Aluminium-Air Batteries: Study of Commercial Aluminium Alloys As Anodes

Total Page:16

File Type:pdf, Size:1020Kb

Aluminium-Air Batteries: Study of Commercial Aluminium Alloys As Anodes UNIVERSIDAD AUTÓNOMA DE MADRID ALUMINIUM-AIR BATTERIES: STUDY OF COMMERCIAL ALUMINIUM ALLOYS AS ANODES PhD candidate: Mikel Pino Martinez Directors: Prof. Dr. Pilar Ocón Esteban Prof. Dr. Enrique Fatás Lahoz Index Abstract ......................................................................................................................................... 1 1. Introduction .......................................................................................................................... 5 1.1. Context: batteries and its history. ................................................................................. 5 1.2. Present situation: batteries and challenges ahead. ...................................................... 9 1.2.1. Sectors waiting for new battery technologies: Smart cities, hearing aids and large scale energy storage systems. .................................................................................... 10 1.3. Commercial products: batteries and its parameters. ................................................. 14 1.3.1. Commercial rechargeable batteries and its parameters. ................................ 14 1.3.2. Commercial primary batteries and its parameters. ........................................ 18 1.4. Metal-air battery: a deeper overview. ........................................................................ 22 1.4.1. Anodes for metal-air batteries. ....................................................................... 25 1.4.2. Cathodes for metal-air batteries. .................................................................... 35 1.5. Aluminium-air battery: discovery, commercial alloys and state of the art................. 41 1.5.1. Discovery and production. .............................................................................. 42 1.5.2. Commercial aluminium alloys. ........................................................................ 44 1.5.3. Al-air battery, working principle. .................................................................... 48 1.5.4. State of the art of Al-air battery. ..................................................................... 50 1.6. References. .................................................................................................................. 56 2. Research objectives ............................................................................................................ 67 3. Experimental ....................................................................................................................... 69 3.1. Materials: electrodes and cell casing. ......................................................................... 69 3.1.1. Commercial aluminium alloy anodes. ............................................................. 69 3.1.2. Positive electrodes: NiOOH cathode and air-cathode. ................................... 70 3.1.3. Electrochemical characterisation assembly. ................................................... 71 3.1.4. Aluminium-air cell casings. .............................................................................. 72 3.2. Electrolyte formulations and carbon treatment. ........................................................ 73 3.2.1. Reagents. ......................................................................................................... 73 3.2.2. Gelled alkaline electrolyte synthesis. .............................................................. 73 3.2.3. Carbon treatment for anodes. ........................................................................ 74 3.3. Electrochemical characterisation. ............................................................................... 74 3.3.1. Potentiodynamic polarisation curves: Tafel Plots. .......................................... 75 3.3.2. Galvanostatic polarisation curves. .................................................................. 76 3.3.3. Galvanostatic battery discharge. ..................................................................... 77 3.3.4. Multireference galvanostatic battery discharge. ............................................ 78 3.3.5. Dynamic galvanostatic battery discharge. ...................................................... 78 3.4. Physical-chemical characterisation. ............................................................................ 79 3.4.1. Scanning Electron Microscopy (SEM). ............................................................. 79 3.4.2. Energy dispersive X-ray detection (EDX). ........................................................ 80 3.5. References ................................................................................................................... 81 Results and discussion ................................................................................................................ 83 4. Chapter 1: Aluminium-air batteries with alkaline pH electrolytes ..................................... 83 4.1. Potassium hydroxide electrolyte based commercial aluminium alloy-air battery. ........ 84 4.1.1. Characterisation of commercial aluminium alloys in potassium hydroxide electrolyte. .............................................................................................................................. 84 4.1.1.1. Hydrogen evolution at different current polarisations. .................................. 87 4.1.1.2. Mass loss at different current polarisations. .................................................. 90 4.1.1.3. Potential evolution at different current polarisations. ................................... 91 4.1.2. Potassium hydroxide electrolyte based commercial aluminium alloy-NIOOH battery performance. .............................................................................................................. 94 4.1.3. Potassium hydroxide electrolyte based commercial aluminium alloy-air battery performance. ......................................................................................................................... 105 4.2. Gelled potassium hydroxide electrolyte based commercial aluminium alloy-air dry battery. ...................................................................................................................................... 110 4.2.1. Gelled potassium hydroxide electrolyte synthesis and Al-air dry cell assembly. 110 4.2.2. Gelled potassium hydroxide electrolyte based commercial aluminium alloy-air battery performance. ............................................................................................................ 