A Further Break-Up of the Australian Gecko Genus

Total Page:16

File Type:pdf, Size:1020Kb

A Further Break-Up of the Australian Gecko Genus Australasian Journal of Herpetology 3 Australasian Journal of Herpetology 34:3-35. ISSN 1836-5698 (Print) Published 20 July 2017. ISSN 1836-5779 (Online) A further break-up of the Australian gecko genus Oedura Gray, 1842 sensu lato as currently recognized, from four to seven genera, with two new subgenera defined, description of fourteen new species, four new subspecies and formalising of one tribe and five subtribes. RAYMOND T. HOSER 488 Park Road, Park Orchards, Victoria, 3134, Australia. Phone: +61 3 9812 3322 Fax: 9812 3355 E-mail: snakeman (at) snakeman.com.au Received 15 January 2017, Accepted 20 May 2017, Published 20 July 2017. ABSTRACT The genus Oedura Gray, 1842 sensu lato has been the subject of numerous taxonomic reviews in recent years. These have resulted in division of the genus into deeply divergent, but distantly related groups at the genus level as well as numerous new species being formally named. In light of the preceding and including results of molecular studies indicating significant divergence between species groups within Oedura as recognized in 2012 and 2016, the genus as recognized prior to 2012 is further divided to become seven (from four in 2016). These all have known divergences well in excess of 15 MYA, making genus-level subdivision inevitable. Divergent subgenera with divergences in the order of 13-15 MYA are also formally named for the first time. Within this new generic arrangement, fourteen new species are formally described for the first time in accordance with the International Code of Zoological Nomenclature (Ride et al. 1999) on the basis of obvious morphological differences from similar species, which they have been treated as until now and also based on the known genetic divergences ascertained from earlier cited literature, all of which are measured in the millions of years (2.5 MYA or more). Four distinctive and allopatric populations of widespread species are also given formal subspecies-level recognition for the first time. There is no doubt that many more species await formal description, even after the publication of this paper naming fourteen. The genus Oedura, as most commonly defined prior to the publication of Wells and Wellington (1985) is herein placed in a tribe with five defined subtribes, including genera defined here and the species within Strophurus Fitzinger, 1843 as generally defined to date. Keywords: Taxonomy; lizards; Australia; Gecko; Oedura; Hesperoedura; Nebulifera; Amalosia; new tribe; Fiacumminggeckoini; new subtribe; Fiacumminggeckoina; Celertenuina; Hesperoedurina; Nebuliferina; Strophuriina; new genus; Marlenegecko; Fiacumminggecko; Celertenues; new subgenus Fereoedura; Robwatsongecko; new species; bulliardi; rentonorum; fiacummingae; richardwellsi; rosswellingtoni; charlespiersoni; matteoae; dorisioi; julianfordi; shireenhoserae; bobbottomi; evanwhittoni; helengrasswillae; alexanderdudleyi; new subspecies; whartoni; eungellaensis; davidcharitoni; merceicai; Warrumbungle Ranges; NSW; New South Wales; Pilbara; Groote Eylandt; Northern Territory; Western Australia; Kimberley Ranges; Fortescue River, Queensland. Hoser 2017 - Australasian Journal of Herpetology 34:3-35. Available online at www.herp.net Copyright- Kotabi Publishing - All rights reserved 4 Australasian Journal of Herpetology INTRODUCTION However a review of their data and that published in 2016 by The genus Oedura Gray, 1842 as recognized for most of the Oliver and Doughty (2016) shows that the Oliver et al. (2012) past 150 years has long been viewed as containing so-called taxonomy is too conservative and that Oedura as recognized by cryptic species. them contains other species groups worthy of recognition at the In modern herpetology, cryptic species are usually not so much genus level. defined as being hard to find or distinguish, so much as being To that effect, three new genera are named, as well as overlooked or not found due to simple disinterest by zoologists subgenera. rather than any innate difficulty in defining such species. Strophurus Fitzinger, 1843 is