The Brazilian Galapagos

Total Page:16

File Type:pdf, Size:1020Kb

The Brazilian Galapagos _ EVOLUTION The Brazilian Galapagos Lizards from the sand dunes of the São Francisco River – some resembling snakes – express their own evolutionary histories Carlos Fioravanti hirty-two years after his first expe- From the very first trip he brought back a new dition to the sand dunes of the São species of lizard, today called Eurolophosaurus Francisco River, biologist Miguel amathites, which lives only there. On other expe- Trefaut Urbano Rodrigues, from the ditions, he and his team found animals that had University of São Paulo (USP), is still never been described, like a two-headed snake Tsurprised at “that crazy fauna,” as he puts it. and a subterranean snake, both with sister spe- In 1980, when he was 27 and even thinner than cies from the other side of the river. In the dunes he is today, he traveled under a merciless sun of the Brazilian Sahara, an area that measures throughout Santo Inácio, a city then made up 7,000 km2 and stretches along 120 km of river, of 200 inhabitants in northern Bahia state, and the team already identified nearly 30 species was astonished by the diversity of similar ani- and eight new exclusive genera of lizard (exclu- mals: the sister species had only small differences sive to the area), which is more than in all the in appearance or genetic make-up. The nearly deserts of North America or Africa. There, and identical creatures lived in the sand dunes on only there, lives a rodent that measures 20 cm, either side of the river. They had differentiated the rabo-de-facho (spiny rat), as well as a bacurau from a common ancestor and followed their own (nightjar) that measures 20 cm high, similarly S UE G I evolutionary paths from the time that the river adapted to the sand dunes of the São Francisco. R – which at that particular point is only 200-300 These dunes display a biological diversity that UEL RODUEL G meters wide – came to separate them. is comparable to the Galapagos archipelago, on MI 94 _ SPECIAL EDITION FAPESP 50 YEARS whose fauna Darwin based his development of She, along with Rodrigues and colleagues from the theory of human evolution. Yale University, presented these conclusions in In recent years, Rodrigues and his team of 20 the journal Evolution in 2006. They received so researchers have been explaining the genetic and much criticism that they had to publish a coun- evolutionary mechanisms that guided the dif- terargument in 2010, in an article that also ap- ferentiation of lizards measuring no more than peared in Evolution, as a way to settle the debate. 5 cm in length. The oldest species of the same “Based on the tools of statistical analysis we de- taxonomic genus of lizards still look like lizards; veloped,” Kohlsdorf says, “groups from other they have short bodies and, shall we say, normal countries began to show reversion of wings in limbs. The species that began to form over the insects and other animals.” last thousand years or so, however, started los- While the debate raged on, the USP biologists ing digits. Their limbs shrank or disappeared, confirmed that in at least two genera of lizards and their bodies became elongated, to the point exclusive to the sand dunes, Calyptommatus and where some species of lizards look like snakes Nothobachia, the loss of limbs is irreversible. The except for the small appendages that would have animals had only miniscule appendages of what been the front feet of their distant ancestors. the limbs had been and were similar in appear- The biologists believed that the loss of complex ance to snakes. Kohlsdorf admits, “We don’t structures like the limbs was irreversible – it is know why only the Bachias were able to reverse the so-called law of irreversibility of evolution, or the loss of limbs.” Dollo’s Law, in honor of Belgian naturalist Louis Juliana Rossito, a researcher in Rodrigues’ Dollo, who presented the theory in 1890. Howev- group, examined embryos and adults of the genus er, one of the lines of lizards with smaller limbs Calyptommatus at various stages of development showed that it is possible to get the limbs back. to understand how the loss of limbs might have Life in the sands of In collaboration with Rodrigues, Tiana Kohlsdorf, occurred. She observed that in the embryo, the northern Bahia state, along with her team from USP Ribeirão Preto, femur begins to form between the fifth and six- with and without studied 15 species of lizards of the genus Bachia teenth days, but then it disappears. Her analyses feet (from left to right): Tropidurus that live throughout South America. The oldest indicate that this genus of lizards is ready to be amathites from