112 4.3. Sodium hydroxide electrolyte based commercial aluminium alloy-air high power battery. ...................................................................................................................................... 126 5. Chapter 2: Aluminium-air batteries with neutral pH electrolytes .................................... 139 5.1. Sodium Chloride electrolyte based commercial aluminium alloy-air battery. ............. 140 5.1.1. Characterisation of commercial aluminium alloys in sodium chloride electrolyte. ………………………………………………………………………………………………………………………….140 5.1.1.1. Hydrogen evolution at different current polarisations. ................................ 141 5.1.1.2. Mass loss at different current polarisations. ................................................ 143 5.1.1.3. Potential evolution at different current polarisations. ................................. 144 5.1.2. Sodium chloride electrolyte based commercial aluminium alloy-air battery performance. ......................................................................................................................... 147 5.1.3. Sodium chloride electrolyte based carbon treated commercial aluminium alloy-air battery performance. ............................................................................................................ 150 6. References ........................................................................................................................ 161 7. Conclusions ....................................................................................................................... 163 8. Annexes ............................................................................................................................. 165 ABSTRACT Abstract Abstract Due to the constant increase in electric demand of our society, new energy production, transport and storage systems will play a key role in a near future. Regarding to energy storage systems, electrochemical energy storage is a very interesting candidate because of the just one step conversion of electric energy in chemical energy and reversely. A lot of electrochemical energy storage systems are commercially available nowadays. From primary alkaline batteries to large scale Li-ion cells, going through Ni-Cd, lead acid, Zn-air, etc. technologies. Every system presents some favourable properties as well as some drawbacks, and specific operation parameters. This makes each battery technology suitable for certain applications where other systems could not work so properly. The latter makes all these different technologies coexist at the same time, what is called “the energy storage mix”, and it results the most accurate approach for the supply of quite different and specific electronic devices, electric vehicles, large scale energy storage, etc. However, due to the rapid technological progress, some medium-future applications could not be successfully energy supplied by the existing commercial technologies. And so, new electrochemical energy storage
Recommended publications
  • Li-Ion Polymer Batteries
    CM0256 Pervasive Computing Lecture 8 – Power Sources Tom Goodale [email protected] Lecture Outline In this lecture we: Examine power sources for mobile devices What power sources are there ? What are their characteristics ? What are their limitations ? Power Sources Mechanical e.g. clockwork Electrical mains power solar power batteries fuel cell Radiation ? Batteries A battery is a device to store energy and make it available in electrical form. Electricity is produced by a chemical reaction, producing electricity, and some by-products, such as heat or gases. In rechargable batteries this chemical reaction is reversible. Battery Arrangements Strictly, an electrical “battery” is an interconnected array of one or more similar “cells”. In current English usage, however, it is more common to call a single cell used on its own a battery than a cell. For example, a hand lamp (flashlight) (torch) is said to take one or more "batteries" even though they may be D cells. A car battery is a true "battery" because it uses multiple cells. Multiple batteries or cells may also be refered to as a battery pack, such as a set of multi-cell 12 V batteries in an electric vehicle. Battery Arrangements In almost any device that uses batteries, you do not use just one cell at a time. You normally group them together serially to form higher voltages, or in parallel to form higher currents. In a serial arrangement, the voltages add up. In a parallel arrangement, the currents add up. The upper arrangement is called a parallel arrangement. If you assume that each cell produces 1.5 volts, then four batteries in parallel will also produce 1.5 volts, but the current supplied will be four times that of a single cell.
    [Show full text]
  • Electrochemistry –An Oxidizing Agent Is a Species That Oxidizes Another Species; It Is Itself Reduced
    Oxidation-Reduction Reactions Chapter 17 • Describing Oxidation-Reduction Reactions Electrochemistry –An oxidizing agent is a species that oxidizes another species; it is itself reduced. –A reducing agent is a species that reduces another species; it is itself oxidized. Loss of 2 e-1 oxidation reducing agent +2 +2 Fe( s) + Cu (aq) → Fe (aq) + Cu( s) oxidizing agent Gain of 2 e-1 reduction Skeleton Oxidation-Reduction Equations Electrochemistry ! Identify what species is being oxidized (this will be the “reducing agent”) ! Identify what species is being •The study of the interchange of reduced (this will be the “oxidizing agent”) chemical and electrical energy. ! What species result from the oxidation and reduction? ! Does the reaction occur in acidic or basic solution? 2+ - 3+ 2+ Fe (aq) + MnO4 (aq) 6 Fe (aq) + Mn (aq) Steps in Balancing Oxidation-Reduction Review of Terms Equations in Acidic solutions 1. Assign oxidation numbers to • oxidation-reduction (redox) each atom so that you know reaction: involves a transfer of what is oxidized and what is electrons from the reducing agent to reduced 2. Split the skeleton equation into the oxidizing agent. two half-reactions-one for the oxidation reaction (element • oxidation: loss of electrons increases in oxidation number) and one for the reduction (element decreases in oxidation • reduction: gain of electrons number) 2+ 3+ - 2+ Fe (aq) º Fe (aq) MnO4 (aq) º Mn (aq) 1 3. Complete and balance each half reaction Galvanic Cell a. Balance all atoms except O and H 2+ 3+ - 2+ (Voltaic Cell) Fe (aq) º Fe (aq) MnO4 (aq) º Mn (aq) b.