not dealt with by this paper, but is In the case of the genus Oedura sensu lato new species have covered in another paper published at the same time as this one been described at an accelerating pace since the mid 1980’s as (Hoser, 2017a). a result of renewed interest in the taxonomy of Australian lizards (Strophurus Fitzinger, 1843 is in that paper divided four ways, combined with better forensic methods (read molecular with three genus names available and a fourth erected for a methods), leading to 20 species being reported on Peter Uetz’s single divergent taxon, which diverged about 20 MYA from its “The Reptile Database” as of 1 May 2017, within four genera (all nearest relative and that paper also defines, diagnoses and formerly Oedura), these being, Oedura Gray, 1842, Amalosia names two new subgenera, nine new species, two new Wells and Wellington, 1984, Hesperoedura Oliver, Bauer, subspecies as well as resurrecting some other previously little Greenbaum, Jackman and Hobbie, 2012, and Nebulifera Oliver, used names for taxon groups). Bauer, Greenbaum, Jackman and Hobbie, 2012. Hoser (2017b) deals with the genus Diplodactylus Gray 1832 That list apparently ignores three apparently valid taxa described sensu lato, with the formal naming of a new subgenus for the by Wells and Wellington, 1984 namely “Amalosia phillipsi” Wells Diplodactylus byrnei Lucas and Frost, 1896 species group and and Wellington, 1984, “Oedura attenboroughi” and “Oedura two new species within this subgenus. derilecta”, while a fourth “Oedura greeri” is in fact a subjective Having worked with large numbers of the subject taxa within senior synonym of Uetz’s “Oedura luritja Oliver and McDonald, Oedura sensu lato over more than three decades, the results as 2016”. published herein are a mere formalisation of what is already Of the 23 validly named species recognized by most competent shown in the evidence of the publications of Oliver et al. (2012), authorities to date (2017), no less than five have been described Oliver and Doughty (2016) and other recent publications on this and named for the first time in the period from 2000 to 2017, genus as cited herein. none were named in the 1990’s and 7 in the 1980’s. Hence it is not necessary for me to separately quantify in detail Having inspected in the field and elsewhere many hundreds of the evidentiary basis for the taxonomy and nomenclature within living, dead and photographs of specimens within Oedura sensu this paper as this has previously been done and is in turn self lato over a period in excess of three decades, I had intended evident in the formal descriptions in any event. publishing descriptions of several species in the period In terms of the nomenclature used, it all follows on from the well- postdating mid 2011. However this project was effectively established rules of the International Code for Zoological scuttled when Glenn Sharp and Emily Gibson of the Victorian Nomenclature Fourth Edition (Ride et al. 1999). Department of Sustainability and Environment (DSE) conducted The most significant feature of this paper is in fact the a violent illegal armed raid on my facility at Park Orchards, quantification by description of the (in hindsight obvious) Melbourne, Victoria, Australia, unlawfully stealing files, disks and differences between species formally named for the first time in the like containing irreplaceable data. this paper as compared to their closest already named Ultimately some material was returned, but degraded and congeners. unusuable. Information relevant to specific taxonomic and nomenclatural While some of the taxa I had intended naming have since been judgements that may not be self-evident, is given after the formally described by other people, some others remain materials and methods, in the results section. unnamed. MATERIALS AND METHODS As failure to describe unnamed taxa may lead to them being The identification of the relevant genus and species groups was potentially threatened with extinction due to benign neglect by easily achieved by simple inspection of relevant specimens, live wildlife agencies, I have made the decision to publish in the field, in museums and via images sent to