Evolution of Developmental Sequences in Lepidosaurs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
JVP 26(3) September 2006—ABSTRACTS
Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra. -
Predation of an Adult of Agama Impalearis by Falco Tinnunculusin
42 Bol. Asoc. Herpetol. Esp. (2016) 27(1) Fathinia, B. & Rastegar-Pouyani, N. 2010. On the species of Viperidae) inferred from mitochondrial DNA sequences. Pseudocerastes (Ophidia: Viperidae) in Iran. Russian Jour- Molecular Phylogenetics and Evolution, 19, 94–104. nal of Herpetology, 17: 275–279. Leviton, A.E., Anderson, S.C., Adler, K. & Minton, S.A. Fathinia, B., Anderson, S.C., Rastegar-Pouyani, N., Jahani, H. 1992. Handbook to Middle East Amphibians and Repti- & Mohamadi, H. 2009. Notes on the natural history of les. Contributions to Herpetology, No. 8, Society for the Pseudocerastes urarachnoides (Squamata: Viperidae). Rus- Study of Amphibians and Reptiles. Oxford, Ohio, USA. sian Journal of Herpetology, 16: 134–138. Martínez-Freiría, F. 2009. Biogeografía y ecología de las víboras ibéricas Fathinia, B., Rastegar-Pouyani, N., Rastegar-Pouyani, E., Too- (V. aspis, V. latastei y V. seoanei) en una zona de contacto en el norte deh-Dehghan, F. & Rajabizadeh, M. 2014. Molecular sys- peninsular. Tesis doctoral. Universidad de Salamanca. Salamanca tematics of the genus Pseudocerastes (Ophidia: Viperidae) Neill, W.T. 1960. The caudal lure of various juvenile snakes. Quar- based on the mitochondrial cytochrome b gene. Turkish terly Journal of the Florida Academy of Sciences, 23:173–200. Journal of Zoology, 38: doi:10.3906/zoo-1308-25. Nilson, G., Andren, C., Ioannidis, Y. & Dimaki, M. 1999. Gholamifard, A. & Esmaeili, H.R. 2010. First record and Ecology and conservation of the Milos viper, Macrovipera range extension of Field’s horned viper, Pseudocerastes schweizeri (Werner, 1935). Amphibia-Reptilia, 20: 355-375. fieldi Schmidt, 1930 (Squamata: Viperidae), from Fars Tsairi, H. -
Zootaxa, a New Genus and Species of Eyelid-Less And
Zootaxa 1873: 50–60 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) A new genus and species of eyelid-less and limb reduced gymnophthalmid lizard from northeastern Brazil (Squamata, Gymnophthalmidae) MIGUEL TREFAUT RODRIGUES1 & EDNILZA MARANHÃO DOS SANTOS2 1Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, Caixa Postal 11.461, CEP 05422-970, São Paulo, Brazil. E-mail: [email protected] 2Universidade Federal Rural de Pernambuco, Unidade Acadêmica de Serra Talhada, Departamento de Biologia, Fazenda Saco, s/n, Serra Talhada, Pernambuco, Brazil. E-mail: [email protected] Abstract Scriptosaura catimbau, a new genus and species of elongate, fossorial, sand swimming eyelid-less gymnophthalmid li- zard is described on the basis of specimens obtained at Fazenda Porto Seguro, municipality of Buíque, State of Pernam- buco, in the Caatingas of northeastern Brazil. The type locality is entirely included within the area of the recently created Parque Nacional do Catimbau. The new lizard lacks external forelimbs, has rudimentary styliform hindlimbs and is fur- ther characterized by the absence of prefrontal, frontal, frontoparietal and supraocular scales, and by having one pair of chin shields. A member of the Gymnophthalmini radiation, the new genus is considered to be sister to Calyptommatus from which it differs externally by the absence of an ocular scale and absence of an enlarged temporal scale. Key words: Scriptosaura catimbau, new genus, Gymnophthalmidae, taxonomy, Catimbau Nacional Park, Pernambuco State, Brazil, Caatingas Resumo Scriptosaura catimbau, um novo gênero e espécie arenícola de lagarto gimnoftalmídeo fossorial com corpo alongado e sem pálpebra é descrito com base em espécimes obtidos na Fazenda Porto Seguro, município de Buíque, estado de Per- nambuco, nas Caatingas do nordeste brasileiro. -
The Skull of the Upper Cretaceous Snake Dinilysia Patagonica Smith-Woodward, 1901, and Its Phylogenetic Position Revisited