    [Show full text]
  • Japan''s Effort in Management of Mercury Waste
    S1_04 JapanJapan ’’’’’’ss EffortEffort inin ManagementManagement ofof MercuryMercury WasteWaste Outline of Mercury Waste Control in Japan Implementation of Battery /fluorescent light Separate ①①① Producer’s Efforts/ Initiative Collection ~~~Design for Environment ~~~ ■A lot of municipalities collects ■Achievement of Mercury-free dry mercury contained waste battery separately to join the nationwide ■Stop Mercurybattery production recovery system in cooperation (1995) with people. Proper Disposal ②②② Establishment of Mercury waste ③③③ Set proper standard for Collection & Recovery System ■ Nationwide Recovery system was mercury waste control established in 1986 by the Japan Waste ■Standard of soot in the exhaust gas Management Association, in closer from incinerator cooperation with a private recycler. ■Effluent standard for landfill site ■Criteria for industrial waste which can be carried into controlled landfill site, etc History of Mercury Reduction Efforts in Japan 1968 Minamata disease certificated as pollution- related illness 1973 Stop production of Mercurochrome Chlor-Alkali plant need closed-system by government (mercury method nearly 100%) 1983 Public anxiety on the risks of environmental pollution caused by waste battery which includes mercury through the waste treatment process 1986 Nation-wide collection & recycling system was established Mercury method of Chlor-Alkali plant became “ 0%” 1991 Mercury Free completed in Manganese Batteries 1992 Mercury Free completed in Alkaline Battery 1995 Stop production of Mercury Battery ① ProducerProducer’’’’ss Efforts/Initiative Central GovernmentGovernment’’’’ss Request to the Battery Association of Japan (BAJ)(BAJ)inin 1984 Ministry of Health and Ministry of International Trade & Industry requested BAJ (1) Reduction of mercury amount for battery (2) Expand of voluntary-collection of battery etc. Response by the BAJ in 1984 BAJ committed (1) Manufacturers of mercury battery never create new market.
    [Show full text]
  • Aluminium Alloys Chemical Composition Pdf
    Aluminium alloys chemical composition pdf Continue Alloy in which aluminum is the predominant lye frame of aluminum welded aluminium alloy, manufactured in 1990. Aluminum alloys (or aluminium alloys; see spelling differences) are alloys in which aluminium (Al) is the predominant metal. Typical alloy elements are copper, magnesium, manganese, silicon, tin and zinc. There are two main classifications, namely casting alloys and forged alloys, both further subdivided into heat-treatable and heat-free categories. Approximately 85% of aluminium is used for forged products, e.g. laminated plates, foils and extrusions. Aluminum cast alloys produce cost-effective products due to their low melting point, although they generally have lower tensile strength than forged alloys. The most important cast aluminium alloy system is Al–Si, where high silicon levels (4.0–13%) contributes to giving good casting features. Aluminum alloys are widely used in engineering structures and components where a low weight or corrosion resistance is required. [1] Alloys composed mostly of aluminium have been very important in aerospace production since the introduction of metal leather aircraft. Aluminum-magnesium alloys are both lighter than other aluminium alloys and much less flammable than other alloys containing a very high percentage of magnesium. [2] Aluminum alloy surfaces will develop a white layer, protective of aluminum oxide, if not protected by proper anodization and/or dyeing procedures. In a wet environment, galvanic corrosion can occur when an aluminum alloy is placed in electrical contact with other metals with a more positive corrosion potential than aluminum, and an electrolyte is present that allows the exchange of ions.