me by others descriptions of the more obvious unnamed species for which with accurate locality and other data. In terms of species level there is already extensive data and easily verifiable groups, biological barriers were identified by combining known corroborating material in the public domain. locality data with known geographical barriers, most of which As a result, some further species I am aware of are not formally have become well known to myself in my various researches on named in this paper, even though fourteen are formally named in other reptile groups inhabiting the same regions. this paper, as are four subspecies. The formal naming exercises are a direct result of a review of The most important results published herein as formal the relevant literature to identify all previously named groups at descriptions have arisen from an audit of all relevant published both species and genus level, including known synonyms and literature, including molecular data that has come to hand over potentially available names according to the rules of the the last decade via the published literature. International Code of Zoological Nomenclature (Ride et al. In combination it has shown that the genus level and species 1999). level diversity of Oedura sensu lato has been grossly As mentioned already,
Recommended publications
  • Broad-Headed Snake (Hoplocephalus Bungaroides)', Proceedings of the Royal Zoological Society of New South Wales (1946-7), Pp
    Husbandry Guidelines Broad-Headed Snake Hoplocephalus bungaroides Compiler – Charles Morris Western Sydney Institute of TAFE, Richmond Captive Animals Certificate III RUV3020R Lecturers: Graeme Phipps, Jacki Salkeld & Brad Walker 2009 1 Occupational Health and Safety WARNING This Snake is DANGEROUSLY VENOMOUS CAPABLE OF INFLICTING A POTENTIALLY FATAL BITE ALWAYS HAVE A COMPRESSION BANDAGE WITHIN REACH SNAKE BITE TREATMENT: Do NOT wash the wound. Do NOT cut the wound, apply substances to the wound or use a tourniquet. Do NOT remove jeans or shirt as any movement will assist the venom to enter the blood stream. KEEP THE VICTIM STILL. 1. Apply a broad pressure bandage over the bite site as soon as possible. 2. Keep the limb still. The bandage should be as tight as you would bind a sprained ankle. 3. Extend the bandage down to the fingers or toes then up the leg as high as possible. (For a bite on the hand or forearm bind up to the elbow). 4. Apply a splint if possible, to immobilise the limb. 5. Bind it firmly to as much of the limb as possible. (Use a sling for an arm injury). Bring transport to the victim where possible or carry them to transportation. Transport the victim to the nearest hospital. Please Print this page off and put it up on the wall in your snake room. 2 There is some serious occupational health risks involved in keeping venomous snakes. All risk can be eliminated if kept clean and in the correct lockable enclosures with only the risk of handling left in play.
    [Show full text]
  • Draft Animal Keepers Species List
    Revised NSW Native Animal Keepers’ Species List Draft © 2017 State of NSW and Office of Environment and Heritage With the exception of photographs, the State of NSW and Office of Environment and Heritage are pleased to allow this material to be reproduced in whole or in part for educational and non-commercial use, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. Specific permission is required for the reproduction of photographs. The Office of Environment and Heritage (OEH) has compiled this report in good faith, exercising all due care and attention. No representation is made about the accuracy, completeness or suitability of the information in this publication for any particular purpose. OEH shall not be liable for any damage which may occur to any person or organisation taking action or not on the basis of this publication. Readers should seek appropriate advice when applying the information to their specific needs. All content in this publication is owned by OEH and is protected by Crown Copyright, unless credited otherwise. It is licensed under the Creative Commons Attribution 4.0 International (CC BY 4.0), subject to the exemptions contained in the licence. The legal code for the licence is available at Creative Commons. OEH asserts the right to be attributed as author of the original material in the following manner: © State of New South Wales and Office of Environment and Heritage 2017. Published by: Office of Environment and Heritage 59 Goulburn Street, Sydney NSW 2000 PO Box A290,