Zoological Journal of the Linnean Society, 2012, 164, 194–238. With 24 figures The skull of the Upper Cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and its phylogenetic position revisited HUSSAM ZAHER1* and CARLOS AGUSTÍN SCANFERLA2 1Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, Ipiranga, 04263-000, São Paulo, SP, Brasil 2Laboratorio de Anatomía Comparada y Evolución de los Vertebrados. Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’, Av. Angel Gallardo 470 (1405), Buenos Aires, Argentina Received 23 April 2010; revised 5 April 2011; accepted for publication 18 April 2011 The cranial anatomy of Dinilysia patagonica, a terrestrial snake from the Upper Cretaceous of Argentina, is redescribed and illustrated, based on high-resolution X-ray computed tomography and better preparations made on previously known specimens, including the holotype. Previously unreported characters reinforce the intriguing mosaic nature of the skull of Dinilysia, with a suite of plesiomorphic and apomorphic characters with respect to extant snakes. Newly recognized plesiomorphies are the absence of the medial vertical flange of the nasal, lateral position of the prefrontal, lizard-like contact between vomer and palatine, floor of the recessus scalae tympani formed by the basioccipital, posterolateral corners of the basisphenoid strongly ventrolaterally projected, and absence of a medial parietal pillar separating the telencephalon and mesencephalon, amongst others. We also reinterpreted the structures forming the otic region of Dinilysia, confirming the presence of a crista circumfenes- tralis, which represents an important derived ophidian synapomorphy. Both plesiomorphic and apomorphic traits of Dinilysia are treated in detail and illustrated accordingly. Results of a phylogenetic analysis support a basal position of Dinilysia, as the sister-taxon to all extant snakes. -
Sources of Pheromones in the Lizard Liolaemus Tenuis
Revista Chilena de Historia Natural 75: 141-147, 1412002 Sources of pheromones in the lizard Liolaemus tenuis Fuentes de feromonas en el lagarto Liolaemus tenuis ANTONIETA LABRA1, CARLOS A. ESCOBAR2, PAZ M. AGUILAR3 & HERMANN M. NIEMEYER3 1Departamento de Ecología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Casilla 114-D, Santiago, 6513677, Chile; e-mail: [email protected] 2Facultad de Ecología y Recursos Naturales, Universidad Nacional Andrés Bello, Avenida República 217, Santiago, Chile 3Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile ABSTRACT Experimental tests were conducted with the lizard Liolaemus tenuis (Tropiduridae), to determine the potential sources of pheromones used in its chemical communication, centered in the phenomenon of self-recognition. During the post- reproductive season, feces of both sexes and secretions of precloacal pores (present only in males) were tested. Stimuli were presented to lizards spread on rocks, and the number of tongue-flicks (TF) to the rocks was used as a bioassay to determine pheromone recognition. Feces contained pheromones involved in self-recognition, since lizards showed less TF confronted to rocks with suspensions of their own feces than with suspensions of feces of conspecifics or with water (control). In order to assess the chemical nature of self-recognition pheromones, feces were submitted to a sequential extraction with three solvents of increasing polarity, thereby obtaining three feces fractions. There were no differences in TF towards rocks with different fractions with own feces. Additionally, lizards showed similar TF to rocks with fractions of own and conspecific feces, suggesting that the separation procedure broke up a complex stimulus into parts that were not active individually as pheromones. -
Taxon Ordering in Phylogenetic Trees by Means of Evolutionary Algorithms Francesco Cerutti1,2, Luigi Bertolotti1,2, Tony L Goldberg3 and Mario Giacobini1,2*
Cerutti et al. BioData Mining 2011, 4:20 http://www.biodatamining.org/content/4/1/20 BioData Mining RESEARCH Open Access Taxon ordering in phylogenetic trees by means of evolutionary algorithms Francesco Cerutti1,2, Luigi Bertolotti1,2, Tony L Goldberg3 and Mario Giacobini1,2* * Correspondence: mario. Abstract [email protected] 1 Department of Animal Production, Background: In in a typical “left-to-right” phylogenetic tree, the vertical order of taxa Epidemiology and Ecology, Faculty of Veterinary Medicine, University is meaningless, as only the branch path between them reflects their degree of of Torino, Via Leonardo da Vinci similarity. To make unresolved trees more informative, here we propose an 44, 10095, Grugliasco (TO), Italy innovative Evolutionary Algorithm (EA) method to search the best graphical Full list of author information is available at the end of the article representation of unresolved trees, in order to give a biological meaning to the vertical order of taxa. Methods: Starting from a West Nile virus phylogenetic tree, in a (1 + 1)-EA we evolved it by randomly rotating the internal nodes and selecting the tree with better fitness every generation. The fitness is a sum of genetic distances between the considered taxon and the r (radius) next taxa. After having set the radius to the best performance, we evolved the trees with (l + μ)-EAs to study the influence of population on the algorithm. Results: The (1 + 1)-EA consistently outperformed a random search, and better results were obtained setting the radius to 8. The (l + μ)-EAs performed as well as the (1 + 1), except the larger population (1000 + 1000). -