    [Show full text]
  • DEVELOPMENT and CHARACTERIZATION of Al-3.7%Cu-1.4%Mg ALLOY/PERIWINKLE ASH (Turritella Communis) PARTICULATE COMPOSITES
    DEVELOPMENT AND CHARACTERIZATION OF Al-3.7%Cu-1.4%Mg ALLOY/PERIWINKLE ASH (Turritella communis) PARTICULATE COMPOSITES BY MICHEAL NEBOLISA NWABUFOH THE DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING AHMADU BELLO UNIVERSITY, ZARIA JUNE, 2015. DEVELOPMENT AND CHARACTERIZATION OF Al-3.7%Cu-1.4%Mg ALLOY/PERIWINKLE ASH (Turritella communis) PARTICULATE COMPOSITES BY Michael Nebolisa NWABUFOH, B. Eng (Met), E.S.U.T M.Sc/Eng/01731/2010-2011 A THESIS SUBMITTED TO THE SCHOOL OF POSTGRADUATE STUDIES, AHMADU BELLO UNIVERSITY, ZARIA. IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF A MASTER DEGREE IN METALLURGICAL AND MATERIALS ENGINEERING. DEPARTMENT OF METALLURGICAL AND MATERIALS ENGINEERING, FACULTY OF ENGINEERING AHMADU BELLO UNIVERSITY, ZARIA. NIGERIA. JUNE, 2015 ii Declaration I hereby declare that, this research work titled "Development and Characterization of Al-3.7%Cu-1.4%Mg Alloy/Periwinkle Shell (Turritella communis) Ash Particulate Composites" was carried out by me, and the results of this research were obtained by tests carried out in the laboratory and all quotations are indicated by references. Name of Student Signature Date iii Certification This research work titled "Development and Characterization of Al-3.7%Cu- 1.4%Mg/Periwinkle (Turritella communis) Shell Ash Particulate Composites" by Nwabufoh M. Nebolisa with Registration Number M.Sc/Eng/01731/2010-2011 meets the regulations guiding the Award of Master degree in Metallurgical and Materials Engineering at Ahmadu Bello University, Zaria. ____________________ ________________ Prof. S.B. Hassan Date Chairman, Supervisor committee ____________________ _______________ Prof. G.B. Nyior Date Member, Supervisor committee ____________________ _______________ Prof. S.A. Yaro Date Head of Department _____________________ ________________ Prof.
    [Show full text]
  • Energizer's OEM Strategic Alliance Team Exploring the Future, Building
    ENERGIZER 1 Energizer is a major player in Portable Power and Personal Care products Presence in >160 markets around the globe Wet Shave, Skin Care, Feminine Care, Infant Care Portable Energy (FY 2009) (FY 2009) $2.11 B $1.89 B •#2 Branded Market Share •#2 Market Share globally •#1 Brand in Rechargeable •#1 Flashlight manufacturer globally 2 Energ izer ’s miss ion is to dlideliver innovat ive Portable Energy portable power solutions to power people’s lives (FY 2009) $2.11 B •#2 Branded Market Share •#1 Brand in Rechargeable Product Lines •#1 Flashlight manufacturer globally Performance Batteries Lithium AA, AAA Global Headquarters: St. Louis, MO USA Rechargeable Batteries and Chargers Global R&D Center: Cleveland, OH USA Premium and Price Batteries FY2009 Sales: $2.11 Billion Alkaline Carbon Zinc Specialty Batteries Countries Served: 150+ Hearing Aid Estimated Global Market Share - Primary Batteries: 28% Coin Cell Lighting Products 3 Energizer – at the leadinggg edge of innovation 1896 1898 1931 . 1955 . First dry cell for First Flashlight & consumer use 1957 First to freshness first D size battery First miniature date batteries 1959 hearing aid battery First & First 9V battery 1989 Rechargeable NiCd First standard battery alkaline battery First AA 1991 lithium battery First zero‐added mercury battery 2009 2008 2007 2005 1995 . 2003 . 2001 First Lithium powered phone First on‐battery First AAA lithium First multi‐drain charger tester First non added battery watch battery Re‐launch of the mercury H.A AAAA alkaline battery First hihearing aid battery dispenser 4 Energizer – at the leading edge of innovation in the future New form factors, power sources and conveniences Fuel Cells Solar Energizer provides our partners with global manufacturing and customer support to meet ththieir needs anywhere in the world Bennington VT St.
