system. The storage of solar energy in the form of sensible and latent heat has become an important aspect of energy management. To improve the performance of domestic solar water heater system, the vertical spiral and cylindrical heat exchanger is designed. The spiral module and cylindrical modules filled with and without PCM are analyzed and the obtained results are compared with each other. The results show that the spiral and cylindrical heat exchanger filled with PCM store and release the thermal energy efficiently and it performs the desired functions than the without PCM module. (Received April 28, 2020; Accepted July 14, 2020) Keywords: Graphene/transition metal chalcogenide, Phase change material, Thermal management, Heat exchanger, Spiral and cylindrical module 1.
    [Show full text]
  • Growth of Metal Chalcogenide Nanomaterials and Their Characterizations Yichao Zou Bachelor of Engineering
    Growth of Metal Chalcogenide Nanomaterials and Their Characterizations Yichao Zou Bachelor of Engineering A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2016 School of Mechanical and Mining Engineering Abstract Metal chalcogenides, such as IV-VI and V-VI compounds (SnTe, Bi2Te3, Bi2Se3), are ideal candidates for applications in thermoelectricity and topological (crystalline) insulators. This PhD thesis focuses on the controllable synthesis of metal chalcogenide nanostructures via chemical vapour deposition method (CVD), and on the understanding of the crystal structure, growth mechanism, and structure-property correlation in the as-grown nanomaterials. IV-VI and V-VI compounds have attracted extensive research interest because of their excellent thermoelectric properties and exotic physical properties. Nevertheless, there still exist unresolved issues that prevent the further applications of IV-VI and V-VI nanomaterials by rational design, including (1) it is still difficult to grow these nanomaterials with controllable morphology and (2) crystal structure; (3) limited investigations of their growth mechanisms; (4) limited study on structure-property relationships in the nanostructures. Therefore, in this thesis, the controllable growth technique, growth mechanism and structure-property relation in IV-VI and V-VI based nanostructures are explored. The objective is achieved in the following steps: Realizing the morphological control of the nanostructures. (i) By catalyst engineering in Au-catalysed CVD. For SnTe nanostructures, catalyst composition was found to be a key factor controlling the morphology. AuSn catalysts induce growth of triangular SnTe nanoplates, whereas Au5Sn catalysts result in <010> SnTe NWs. For Bi2Se3 nanostructures, catalyst-nanostructure interface was found to have an impact on their growth directions.
    [Show full text]
  • Crystallization Kinetics of Chalcogenide Glasses
    2 Crystallization Kinetics of Chalcogenide Glasses Abhay Kumar Singh Department of Physics, Banaras Hindu University, Varanasi, India 1. Introduction 1.1 Background of chalcogenides Chalcogenide glasses are disordered non crystalline materials which have pronounced tendency their atoms to link together to form link chain. Chalcogenide glasses can be obtained by mixing the chalcogen elements, viz, S, Se and Te with elements of the periodic table such as Ga, In, Si, Ge, Sn, As, Sb and Bi, Ag, Cd, Zn etc. In these glasses, short-range inter-atomic forces are predominantly covalent: strong in magnitude and highly directional, whereas weak van der Waals' forces contribute significantly to the medium-range order. The atomic bonding structure is, in general more rigid than that of organic polymers and more flexible than that of oxide glasses. Accordingly, the glass-transition temperatures and elastic properties lay in between those of these materials. Some metallic element containing chalcogenide glasses behave as (super) ionic conductors. These glasses also behave as semiconductors or, more strictly, they are a kind of amorphous semi-conductors with band gap energies of 1±3eV (Fritzsche, 1971). Commonly, chalcogenide glasses have much lower mechanical strength and thermal stability as compared to existing oxide glasses, but they have higher thermal expansion, refractive index, larger range of infrared transparency and higher order of optical non-linearity. It is difficult to define with accuracy when mankind first fabricated its own glass but sources demonstrate that it discovered 10,000 years back in time. It is also difficult to point in time, when the field of chalcogenide glasses started.