Santo among them had limbs with five toes and the more born in one month – and not six, as in the case Inácio; Nothobachia recent had four, then three, then two – and then of the closest species – perhaps as a result of ablephara and S three again. “There is a reversal, since the genetic the effects of temperature or the scarcity of wa- UE Calyptommatus G I R leiolepis from information was not lost, but rather, it evolved ter. Rodrigues adds, “This species found a way Alagoado; Tropidurus again, because the toes that reappeared are not to accelerate its development through natural UEL RODUEL G pinima from Santo MI exactly the same, “ says Kohlsdorf. selection.” Inácio PESQUISA FAPESP _ 95 ccording to Rodrigues, the reduction in the ards by comparing 10 genes. DNA analyses often number of feet and the elongation of the indicate that the analyses obtained on the basis Abody may have occurred during the evolu- of external features need to be revised. tionary history of lizards of the family Gymnoph- Rodrigues and his work group are seeing how talmidae, made up of 45 genera, including Bachia restricted environments are able to limit the de- and Calyptommatus, as a result of adaptations that velopment of new species with unique character- allowed them to avoid extreme temperatures. This istics and habits. The creatures that live in the process gave way to species that were able to bury sand dunes are so specialized that they do not themselves in order to escape predators, as well survive in – or even venture into – the neighbor- as the cold and heat, which can reach 50°C in the ing caatinga. Animals that are typically found sand. It is estimated that this process must have in the caatinga, in turn, only marginally venture occurred at least two dozen times throughout the into the sand dunes. Even among the animals history of these lizards. This in turn advanced themselves, specialization into different envi- the origin of unique and at times even repugnant ronments occurred. Some species of lizards live lizards as well as a group of animals with its own only on clusters of rocks and do not traverse the habits, famous in its own right – the snakes. caatinga areas that separate the rocky outcrops. In order to understand how and why the lizards are becoming able to live buried in tunnels or caves, FROM THE OTHER siDE OF THE ATLANtic Agustín Camacho filmed and analyzed hundreds Rodrigues observed the same phenomenon – iso- of tests that compared the locomotion, the abil- lated populations of Platysaurus, lizards from an- ity to escape and the feeding habits of 12 species other family, but who are very similar in appear- of lizards of the family Gymnophtalmidae using ance to those of one of the groups of Tropidurus, cameras placed in sand inside the laboratory. “The who also have flattened bodies and live only among elongated body and absence of feet seem to favor the stones – in Mozambique, where he went for the development of the fossorial lizards that are the first time in 2007. His plan is to go back there able to escape predators more quickly, feed more in 2013 to conduct a survey of lizards and snakes and bury themselves more easily than those with in the north and south of Mozambique in the com- feet,” he concluded. “But it’s still not possible to pany of other Brazilian and Mozambican biolo- say which morphotype is better adapted to life in gists. They want to see if the genera of this lizard the sand, because even the species with four feet population in Africa originated at the same time is abundant. They survive well and are seen by the as those in Northeastern Brazil. If so, biologists dozens in the sand dunes.” According to him, desert may be able to tell parallel stories of lands that lizards of Australia lived a similar evolutionary life. were close together millions of years ago. Camacho represents the second generation of biologists on the trail of strange creatures in the sands of northern Bahia state. He studied biology The lizards of Bahia in Andalusia, Spain, but “was passionate about coming to the tropics,” he says. He traveled to PERNAMBUCO PIAUÍ São Paulo in 2002 for a short course on venom- Toca da Cabocla ous animals and lizards, returned to Spain to fin- (Serra das Confusões) ish his studies, and in late 2003 moved to Salva- dor, Bahia, to work on his master’s degree at the Federal University of Bahia. His advisor, Pedro Alagoado Rocha, had completed a doctoral degree on the ecology of the lizards in the São Francisco sand Rio São Francisco dunes, advised by none other than Rodrigues. In late 2007, Camacho moved to São Paulo and is now pursuing his doctoral degree in an office BAHIA one floor above that of Miguel Rodrigues.