Sexual and Geographic Variation of Color Patterns in Liolaemus Tenuis (Squamata, Liolaeminae)
Gayana 71(1): 27-33, 2007 ISSN 0717-652X SEXUAL AND GEOGRAPHIC VARIATION OF COLOR PATTERNS IN LIOLAEMUS TENUIS (SQUAMATA, LIOLAEMINAE) VARIACION SEXUAL Y GEOGRAFICA DE PATRONES DE COLORACION EN LIOLAEMUSTENUIS (SQUAMATA, LIOLAEMINAE) Marcela A. Vidal1,*, Juan Carlos Ortiz1 & Antonieta Labra2 1Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Fax (41) 23 89 82, Concepción, Chile. 2Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, P.O. Box 1066 Blindern, N-0316 Oslo, Norway. *Corresponding author: M.A. Vidal. E-mail: [email protected] ABSTRACT We studied sexual and geographic variation of color patterns in the lizard Liolaemus tenuis. We counted the number of scales with different colors in two body regions, in individuals of both sexes, from three groups of populations along a latitudinal range. Color patterns showed sexual and geographic variations; females and the northern group were the darkest. The selective pressures of these color pattern variations are unclear. However, considering that L. tenuis males are territorial and polygamous, we postulate that sexual variation in color would be consequence of sexual selection involving female choice and male-male interactions (e.g. agonistic displays among males). Geographic variation may be determined by predation pressure, as there is a tendency to a color matching with the predominant color of the environment (i.e. predominance of dark colors towards scrublands). KEYWORDS: Chromatophores, sexual dimorphism, lizard, Liolaemus, Chile. RESUMEN Se estudió la variación sexual y geográfica de los patrones de coloración en Liolaemus tenuis. Se contó el número de escamas con diferentes colores en dos regiones del cuerpo, en individuos de ambos sexos y provenientes de tres grupos de poblaciones a lo largo de un gradiente latitudinal. -
A New Early Cretaceous Lizard with Well-Preserved Scale Impressions from Western Liaoning , China*
PROGRESS IN NATURAL SCIENCE Vol .15 , N o .2 , F ebruary 2005 A new Early Cretaceous lizard with well-preserved scale impressions from western Liaoning , China* JI Shu' an ** (S chool of Earth and S pace Sciences, Peking University , Beijing 100871 , China) Received May 14 , 2004 ;revised September 29 , 2004 Abstract A new small lizard , Liaoningolacerta brevirostra gen .et sp .nov ., from the Early Cretaceous Yixian Formation of w estern Liaoning is described in detail.The new specimen w as preserved not only by the skeleton , but also by the exceptionally clear scale impressions.This lizard can be included w ithin the taxon Scleroglossa based on its 26 or more presacrals, cruciform interclavicle with a large anterior p rocess, moderately elongated pubis, and slightly notched distal end of tibia .The scales vary evidently in size and shape at different parts of body :small and rhomboid ventral scales, tiny and round limb scales, and large and longitudinally rectangular caudal scales that constitute the caudal w horls.This new finding provides us with more information on the lepidosis of the Mesozoic lizards. Keywords: new genus, Squamata, skeleton, lepidosis, Early Cretaceous, western Liaoning . Lizards are majo r groups in the Late Mesozoic Etymology:Liaoning , the province where the Jehol Biota of w estern Liaoning and the adjacent holoty pe w as collected ;lacerta (Latin), lizard . regions, no rtheastern China .Several fossil lizards Brevi- (Latin), short ;rostra (Latin), snout . have been found from the Yixian Formation , the lower unit of the Early C retaceous Jehol G roup in Holotype :An articulated skeleton w ith its rig ht w hich the feathered theropods , primitive birds , early fo relimb and mid to posterior caudals missing (GM V mamm als and angiosperms were discovered in the past 1580 ; National Geological Museum of China , decade[ 1, 2] . -
A Redescription and Phylogenetic Analysis of the Cretaceous Fossil Lizard Polyglyphanodon Sternbergi Gilmore, 1940