    [Show full text]
  • Evolution of the Iguanine Lizards (Sauria, Iguanidae) As Determined by Osteological and Myological Characters David F
    Brigham Young University Science Bulletin, Biological Series Volume 12 | Number 3 Article 1 1-1971 Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters David F. Avery Department of Biology, Southern Connecticut State College, New Haven, Connecticut Wilmer W. Tanner Department of Zoology, Brigham Young University, Provo, Utah Follow this and additional works at: https://scholarsarchive.byu.edu/byuscib Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Avery, David F. and Tanner, Wilmer W. (1971) "Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters," Brigham Young University Science Bulletin, Biological Series: Vol. 12 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/byuscib/vol12/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Brigham Young University Science Bulletin, Biological Series by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. S-^' Brigham Young University f?!AR12j97d Science Bulletin \ EVOLUTION OF THE IGUANINE LIZARDS (SAURIA, IGUANIDAE) AS DETERMINED BY OSTEOLOGICAL AND MYOLOGICAL CHARACTERS by David F. Avery and Wilmer W. Tanner BIOLOGICAL SERIES — VOLUME Xil, NUMBER 3 JANUARY 1971 Brigham Young University Science Bulletin
    [Show full text]
  • Expert Report of Professor Woinarski
    NOTICE OF FILING This document was lodged electronically in the FEDERAL COURT OF AUSTRALIA (FCA) on 18/01/2019 3:23:32 PM AEDT and has been accepted for filing under the Court’s Rules. Details of filing follow and important additional information about these are set out below. Details of Filing Document Lodged: Expert Report File Number: VID1228/2017 File Title: FRIENDS OF LEADBEATER'S POSSUM INC v VICFORESTS Registry: VICTORIA REGISTRY - FEDERAL COURT OF AUSTRALIA Dated: 18/01/2019 3:23:39 PM AEDT Registrar Important Information As required by the Court’s Rules, this Notice has been inserted as the first page of the document which has been accepted for electronic filing. It is now taken to be part of that document for the purposes of the proceeding in the Court and contains important information for all parties to that proceeding. It must be included in the document served on each of those parties. The date and time of lodgment also shown above are the date and time that the document was received by the Court. Under the Court’s Rules the date of filing of the document is the day it was lodged (if that is a business day for the Registry which accepts it and the document was received by 4.30 pm local time at that Registry) or otherwise the next working day for that Registry. No. VID 1228 of 2017 Federal Court of Australia District Registry: Victoria Division: ACLHR FRIENDS OF LEADBEATER’S POSSUM INC Applicant VICFORESTS Respondent EXPERT REPORT OF PROFESSOR JOHN CASIMIR ZICHY WOINARSKI Contents: 1.
    [Show full text]
  • Qryholdings Scientific Name Species Code Common Name Number of Licensees Acquired Bred Disposed Hoplocephalus Bitorquatus W2675
    qryHoldings Number of Scientific_Name Species_Code Common_Name Acquired Bred Disposed licensees Hoplocephalus bitorquatus W2675 Pale-headed Snake 14 7 314 Hoplocephalus bitorquatus x H. stephensii X2001 Pale-headed X Stephen's Banded Snake hybrid 1 Hoplocephalus bungaroides A2676 Broad-headed Snake 7 4 0 6 Hoplocephalus stephensii C2677 Stephens' Banded Snake 21 9 9 21 Pseudechis colletti W2691 Collett’s Snake 41 18 18 Pseudechis porphyriacus C2693 Red-bellied Black Snake 80 39 55 66 Vermicella annulata M2734 Eastern Bandy-bandy 2 3 Acanthophis antarcticus A2640 Southern Death Adder 59 76 105 95 Acanthophis praelongus Y2804 Northern Death Adder 24 41 0 23 Acanthophis pyrrhus C2641 Desert Death Adder 8 1 0 6 Austrelaps ramsayi W2615 Highlands Copperhead 20 3 0 26 Austrelaps superbus E2642 