Recommended publications
  • Zootaxa, a New Genus and Species of Eyelid-Less And
    Zootaxa 1873: 50–60 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) A new genus and species of eyelid-less and limb reduced gymnophthalmid lizard from northeastern Brazil (Squamata, Gymnophthalmidae) MIGUEL TREFAUT RODRIGUES1 & EDNILZA MARANHÃO DOS SANTOS2 1Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, Caixa Postal 11.461, CEP 05422-970, São Paulo, Brazil. E-mail: [email protected] 2Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Serra Talhada, Departamento de Biologia, Fazenda Saco, s/n, Serra Talhada, Pernambuco, Brazil. E-mail: [email protected] Abstract Scriptosaura catimbau, a new genus and species of elongate, fossorial, sand swimming eyelid-less gymnophthalmid li- zard is described on the basis of specimens obtained at Fazenda Porto Seguro, municipality of Buíque, State of Pernam- buco, in the Caatingas of northeastern Brazil. The type locality is entirely included within the area of the recently created Parque Nacional do Catimbau. The new lizard lacks external forelimbs, has rudimentary styliform hindlimbs and is fur- ther characterized by the absence of prefrontal, frontal, frontoparietal and supraocular scales, and by having one pair of chin shields. A member of the Gymnophthalmini radiation, the new genus is considered to be sister to Calyptommatus from which it differs externally by the absence of an ocular scale and absence of an enlarged temporal scale. Key words: Scriptosaura catimbau, new genus, Gymnophthalmidae, taxonomy, Catimbau Nacional Park, Pernambuco State, Brazil, Caatingas Resumo Scriptosaura catimbau, um novo gênero e espécie arenícola de lagarto gimnoftalmídeo fossorial com corpo alongado e sem pálpebra é descrito com base em espécimes obtidos na Fazenda Porto Seguro, município de Buíque, estado de Per- nambuco, nas Caatingas do nordeste brasileiro.
    [Show full text]
  • Integrative and Comparative Biology Integrative and Comparative Biology, Volume 60, Number 1, Pp
    Integrative and Comparative Biology Integrative and Comparative Biology, volume 60, number 1, pp. 190–201 doi:10.1093/icb/icaa015 Society for Integrative and Comparative Biology SYMPOSIUM Convergent Evolution of Elongate Forms in Craniates and of Locomotion in Elongate Squamate Reptiles Downloaded from https://academic.oup.com/icb/article-abstract/60/1/190/5813730 by Clark University user on 24 July 2020 Philip J. Bergmann ,* Sara D. W. Mann,* Gen Morinaga,1,*,† Elyse S. Freitas‡ and Cameron D. Siler‡ *Department of Biology, Clark University, Worcester, MA, USA; †Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA; ‡Department of Biology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK, USA From the symposium “Long Limbless Locomotors: The Mechanics and Biology of Elongate, Limbless Vertebrate Locomotion” presented at the annual meeting of the Society for Integrative and Comparative Biology January 3–7, 2020 at Austin, Texas. 1E-mail: [email protected] Synopsis Elongate, snake- or eel-like, body forms have evolved convergently many times in most major lineages of vertebrates. Despite studies of various clades with elongate species, we still lack an understanding of their evolutionary dynamics and distribution on the vertebrate tree of life. We also do not know whether this convergence in body form coincides with convergence at other biological levels. Here, we present the first craniate-wide analysis of how many times elongate body forms have evolved, as well as rates of its evolution and reversion to a non-elongate form. We then focus on five convergently elongate squamate species and test if they converged in vertebral number and shape, as well as their locomotor performance and kinematics.