    [Show full text]
  • Battery Replacement for Mercury PX13, PX625, MR9 and PX27
    The mercury cell problem and its solutions. Index. Page 1: Index and general information on mercury battery problems and solutions. 2: Detailed information on mercury, zinc-air, alkaline, rechargeable and lithium cells. 3: Information on silver-oxide cells, a battery comparison chart and options for replacing 625-mercury cells. 4: Battery adapters and various diodes for use in a camera, exposure meter or adapter. 5: Temperature influence on Schottky-diodes and PX27 battery problem and solutions. 6: Materials and tools needed for making a battery adapter and disclaimer. 7: Elaborate step-by-step guide for making a homemade PX13 / PX625 / MR9 battery adapter. 8: Last piece of the step-by-step guide for making a homemade battery adapter and a list of movie cameras and photo (still) cameras, exposure meters and accessories that use PX13 / PX625 / MR9 cells. 9: List of cameras, exposure meters and accessories that use PX13 / PX625 / MR9 cells. 10: For the more technically challenged: a step-by-step guide for making a battery adapter with tiny S.M.D. parts. 11: Ordering information and prices (incl. shipping costs) for ready-made adapters, kits or a hardcopy of this article. 12-14: F.A.Q. frequently asked questions: please READ this first before you place your order or ask questions. General information about mercury cells and various solutions for replacing the banned mercury cells. The now (for environmental reasons) banned mercury Most batteries that were available in mercury versions cells have caused problems for a lot of (vintage) camera are currently available in silver-oxide and/or alkaline and exposure meter owners who are now facing versions.
    [Show full text]
  • R. S. Gumucio Etal Storage Battery
    R. S. GUMUCIO ETAL STORAGE BATTERY V BY April 22, 1969 R. S. GUMUCIO ETAL 3,440,100 STORAGE BATTERY "arzzze 3,440,100 United States Patent Office Patented Apr. 22, 1969 1. 2 3,440,100 very reactive lead dioxide positive electrode, it will be STORAGE BATTERY possible to arrive at several embodiments of potentially Ricardo Salcedo Gumucio and Angel Pascual Ardanuy, reversible, i.e., chargeable and dischargeable, storage bat Madrid, Spain, assignors to Instituto Nacional De Indus teries. Zinc is preferred for this purpose, primarily due to tria, Madrid, Spain the fact that the free energy from the reduction of lead Filed Dec. 13, 1965, Ser. No. 513,200 dioxide by zinc in an acid medium equals about 108.56 Claims priority, application Spain, June 2, 1965, Kcal, corresponding to an electromotive force of about 313,675 nt. CI. H01m 39/00, 41/00 235 volts determined from thermal data, or 2.448 volts U.S. CI. 136—26 12 Claims if the lead dioxide-zinc semi-elements which are shown 10 in the electrochemical couple oxidation-reduction tables are combined, for instance in accordance with the disclos ure in “Oxidation Potentials” by Latimer, second edition, ABSTRACT OF THE DISCLOSURE pp. 340 and 345. Furthermore, a zinc-lead battery will be A storage battery which comprises a housing, at least of considerably lesser weight than a lead battery, since one positive electrode including lead dioxide as active 5 the ratio of electrochemical equivalence between zinc and mass, located in the housing, at least one negative elec lead is 1:3.17.
    [Show full text]
  • Page 1 of 4 Sb516/9596
    S.B. 516: ENROLLED ANALYSIS BATTERIES: PROHIBIT SALE Senate Bill 516 (as enrolled) PUBLIC ACT 124 of 1995 Sponsor: Senator Loren Bennett Senate Committee: Natural Resources and Environmental Affairs House Committee: Conservation, Environment, and Great Lakes Date Completed: 8-29-95 RATIONALE In recent years there has been an increase in deposit program be repealed. A similar program efforts to reduce the amount of household solid to encourage the exchange of nickel cadmium waste sent to landfills by separating recyclable and batteries was scheduled to take effect January 1, potentially hazardous items from the waste 1998, and some people believed it, too, should be stream. For example, Part 171 of the Natural repealed. Resources and Environmental Protection Act prohibits a person other than a retailer, distributor, In addition, according to NEMA, prior to 1993 or manufacturer from disposing of a lead acid most household batteries (i.e., “alkaline” batteries) battery except by delivering it to a retailer, also contained amounts of mercury by weight that distributor, or manufacturer, who must deliver it were considered too high by Environmental either to the manufacturer who is ultimately Protection Agency (EPA) standards. Since the responsible for recycling it, or to a collection, late 1980s, battery manufacturers have recycling, or smelting facility approved by the significantly reduced the amount of mercury they Department of Natural Resources (DNR). In use in making household batteries, from amounts addition, under provisions that had been ranging between .8% and 1.2% of a battery’s total scheduled to take effect July 1, 1995, the Act weight to no more than .025%.