    [Show full text]
  • United States Patent to 4,009,052 Whittingham 45 Feb
    United States Patent to 4,009,052 Whittingham 45 Feb. 22, 1977 54 CHALCOGENIDE BATTERY the anode-active material a metal selected from the group consisting of Group la metals, Group Ib metals, (75. Inventor: M. Stanley Whittingham, Fanwood, Group IIa metals, Group IIb metals, Group IIIa metals N.J. and Group IVa metals (lithium is preferred), the cath 73) Assignee: Exxon Research and Engineering ode contains as the cathode-active material a chalco Company, Linden, N.J. genide of the formula MZ wherein M is an element selected from the group consisting of titanium, zirco 22 Filed: Apr. 5, 1976 nium, hafnium, niobium, tantalum and vanadium (tita nium is preferred); Z is an element selected from the (21 Appl. No.: 673,696 group consisting of sulfur, selenium and tellurium, and x is a numerical value between about 1.8 and about 2. 1, Related U.S. Application Data and the electrolyte is one which does not chemically 63 Continuation-in-part of Ser. No. 552,599, Feb. 24, react with the anode or the cathode and which will 1975, abandoned, which is a continuation-in-part of permit the migration of ions from said anode-active Ser. No. 396,051, Sept. 10, 1973, abandoned. material to intercalate the cathode-active material. A highly useful battery may be prepared utilizing lithium (52) U.S. Cl. ............................... 429/191; 429/193; as the anode-active material, titanium disulfide as the 429/194; 429/199; 429/218; 429/229 cathode-active material and lithium perchlorate dis (51) Int. Cl’........................................ H01M 35/02 solved in tetrahydrofuran (70%) plus dimethoxyethane.
    [Show full text]
  • Amorphous Chalcogenide Semiconductors and Related Materials
    Amorphous Chalcogenide Semiconductors and Related Materials Keiji Tanaka · Koichi Shimakawa Amorphous Chalcogenide Semiconductors and Related Materials 123 Keiji Tanaka Koichi Shimakawa Graduate School of Engineering Faculty of Engineering Department of Applied Physics Gifu University Hokkaido University Yanaido Kita-ku Gifu 501-1193, Japan Sapporo 060-8628, Japan and [email protected] Nagoya Industrial Science Institute Nagoya 460-0008, Japan [email protected] ISBN 978-1-4419-9509-4 e-ISBN 978-1-4419-9510-0 DOI 10.1007/978-1-4419-9510-0 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011926594 © Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Preface Photonic, electronic, and photo-electric applications of non-crystalline1 solids are rapidly growing in recent years. Such growth seems to synchronize with the devel- opment of oxide glass1 fibers and related devices for optical communications, which started near the end of the last century.
    [Show full text]
  • Applications of Chalcogenide Glasses: an Overview
    International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN : 0974-4290 Vol.6, No.11, pp 4682-4686, Oct-Nov 2014 Applications of Chalcogenide Glasses: An Overview Suresh Sagadevan*1 and Edison Chandraseelan2 *1Department of Physics, Sree Sastha Institute of Engineering and Technology, Chennai-600 123, India 2 Department of Mechanical Engineering, Sree Sastha Institute of Engineering and Technology, Chennai--600 123, India *Corres.author: [email protected] Abstract: Chalcogenides are compounds formed predominately from one or more of the chalcogen elements; sulphur, selenium and tellurium. Although first studied over fifty years ago, interest in chalcogenide glasses has, over the past few years, increased significantly as glasses, crystals and alloys find new life in a wide range of optoelectronic devices applications. Following the development of the glassy chalcogenide field, new optoelectronic materials based on these materials have been discovered. Several non-oxide glasses have been prepared and investigated in the last several decades, thus widening the groups of chalcogen materials used in various optical, electronic and optoelectronic glasses. This paper reviews the development of chalcogenide glasses, their physical properties and applications in electronics and optoelectronics. The glassy, amorphous and disordered chalcogenide materials, which are important for optoelectronic applications, are discussed. This paper also deals with an overview of representative applications these exciting optoelectronic materials. 1. Introduction The name chalcogenide originates from the Greek word “chalcos” meaning ore and “gen” meaning formation, thus the term chalcogenide is generally considered to mean ore former [1]. The elements of group sixteen of the periodic table is known as the chalcogens. The group consists of oxygen, sulphur, selenium, tellurium and polonium though oxygen is not included in the chalcogenide category.