    [Show full text]
  • Papeis Avulsos De Zoologia
    Papeis Avulsos de Zoologia MUSEU DE ZOOLOGIA DA UNIVERSIDADE DE SAO PAULO ISSN 0031-1049 P APEIS AV ULSOS ZO OL., S. P AULO 41(28): 529-546 20.IY.2001 A NEW SPECIES OF LIZARD, GENUS CALYPTOMMATUS, FROM THE CAATINGAS OF THE STATE OF PlAut, NORTHEASTERN BRAZIL (SQUAMATA, GYMNOPHTHALMIDAE) MIGUEL TREFAUT ROD RIGUES'· l lIuSSAM ZAIlER' FELIP EC URCIO' ABSTRACT Calyptommatus confusionibus, sp. n. is described based on ten specimens obtained at Toeada Cabocla (08°5'28 "S, 43°26 '58 "W), Parque Nacional da Serra das Confusiies, State ofPiaui, Brazil. The new species is characterized by the presence ofa distinctive supraocular between thefrontonasal andparietal scales, and by the presenc e offour supralabials, the third being the largest one. The new species is very similar in other characteristics to the three previously described species ofCalyptommatus. Keywords: Calyptommatus confusionibus, new species, Squamata, Gymnophthalmidae, INTRODUCTION Two years ago, we initiated a collaborative program with IBAMA's (Ins­ tituto Brasileiro de Meio Ambiente e dos Recursos Naturais Renovaveis) Regi­ onal Office, sponsored by the Fundacao Boticario, to undert ake an intensive I . Universidade de Sao Paulo, Instituto de Biocicncias, Departamento de Zoologia, Caixa Postal 11.46 1, CEP 05422-970 , Sao Paulo, Brazil 2. Museu de Zoo logia, Univcr sidade de Sao Paulo, Caixa Postal 42.694 , CEP 04299-9 70, Sao Paulo, Brazil Trabalho rceebido para publicacao em 12.1.200I e aeeito em 01.11.200I. 530 Papeis Avulsos de Zoologia survey of the terrestrial vertebrates within the yet largely unknown transitional areas of Cerrados and Caatingas from the southeastern part of the State of Piaui.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Sauria, Gymnophthalmidae): Observações Preliminares
    Revista de Etologia 2002, VComportamentool.4, N°1, 11-15 de acasalamento de Calyptommatus leiolepis O Comportamento de Acasalamento de Calyptommatus leiolepis Rodrigues, 1991 em Cativeiro (Sauria, Gymnophthalmidae): Observações Preliminares CLAUDEMIR DURAN FILHO E FLÁVIO DE BARROS MOLINA Fundação Parque Zoológico de São Paulo O comportamento de acasalamento de Calyptommatus leiolepis, um lagarto ápodo, é aqui relatado pela primei- ra vez. Foi observado em maio de 2001, no Zoológico de São Paulo. Parecem ocorrer sete fases distintas: 1) encontro do casal, 2) acompanhamento da fêmea pelo macho, 3) emparelhamento, 4) imobilização da fêmea, 5) pré-cópula, 6) cópula e 7) separação do casal. Interações físicas foram observadas apenas a partir da quarta fase, quando o macho morde a fêmea na região pós-cefálica. Movimentos intensos da cauda foram observados a partir da pré-cópula, quando também foi observado o uso das patas posteriores estiliformes para raspar o corpo da fêmea. Durante a cópula, o macho deixa de morder a fêmea. Estímulos químicos devem ser impor- tantes durante a segunda fase. Estímulos tácteis são importantes na quarta, quinta e sexta fase. Descritores: Acasalamento. Lagarto. Calyptommatus leiolepis. Mating behavior of Calyptommatus leiolepis Rodrigues, 1991 in captivity (Sauria, Gymnophthalmidae): first description. Mating behavior of Calyptommatus leiolepis, a legless lizard, is described for the first time. Observations were conducted at Sao Paulo Zoo during May 2001. Mating behavior can be divided in seven phases: 1) pair meeting, 2) female’s attendance by male, 3) pairing, 4) female’s immobilization, 5) pre-copulation, 6) copulation and 7) pair separation. Physical contacts occurred only after the 3rd phase when the male bit the female at the pos- cephalic area.