    [Show full text]
  • Periodic Table Metals and Metallurgy
    PERIODIC TABLE The metal which regulates The metal with highest melting Blood Pressure in human point is Tungsten. (3868K) There are 116 elements known beings is sodium. The most harmful metal to today, out by which 90 are human beings is Lead. naturally existing. The metal related to arthritis is Potassium. Lead has poorest electrical The first man made element is conductivity, silver has Technicium (atomic no: 43) The metal present in Insulin is zinc. highest electrical and thermal Promethium is also a man made conductivity. element (atomic no: 63) Zinc is concentrated on the eyes of human beings. The lightest and simplest Man made elements are known element (gas) - hydrogen. as transuranics. The most common halide by weight in earth’s crust is Metals kept under kerosene Modern Periodic Table is Fluoride. are Sodium, Potassium, based on atomic number of Caesium etc. elements. Liquid metals at room - temperature are Iodine is also kept under Mendeleev’s Periodic Table is Mercury, Gallium, Caesium, kerosene. based on atomic weights. The lightest metal element - Francium. The father of periodic table is lithium Liquid non-metal at room- Mendeleev. The heaviest gaseous element temperature is Bromine. The most common element in - radon The non-metal, which shows the universe -hydrogen. The heaviest (densest) electric conductivity Graphite The most ionic compound is element - osmium (Carbon) caesium fluoride. Most stable element - Lead The natural element having Most electronegative element Lithium is kept by covering highest atomic weight is - is Fluorine. with paraffin wax. Uranium. Most electropositive element is Francium (or Caesium). The element with highest METALS AND melting point is Carbon The element which shows METALLURGY highest electron affinity is (diamond) (4000K) Metallurgy is the various chlorine.
    [Show full text]
  • Advanced Materials for Light Weight Body Design
    ISSN (Online): 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (A High Impact Factor, Monthly, Peer Reviewed Journal) Visit: www.ijirset.com Vol. 7, Issue 1, January 2018 Advanced Materials for Light Weight Body Design Tejas Pawar1, Atul Ekad2, Nitish Yeole3, Aditya Kulkarni4, Ajinkya Taksale5 BE-Mech. (2016), Dept. of Mechanical Engineering, VIIT, Pune, India.1 BE-Mech. (2016), Dept. of Mechanical Engineering, NBN Sinhgad School of Engineering, Pune, India.2 BE-Mech. (2016), Dept. of Mechanical Engineering, NBN Sinhgad School of Engineering, Pune, India.3 BE-Mech. (2017), Dept. of Mechanical Engineering, RMD Sinhgad School of Engineering, Pune, India.4 BE-Mech. (2016), Dept. of Mechanical Engineering, VPK Bajaj Inst. of Engg. & Technology, Baramati, India.5 ABSTRACT: With the emergent industrial development and dependence on fossil fuels, Green House Gas (GHG) emission has become most important problem. However, car manufacturers have to remain in competition with peers and design their products innovatively that fulfil the new regulations too. Nevertheless of various different approaches to improve fuel economy such as enhancing fuel quality, development of high performance engines and fuel injection system, weight reduction is one of the encouraging approaches. With 10% weight reduction in passenger cars, the fuel economy improves by as much as 6–8%. KEYWORDS: Carbon Fibre, Magnesium, Aluminium, Titanium, light-weight body materials, poly-acrylonitrile I. INTRODUCTION Car body design in view of structural performance and weight reduction is a challenging task due to the various performance objectives that must be satisfied such as vehicle safety, fuel efficiency, endurance and ride quality.
    [Show full text]
  • Effect of Roll Material on Surface Quality of Rolled Aluminum
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2014 Effect of Roll Material on Surface Quality of Rolled Aluminum Qi Zhao University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Part of the Materials Science and Engineering Commons Recommended Citation Zhao, Qi, "Effect of Roll Material on Surface Quality of Rolled Aluminum" (2014). Electronic Theses and Dissertations. 5080. https://scholar.uwindsor.ca/etd/5080 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Effect of Roll Material on Surface Quality of Rolled Aluminum by Qi Zhao A Thesis Submitted to the Faculty of Graduate Studies through Engineering Materials in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor Windsor, Ontario, Canada 2014 ©2014 Qi Zhao Effect of Roll Material on Surface Quality of Rolled Aluminum by Qi Zhao APPROVED BY: ______________________________________________ A.
    [Show full text]