A Redescription and Phylogenetic Analysis of the Cretaceous Fossil Lizard Polyglyphanodon sternbergi Gilmore, 1940 by Meredith Austin Fontana B.S. in Biology, May 2011, The University of Texas at Austin A Thesis submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Master of Science August 31, 2014 Thesis directed by James M. Clark Ronald Weintraub Professor of Biology © Copyright 2014 by Meredith Austin Fontana All rights reserved ii This thesis is dedicated to the memory of my grandmother, Lee Landsman Zelikow – my single greatest inspiration, whose brilliant mind and unconditional love has profoundly shaped and continues to shape the person I am today. iii ACKNOWLEDGEMENTS I am deeply grateful to my graduate advisor Dr. James Clark for his support and guidance throughout the completion of this thesis. This work would not have been possible without his invaluable assistance and commitment to my success, and it has been a privilege to be his student. I would also like to express my appreciation to the additional members of my Master’s examination committee, Dr. Alexander Pyron and Dr. Hans-Dieter Sues, for generously contributing their knowledge and time toward this project and for providing useful comments on the manuscript of this thesis. I am especially grateful to Dr. Sues for allowing me access to the exquisite collection of Polyglyphanodon sternbergi specimens at the National Museum of Natural History. I am also extremely thankful to the many faculty members, colleagues and friends at the George Washington University who have shared their wisdom and given me persistent encouragement. -
Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B. -
Draft Animal Keepers Species List
Revised NSW Native Animal Keepers’ Species List Draft © 2017 State of NSW and Office of Environment and Heritage With the exception of photographs, the State of NSW and Office of Environment and Heritage are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of photographs. The Office of Environment and Heritage (OEH) has compiled this report in good faith, exercising all due care and attention. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. OEH shall not be liable for any damage which may occur to any person or organisation taking action or not on the basis of this publication. Readers should seek appropriate advice when applying the information to their specific needs. All content in this publication is owned by OEH and is protected by Crown Copyright, unless credited otherwise. It is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0), subject to the exemptions contained in the licence. The legal code for the licence is available at Creative Commons. OEH asserts the right to be attributed as author of the original material in the following manner: © State of New South Wales and Office of Environment and Heritage 2017. Published by: Office of Environment and Heritage 59 Goulburn Street, Sydney NSW 2000 PO Box A290, -
Integrative and Comparative Biology Integrative and Comparative Biology, Volume 60, Number 1, Pp
Integrative and Comparative Biology Integrative and Comparative Biology, volume 60, number 1, pp. 190–201 doi:10.1093/icb/icaa015 Society for Integrative and Comparative Biology SYMPOSIUM Convergent Evolution of Elongate Forms in Craniates and of Locomotion in Elongate Squamate Reptiles Downloaded from https://academic.oup.com/icb/article-abstract/60/1/190/5813730 by Clark University user on 24 July 2020 Philip J. Bergmann ,* Sara D. W. Mann,* Gen Morinaga,1,*,† Elyse S. Freitas‡ and Cameron D. Siler‡ *Department of Biology, Clark University, Worcester, MA, USA; †Department of Integrative Biology, Oklahoma State University, Stillwater, OK, USA; ‡Department of Biology and Sam Noble Oklahoma Museum of Natural History, University of Oklahoma, Norman, OK, USA From the symposium “Long Limbless Locomotors: The Mechanics and Biology of Elongate, Limbless Vertebrate Locomotion” presented at the annual meeting of the Society for Integrative and Comparative Biology January 3–7, 2020 at Austin, Texas. 1E-mail: [email protected] Synopsis Elongate, snake- or eel-like, body forms have evolved convergently many times in most major lineages of vertebrates. Despite studies of various clades with elongate species, we still lack an understanding of their evolutionary dynamics and distribution on the vertebrate tree of life. We also do not know whether this convergence in body form coincides with convergence at other biological levels. Here, we present the first craniate-wide analysis of how many times elongate body forms have evolved, as well as rates of its evolution and reversion to a non-elongate form. We then focus on five convergently elongate squamate species and test if they converged in vertebral number and shape, as well as their locomotor performance and kinematics.