    [Show full text]
  • Evolution of Limblessness
    Evolution of Limblessness Evolution of Limblessness Early on in life, many people learn that lizards have four limbs whereas snakes have none. This dichotomy not only is inaccurate but also hides an exciting story of repeated evolution that is only now beginning to be understood. In fact, snakes represent only one of many natural evolutionary experiments in lizard limblessness. A similar story is also played out, though to a much smaller extent, in amphibians. The repeated evolution of snakelike tetrapods is one of the most striking examples of parallel evolution in animals. This entry discusses the evolution of limblessness in both reptiles and amphibians, with an emphasis on the living reptiles. Reptiles Based on current evidence (Wiens, Brandley, and Reeder 2006), an elongate, limb-reduced, snakelike morphology has evolved at least twenty-five times in squamates (the group containing lizards and snakes), with snakes representing only one such origin. These origins are scattered across the evolutionary tree of squamates, but they seem especially frequent in certain families. In particular, the skinks (Scincidae) contain at least half of all known origins of snakelike squamates. But many more origins within the skink family will likely be revealed as the branches of their evolutionary tree are fully resolved, given that many genera contain a range of body forms (from fully limbed to limbless) and may include multiple origins of snakelike morphology as yet unknown. These multiple origins of snakelike morphology are superficially similar in having reduced limbs and an elongate body form, but many are surprisingly different in their ecology and morphology. This multitude of snakelike lineages can be divided into two ecomorphs (a are surprisingly different in their ecology and morphology.
    [Show full text]
  • Digit Evolution in Gymnophthalmid Lizards JULIANA G
    Int. J. Dev. Biol. 58: 895-908 (2014) doi: 10.1387/ijdb.140255jg www.intjdevbiol.com Digit evolution in gymnophthalmid lizards JULIANA G. ROSCITO*,1, PEDRO M.S. NUNES2 and MIGUEL T. RODRIGUES1 1Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo-SP and 2Departamento de Zoologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Brazil ABSTRACT The tetrapod limb is a highly diverse structure, and reduction or loss of this structure accounts for many of the limb phenotypes observed within species. Squamate reptiles are one of the many tetrapod lineages in which the limbs have been greatly modified from the pentadactyl generalized pattern, including different degrees of reduction in the number of limb elements to complete limblessness. Even though limb reduction is widespread, the evolutionary and develop- mental mechanisms involved in the formation of reduced limb morphologies remains unclear. In this study, we present an overview of limb morphology within the microteiid lizard group Gymn- ophthalmidae, focusing on digit arrangement. We show that there are two major groups of limb- reduced gymnophthalmids. The first group is formed by lizard-like (and frequently pentadactyl) species, in which minor reductions (such as the loss of 1-2 phalanges mainly in digits I and V) are the rule; these morphologies generally correspond to those seen in other squamates. The second group is formed by species showing more drastic losses, which can include the absence of an ex- ternally distinct limb in adults. We also present the expression patterns of Sonic Hedgehog (Shh) in the greatly reduced fore and hindlimb of a serpentiform gymnophthalmid.