Lowlands Copperhead 12 14 0 25 Notechis ater Q2680 Black Tiger Snake 8 9 0 9 Notechis scutatus S2681 Common Tiger Snake 45 40 23 55 Pseudechis australis U2690 Mulga Snake 31 23 19 29 Pseudechis butleri M2814 Butler's Snake 1 1 Pseudechis guttatus A2692 Spotted Black Snake 20 12 5 16 Pseudonaja guttata G2695 Speckled Brown Snake 2 4 4 Pseudonaja modesta K2697 Ringed Brown Snake 1 Pseudonaja nuchalis M2698 Western Brown Snake 4 5 2 Rhinoplocephalus nigrescens E2650 EasternSmall-eyed Snake 3 6 Oxyuranus microlepidotus K2689 Western Taipan 25 10 12 21 Oxyuranus scutellatus Y2688 Taipan 17 20 24 45 Pseudonaja textilis Z2699 Common Brown Snake 32 28 35 41 Tropidechis carinatus G2723 Rough-scaled Snake 12 10 11 16 Crocodylus johnstoni K2001 Freshwater Crocodile
    [Show full text]
  • A New Species of Velvet Gecko (Oedura: Diplodactylidae) from the Limestone Ranges of the Southern Kimberley, Western Australia
    Zootaxa 3873 (1): 049–061 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3873.1.4 http://zoobank.org/urn:lsid:zoobank.org:pub:88CD6B92-3C10-497C-BCEB-10BD46BD823C A new species of Velvet Gecko (Oedura: Diplodactylidae) from the limestone ranges of the southern Kimberley, Western Australia PAUL M. OLIVER1,3, REBECCA J. LAVER1, JANE MELVILLE1 & PAUL DOUGHTY2 1Department of Zoology, University of Melbourne, Parkville, VIC 3052, Australia Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia. E-mail: [email protected] 2Department of Terrestrial Zoology, Western Australian Museum, 49 Kew St, Welshpool, Western Australia 6016, Australia 3Corresponding author Abstract We describe a new species of large Oedura from the Oscar Range on the southern edge of the Kimberley Craton in north- western Australia. Oedura murrumanu sp. nov. can be distinguished from all congeners by the combination of large size (snout-vent length to 103 mm), moderately long and slightly swollen tail, tiny scales on the dorsum, fringe of laterally expanded lamellae on each digit, and 6–7 paired distal subdigital lamellae on the fourth toe. The new species is the first endemic vertebrate known from the limestone ranges of the southern Kimberley; however, this area remains poorly sur- veyed and further research (particularly wet season surveys and genetic analyses) is required to better characterise regional biodiversity values. Key words: Australian Monsoonal Tropics, endemism, lizard, mesic refigia, Oscar Range, saxacoline Introduction The Kimberley region of north-west Australia is characterised geologically by an array of ancient and highly weathered exposed rock formations (Tyler et al.
    [Show full text]
  • Description of a New Flat Gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320043814 Description of a new flat gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique Article in Zootaxa · September 2017 DOI: 10.11646/zootaxa.4324.1.8 CITATIONS READS 2 531 8 authors, including: William R Branch Jennifer Anna Guyton Nelson Mandela University Princeton University 250 PUBLICATIONS 4,231 CITATIONS 7 PUBLICATIONS 164 CITATIONS SEE PROFILE SEE PROFILE Andreas Schmitz Michael Barej Natural History Museum of Geneva Museum für Naturkunde - Leibniz Institute for Research on Evolution and Biodiver… 151 PUBLICATIONS 2,701 CITATIONS 38 PUBLICATIONS 274 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Monitoring and Managing Biodiversity Loss in South-East Africa's Montane Ecosystems View project Ad hoc herpetofauna observations View project All content following this page was uploaded by Jennifer Anna Guyton on 27 September 2017. The user has requested enhancement of the downloaded file. Zootaxa 4324 (1): 142–160 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4324.1.8 http://zoobank.org/urn:lsid:zoobank.org:pub:B4FF9A5F-94A7-4E75-9EC8-B3C382A9128C Description of a new flat gecko (Squamata: Gekkonidae: Afroedura) from Mount Gorongosa, Mozambique WILLIAM R. BRANCH1,2,13, JENNIFER A. GUYTON3, ANDREAS SCHMITZ4, MICHAEL F. BAREJ5, PIOTR NASKRECKI6,7, HARITH FAROOQ8,9,10,11, LUKE VERBURGT12 & MARK-OLIVER RÖDEL5 1Port Elizabeth Museum, P.O. Box 13147, Humewood 6013, South Africa 2Research Associate, Department of Zoology, Nelson Mandela University, P.O.