    [Show full text]
  • WS2: a New Window Layer Material for Solar Cell Application Md
    www.nature.com/scientificreports OPEN WS2: A New Window Layer Material for Solar Cell Application Md. Khan Sobayel Bin Rafq 1, N. Amin2,3*, Hamad F. Alharbi4*, Monis Luqman 4, Afda Ayob2, Yahya S. Alharthi5, Nabeel H. Alharthi5, Badariah Bais2 & Md. Akhtaruzzaman1,2* Radio frequency (RF) magnetron sputtering was used to deposit tungsten disulfde (WS2) thin flms on top of soda lime glass substrates. The deposition power of RF magnetron sputtering varied at 50, 100, 150, 200, and 250 W to investigate the impact on flm characteristics and determine the optimized conditions for suitable application in thin-flm solar cells. Morphological, structural, and opto-electronic properties of as-grown flms were investigated and analyzed for diferent deposition powers. All the WS2 flms exhibited granular morphology and consisted of a rhombohedral phase with a strong preferential orientation toward the (101) crystal plane. Polycrystalline ultra-thin WS2 flms with bandgap of 2.2 eV, carrier concentration of 1.01 × 1019 cm−3, and resistivity of 0.135 Ω-cm were successfully achieved at RF deposition power of 200 W. The optimized WS2 thin flm was successfully incorporated as a window layer for the frst time in CdTe/WS2 solar cell. Initial investigations revealed that the newly incorporated WS2 window layer in CdTe solar cell demonstrated photovoltaic conversion efciency of 1.2% with Voc 2 of 379 mV, Jsc of 11.5 mA/cm , and FF of 27.1%. This study paves the way for WS2 thin flm as a potential window layer to be used in thin-flm solar cells. For many decades, transition metal dichalcogenides (TMDCs) are among the promising materials in a wide range of applications, but their superior performance in complex applications has attracted extensive research atten- tion.
    [Show full text]
  • Brac University Graphene Based Nano Scale Heat
    BRAC UNIVERSITY SCHOOL OF ENGINEERING AND COMPUTER SCIENCE DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING GRAPHENE BASED NANO SCALE HEAT SPREADER IN FIELD EFFECT TRANSISTOR BY SHAFANA ASHRAFI(11221016) SHEKH RAFID AHNAF (12221109) TASFIA PROMY (12121162) IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONIC ENGINEERING April, 2017 Dhaka, Bangladesh 1 In the name of Allah, the most gracious, most merciful. 2 Department of Electrical and Electronics Engineering, BRAC University Declaration We, hereby declare that this thesis is a work of research and self-study. All the information in this academic paper has been inferred from published work of others. Data, equations, images and all sources are properly cited. This work has not been partially or fully presented anywhere else. Signature of the Supervisor: Signature of the authors: ___________________________ _________________________________ Avijit DasShafana Ashrafi Lecturer BRAC University _________________________________ ShekhRafidAhnaf _________________________________ TasfiaPomy 3 Acknowledgement We would firstly like to thank our Thesis Supervisor Avijit Das for his immense support and guidance. Without his patience and motivation, we could have never completed our research. He is as great a supervisor as he is a teacher. We pray for his success. A big, warm gratitude to all the teachers of our EEE department. We will always remember the teachings they have bestowed upon us. We cannot forget the immense support we got from the Computer Laboratory Technical Officers. From installing our software to helping us troubleshoot the computer errors, we have always found them by our side. A big thank you to all the staff of UB40402.
    [Show full text]
  • Mid-Infrared Supercontinuum Generation in Chalcogenide Glass Fibers: a Brief Review Yingying Wang1,2,3 and Shixun Dai1,2,3*
    Wang and Dai PhotoniX (2021) 2:9 https://doi.org/10.1186/s43074-021-00031-3 PhotoniX REVIEW Open Access Mid-infrared supercontinuum generation in chalcogenide glass fibers: a brief review Yingying Wang1,2,3 and Shixun Dai1,2,3* * Correspondence: daishixun@nbu. edu.cn Abstract 1Laboratory of Infrared Material and Devices, The Research Institute of Chalcogenide (ChG) glasses have the characteristics of a wide transparency window 3 Advanced Technologies, Ningbo (over 20 μm) and high optical nonlinearity (up to 10 times greater than that of silica University, Ningbo 315211, China glasses), exhibiting great advantages over silica and other soft glasses in optical 2Key Laboratory of Photoelectric Materials and Devices of Zhejiang property at mid-infrared (MIR) wavelength range. These make them excellent Province, Ningbo 315211, China candidates for MIR supercontinuum (SC) generation. Over the past decades, great Full list of author information is progress has been made in MIR SC generation based on ChG fibers in terms of available at the end of the article spectral extension and output power improvement. In this paper, we introduce briefly the properties of ChG glasses and fibers including transmission, nonlinearity, and dispersion, etc. Recent progress in MIR SC generation based on ChG fibers is reviewed from the perspective of pump schemes. We also present novel ChG fibers such as As-free, Te-based, and chalcohalide fibers, which have been explored and employed as nonlinear fibers to achieve broadband SC generation. Moreover, the potential applications of MIR SC sources based on ChG fibers are discussed. Keywords: Chalcogenide glass fiber, Supercontinuum generation, Mid-infrared, Nonlinear optics Introduction Supercontinuum (SC) generation in nonlinear media originates from the interaction of ultrashort pulses and the dispersion and nonlinear effects, such as self-phase modula- tion (SPM), four wave mixing, stimulated Raman scattering (SRS), soliton self- frequency shift, etc.
    [Show full text]