    [Show full text]
  • Developmental Sequences of Squamate Reptiles Are Taxon Specific
    EVOLUTION & DEVELOPMENT 15:5, 326–343 (2013) DOI: 10.1111/ede.12042 Developmental sequences of squamate reptiles are taxon specific Robin M. Andrews,a,* Matthew C. Brandley,b and Virginia W. Greenea a Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA b School of Biological Sciences (A08), University of Sydney, Sydney, NSW, 2006, Australia *Author for correspondence (e‐mail: [email protected]) SUMMARY Recent studies in comparative vertebrate plotting the proportions of reconstructed ranks (excluding embryology have focused on two related questions. One unlikely events, PP < 0.05) associated with each event. concerns the existence of a phylotypic period, or indeed any Sequence variability was the lowest towards the middle of period, during development in which sequence variation the phylotypic period and involved three events (allantois among taxa is constrained. The second question concerns contacts chorion, maximum number of pharyngeal slits, and the degree to which developmental characters exhibit a appearance of the apical epidermal ridge [AER]); these events phylogenetic signal. These questions are important because each had only two reconstructed ranks. Squamate clades also they underpin attempts to understand the evolution of differed in the rank order of developmental events. Of the 20 developmental characters and their links to adult morphology. events in our analyses, 12 had strongly supported (PP 0.95) To address these questions, we compared the sequence of sequence ranks that differed at two or more internal nodes of developmental events spanning the so‐called phylotypic the tree. For example, gekkotans are distinguished by the late period of vertebrate development in squamate reptiles (lizards appearance of the allantois bud compared to all other and snakes), from the formation of the primary optic placode to squamates (ranks 7 and 8 vs.
    [Show full text]
  • Phylogenetic Relationships Within Bothrops Neuwiedi Group
    Molecular Phylogenetics and Evolution 71 (2014) 1–14 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogenetic relationships within Bothrops neuwiedi group (Serpentes, Squamata): Geographically highly-structured lineages, evidence of introgressive hybridization and Neogene/Quaternary diversification ⇑ Taís Machado a, , Vinícius X. Silva b, Maria José de J. Silva a a Laboratório de Ecologia e Evolução, Instituto Butantan, Av. Dr. Vital Brazil, 1500, São Paulo, SP 05503-000, Brazil b Coleção Herpetológica Alfred Russel Wallace, Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas, MG 37130-000, Brazil article info abstract Article history: Eight current species of snakes of the Bothrops neuwiedi group are widespread in South American open Received 8 November 2012 biomes from northeastern Brazil to southeastern Argentina. In this paper, 140 samples from 93 different Revised 3 October 2013 localities were used to investigate species boundaries and to provide a hypothesis of phylogenetic rela- Accepted 5 October 2013 tionships among the members of this group based on 1122 bp of cyt b and ND4 from mitochondrial DNA Available online 17 October 2013 and also investigate the patterns and processes occurring in the evolutionary history of the group. Com- bined data recovered the B. neuwiedi group as a highly supported monophyletic group in maximum par- Keywords: simony, maximum likelihood and Bayesian analyses, as well as four major clades (Northeast I, Northeast Mitochondrial DNA II, East–West, West-South) highly-structured geographically. Monophyly was recovered only for B. pubes- Incomplete lineage sorting Hybrid zone cens.
