Aluminium-Air Batteries: Study of Commercial Aluminium Alloys As Anodes
Total Page:16
File Type:pdf, Size:1020Kb
UNIVERSIDAD AUTÓNOMA DE MADRID ALUMINIUM-AIR BATTERIES: STUDY OF COMMERCIAL ALUMINIUM ALLOYS AS ANODES PhD candidate: Mikel Pino Martinez Directors: Prof. Dr. Pilar Ocón Esteban Prof. Dr. Enrique Fatás Lahoz Index Abstract ......................................................................................................................................... 1 1. Introduction .......................................................................................................................... 5 1.1. Context: batteries and its history. ................................................................................. 5 1.2. Present situation: batteries and challenges ahead. ...................................................... 9 1.2.1. Sectors waiting for new battery technologies: Smart cities, hearing aids and large scale energy storage systems. .................................................................................... 10 1.3. Commercial products: batteries and its parameters. ................................................. 14 1.3.1. Commercial rechargeable batteries and its parameters. ................................ 14 1.3.2. Commercial primary batteries and its parameters. ........................................ 18 1.4. Metal-air battery: a deeper overview. ........................................................................ 22 1.4.1. Anodes for metal-air batteries. ....................................................................... 25 1.4.2. Cathodes for metal-air batteries. .................................................................... 35 1.5. Aluminium-air battery: discovery, commercial alloys and state of the art................. 41 1.5.1. Discovery and production. .............................................................................. 42 1.5.2. Commercial aluminium alloys. ........................................................................ 44 1.5.3. Al-air battery, working principle. .................................................................... 48 1.5.4. State of the art of Al-air battery. ..................................................................... 50 1.6. References. .................................................................................................................. 56 2. Research objectives ............................................................................................................ 67 3. Experimental ....................................................................................................................... 69 3.1. Materials: electrodes and cell casing. ......................................................................... 69 3.1.1. Commercial aluminium alloy anodes. ............................................................. 69 3.1.2. Positive electrodes: NiOOH cathode and air-cathode. ................................... 70 3.1.3. Electrochemical characterisation assembly. ................................................... 71 3.1.4. Aluminium-air cell casings. .............................................................................. 72 3.2. Electrolyte formulations and carbon treatment. ........................................................ 73 3.2.1. Reagents. ......................................................................................................... 73 3.2.2. Gelled alkaline electrolyte synthesis. .............................................................. 73 3.2.3. Carbon treatment for anodes. ........................................................................ 74 3.3. Electrochemical characterisation. ............................................................................... 74 3.3.1. Potentiodynamic polarisation curves: Tafel Plots. .......................................... 75 3.3.2. Galvanostatic polarisation curves. .................................................................. 76 3.3.3. Galvanostatic battery discharge. ..................................................................... 77 3.3.4. Multireference galvanostatic battery discharge. ............................................ 78 3.3.5. Dynamic galvanostatic battery discharge. ...................................................... 78 3.4. Physical-chemical characterisation. ............................................................................ 79 3.4.1. Scanning Electron Microscopy (SEM). ............................................................. 79 3.4.2. Energy dispersive X-ray detection (EDX). ........................................................ 80 3.5. References ................................................................................................................... 81 Results and discussion ................................................................................................................ 83 4. Chapter 1: Aluminium-air batteries with alkaline pH electrolytes ..................................... 83 4.1. Potassium hydroxide electrolyte based commercial aluminium alloy-air battery. ........ 84 4.1.1. Characterisation of commercial aluminium alloys in potassium hydroxide electrolyte. .............................................................................................................................. 84 4.1.1.1. Hydrogen evolution at different current polarisations. .................................. 87 4.1.1.2. Mass loss at different current polarisations. .................................................. 90 4.1.1.3. Potential evolution at different current polarisations. ................................... 91 4.1.2. Potassium hydroxide electrolyte based commercial aluminium alloy-NIOOH battery performance. .............................................................................................................. 94 4.1.3. Potassium hydroxide electrolyte based commercial aluminium alloy-air battery performance. ......................................................................................................................... 105 4.2. Gelled potassium hydroxide electrolyte based commercial aluminium alloy-air dry battery. ...................................................................................................................................... 110 4.2.1. Gelled potassium hydroxide electrolyte synthesis and Al-air dry cell assembly. 110 4.2.2. Gelled potassium hydroxide electrolyte based commercial aluminium alloy-air battery performance. ............................................................................................................ 112 4.3. Sodium hydroxide electrolyte based commercial aluminium alloy-air high power battery. ...................................................................................................................................... 126 5. Chapter 2: Aluminium-air batteries with neutral pH electrolytes .................................... 139 5.1. Sodium Chloride electrolyte based commercial aluminium alloy-air battery. ............. 140 5.1.1. Characterisation of commercial aluminium alloys in sodium chloride electrolyte. ………………………………………………………………………………………………………………………….140 5.1.1.1. Hydrogen evolution at different current polarisations. ................................ 141 5.1.1.2. Mass loss at different current polarisations. ................................................ 143 5.1.1.3. Potential evolution at different current polarisations. ................................. 144 5.1.2. Sodium chloride electrolyte based commercial aluminium alloy-air battery performance. ......................................................................................................................... 147 5.1.3. Sodium chloride electrolyte based carbon treated commercial aluminium alloy-air battery performance. ............................................................................................................ 150 6. References ........................................................................................................................ 161 7. Conclusions ....................................................................................................................... 163 8. Annexes ............................................................................................................................. 165 ABSTRACT Abstract Abstract Due to the constant increase in electric demand of our society, new energy production, transport and storage systems will play a key role in a near future. Regarding to energy storage systems, electrochemical energy storage is a very interesting candidate because of the just one step conversion of electric energy in chemical energy and reversely. A lot of electrochemical energy storage systems are commercially available nowadays. From primary alkaline batteries to large scale Li-ion cells, going through Ni-Cd, lead acid, Zn-air, etc. technologies. Every system presents some favourable properties as well as some drawbacks, and specific operation parameters. This makes each battery technology suitable for certain applications where other systems could not work so properly. The latter makes all these different technologies coexist at the same time, what is called “the energy storage mix”, and it results the most accurate approach for the supply of quite different and specific electronic devices, electric vehicles, large scale energy storage, etc. However, due to the rapid technological progress, some medium-future applications could not be successfully energy supplied by the existing commercial technologies. And so, new electrochemical energy storage