    [Show full text]
  • Australian Society of Herpetologists
    1 THE AUSTRALIAN SOCIETY OF HERPETOLOGISTS INCORPORATED NEWSLETTER 48 Published 29 October 2014 2 Letter from the editor This letter finds itself far removed from last year’s ASH conference, held in Point Wolstoncroft, New South Wales. Run by Frank Lemckert and Michael Mahony and their team of froglab strong, the conference featured some new additions including the hospitality suite (as inspired by the Turtle Survival Alliance conference in Tuscon, Arizona though sadly lacking of the naked basketball), egg and goon race and bouncing castle (Simon’s was a deprived childhood), as well as the more traditional elements of ASH such as the cricket match and Glenn Shea’s trivia quiz. May I just add that Glenn Shea wowed everyone with his delightful skin tight, anatomically correct, and multi-coloured, leggings! To the joy of everybody in the world, the conference was opened by our very own Hal Cogger (I love you Hal). Plenary speeches were given by Dale Roberts, Lin Schwarzkopf and Gordon Grigg and concurrent sessions were run about all that is cutting edge in science and herpetology. Of note, award winning speeches were given by Kate Hodges (Ph.D) and Grant Webster (Honours) and the poster prize was awarded to Claire Treilibs. Thank you to everyone who contributed towards an update and Jacquie Herbert for all the fantastic photos. By now I trust you are all preparing for the fast approaching ASH 2014, the 50 year reunion and set to have many treats in store. I am sad to not be able to join you all in celebrating what is sure to be, an informative and fun spectacle.
    [Show full text]
  • Limb Length and Microhabitat Use in Lizards with Toe Pads
    RESEARCH ARTICLE There's more than one way to climb a tree: Limb length and microhabitat use in lizards with toe pads Travis J. Hagey1*, Scott Harte2, Mathew Vickers2,3, Luke J. Harmon4, Lin Schwarzkopf2 1 BEACON Center for Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America, 2 School of Marine and Tropical Biology, James Cook University, Townsville, Queensland, Australia, 3 Centre for Tropical Biology and Climate Change, Commonwealth Scientific and Industrial a1111111111 Research Organization, Townsville, Queensland, Australia, 4 Department of Biological Sciences, University a1111111111 of Idaho, Moscow, Idaho, United States of America a1111111111 * [email protected] a1111111111 a1111111111 Abstract Ecomorphology links microhabitat and morphology. By comparing ecomorphological asso- OPEN ACCESS ciations across clades, we can investigate the extent to which evolution can produce similar Citation: Hagey TJ, Harte S, Vickers M, Harmon solutions in response to similar challenges. While Anolis lizards represent a well-studied LJ, Schwarzkopf L (2017) There's more than one example of repeated convergent evolution, very few studies have investigated the ecomor- way to climb a tree: Limb length and microhabitat phology of geckos. Similar to anoles, gekkonid lizards have independently evolved adhesive use in lizards with toe pads. PLoS ONE 12(9): e0184641. https://doi.org/10.1371/journal. toe pads and many species are scansorial. We quantified gecko and anole limb length and pone.0184641 microhabitat use, finding that geckos tend to have shorter limbs than anoles. Combining Editor: Sharon Swartz, Brown University, UNITED these measurements with microhabitat observations of geckos in Queensland, Australia, STATES we observed geckos using similar microhabitats as reported for anoles, but geckos with rel- Received: December 16, 2016 atively longer limbs were using narrower perches, differing from patterns observed in anoles and other lizards.