    [Show full text]
  • Evolution of Developmental Sequences in Lepidosaurs
    Evolution of developmental sequences in lepidosaurs Tomasz Skawi«ski and Bartosz Borczyk Department of Evolutionary Biology and Conservation of Vertebrates, University of Wroclaw, Wrocªaw, Poland ABSTRACT Background. Lepidosaurs, a group including rhynchocephalians and squamates, are one of the major clades of extant vertebrates. Although there has been extensive phylo- genetic work on this clade, its interrelationships are a matter of debate. Morphological and molecular data suggest very different relationships within squamates. Despite this, relatively few studies have assessed the utility of other types of data for inferring squamate phylogeny. Methods. We used developmental sequences of 20 events in 29 species of lepidosaurs. These sequences were analysed using event-pairing and continuous analysis. They were transformed into cladistic characters and analysed in TNT. Ancestral state reconstructions were performed on two main phylogenetic hypotheses of squamates (morphological and molecular). Results. Cladistic analyses conducted using characters generated by these methods do not resemble any previously published phylogeny. Ancestral state reconstructions are equally consistent with both morphological and molecular hypotheses of squamate phylogeny. Only several inferred heterochronic events are common to all methods and phylogenies. Discussion. Results of the cladistic analyses, and the fact that reconstructions of heterochronic events show more similarities between certain methods rather than phylogenetic hypotheses, suggest that
    [Show full text]
  • Squamata: Anguimorpha)
    Embryonic development and perinatal skeleton in a limbless, viviparous lizard, Anguis fragilis (Squamata: Anguimorpha) Tomasz Skawiński1, Grzegorz Skórzewski2 and Bartosz Borczyk1 1 Department of Evolutionary Biology and Conservation of Vertebrates, University of Wroclaw, Wrocław, Poland 2 Museum of Natural History, University of Wroclaw, Wrocław, Poland ABSTRACT Despite the long history of embryological studies of squamates, many groups of this huge clade have received only limited attention. One such understudied group is the anguimorphs, a clade comprising morphologically and ecologically very diverse lizards. We describe several stages of embryonic development of Anguis fragilis, a limbless, viviparous anguimorph. Interestingly, in several clutches we observe high morphological variation in characters traditionally important in classifying embryos into developmental stages. The causes of this variation remain unknown but envi- ronmental factors do not seem to be very important. Additionally, we describe the state of ossification in several perinatal specimens of A. fragilis. The cranial skeleton is relatively poorly ossified around the time of birth, with all of the bones constituting the braincase unfused. On the other hand, the vertebral column is well ossified, with the neurocentral sutures closed and the neural arches fused in all postatlantal vertebrae. Such an advanced state of ossification may be related to the greater importance of the vertebral column in locomotion in limbless species than in ones with fully-developed limbs. Numerous factors seem to affect the state of ossification at the time of hatching or birth in squamates, including phylogenetic position, mode of reproduction and, potentially, limblessness. However, data from a greater number of species are needed Submitted 29 March 2021 to reach firmer conclusions about the relative importance of these variables in certain Accepted 25 May 2021 clades.
    [Show full text]
  • Herpetologia Brasileira
    Volume 7 - Número 1 - Fevereiro de 2018 ISSN: 2316-4670 I NFORMAÇÕES GERAIS A revista eletrônica Herpetologia Brasileira é quadrimestral (com números em março, julho e novembro) e publica textos sobre assun- tos de interesse para a comunidade herpetológica brasileira. Ela é disponibilizada apenas online, na página da Sociedade Brasileira de Herpetologia; ou seja, não há versão impressa em gráfica. Entretanto, qualquer associado pode imprimir este arquivo. SEÇÕES Editores Gerais: Marcio Martins Magno Segalla Notícias da Sociedade Brasileira de Herpetologia: Esta seção Délio Baêta apresenta informações diversas sobre a SBH e é de responsabili- Bianca Von Muller Berneck dade da diretoria da Sociedade. Notícias da SBH: Giovanna G. Montingelli Fausto Erritto Barbo Notícias Herpetológicas Gerais: Esta seção apresenta informa- Notícias Herpetológicas Gerais: Cinthia Aguirre Brasileiro ções e avisos sobre os eventos, cursos, concursos, fontes de financia- Paulo Bernarde mento, bolsas, projetos, etc., de interesse para nossa comunidade. Notícias de Conservação: Luis Fernando Marin Débora Silvano Notícias de Conservação: Esta seção apresenta informações e Yeda Bataus avisos sobre a conservação da herpetofauna brasileira ou de fa- Dissertações & Teses: Giovanna G. Montingelli tos de interesse para nossa comunidade. Resenhas: José P. Pombal Jr. (anfíbios) Renato Bérnils (répteis) Dissertações & Teses: Esta seção apresenta as informações so- Trabalhos Recentes: Ermelinda Oliveira bre as dissertações e teses sobre qualquer aspecto da herpetolo- Rafael
    [Show full text]