    [Show full text]
  • A Preliminary Risk Assessment of Cane Toads in Kakadu National Park Scientist Report 164, Supervising Scientist, Darwin NT
    supervising scientist 164 report A preliminary risk assessment of cane toads in Kakadu National Park RA van Dam, DJ Walden & GW Begg supervising scientist national centre for tropical wetland research This report has been prepared by staff of the Environmental Research Institute of the Supervising Scientist (eriss) as part of our commitment to the National Centre for Tropical Wetland Research Rick A van Dam Environmental Research Institute of the Supervising Scientist, Locked Bag 2, Jabiru NT 0886, Australia (Present address: Sinclair Knight Merz, 100 Christie St, St Leonards NSW 2065, Australia) David J Walden Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia George W Begg Environmental Research Institute of the Supervising Scientist, GPO Box 461, Darwin NT 0801, Australia This report should be cited as follows: van Dam RA, Walden DJ & Begg GW 2002 A preliminary risk assessment of cane toads in Kakadu National Park Scientist Report 164, Supervising Scientist, Darwin NT The Supervising Scientist is part of Environment Australia, the environmental program of the Commonwealth Department of Environment and Heritage © Commonwealth of Australia 2002 Supervising Scientist Environment Australia GPO Box 461, Darwin NT 0801 Australia ISSN 1325-1554 ISBN 0 642 24370 0 This work is copyright Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Supervising Scientist Requests and inquiries concerning reproduction
    [Show full text]
  • Evolution of the Iguanine Lizards (Sauria, Iguanidae) As Determined by Osteological and Myological Characters
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 1970-08-01 Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters David F. Avery Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Life Sciences Commons BYU ScholarsArchive Citation Avery, David F., "Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters" (1970). Theses and Dissertations. 7618. https://scholarsarchive.byu.edu/etd/7618 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. EVOLUTIONOF THE IGUA.NINELI'ZiUIDS (SAUR:U1., IGUANIDAE) .s.S DETEH.MTNEDBY OSTEOLOGICJJJAND MYOLOGIC.ALCHARA.C'l'Efi..S A Dissertation Presented to the Department of Zoology Brigham Yeung Uni ver·si ty Jn Pa.rtial Fillf.LLlment of the Eequ:Lr-ements fer the Dz~gree Doctor of Philosophy by David F. Avery August 197U This dissertation, by David F. Avery, is accepted in its present form by the Department of Zoology of Brigham Young University as satisfying the dissertation requirement for the degree of Doctor of Philosophy. 30 l'/_70 ()k ate Typed by Kathleen R. Steed A CKNOWLEDGEHENTS I wish to extend my deepest gratitude to the members of m:r advisory committee, Dr. Wilmer W. Tanner> Dr. Harold J. Bissell, I)r. Glen Moore, and Dr. Joseph R. Murphy, for the, advice and guidance they gave during the course cf this study.
    [Show full text]
  • Oedura Marmorata Species Complex, Diplodactylidae) from the Australian Arid and Semi-Arid Zones
    Zootaxa 4088 (2): 151–176 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4088.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:43023B2C-A031-47D4-8FBE-CB2D782D825C Systematic revision of the marbled velvet geckos (Oedura marmorata species complex, Diplodactylidae) from the Australian arid and semi-arid zones PAUL M. OLIVER1,2,4,5 & PAUL DOUGHTY2,3 1Department of Zoology, University of Melbourne, Parkville, VIC 3052, Australia 2Museum Victoria, GPO Box 666, Melbourne, VIC 3001, Australia 3Department of Terrestrial Zoology, Western Australian Museum, 49 Kew St, Welshpool, WA 6016, Australia 4Current address: Research School of Biology, Australian National University, Canberra, ACT 0200, Australia 5Corresponding author E-mail: [email protected] Abstract Lizards restricted to rocky habitats often comprise numerous deeply divergent lineages, reflecting the disjunct nature of their preferred habitat and the capacity of rocky habitats to function as evolutionary refugia. Here we review the system- atics and diversity of the predominantly saxicoline Australian marbled velvet geckos (genus Oedura) in the Australian arid and semi-arid zones using newly-gathered morphological data and previously published genetic data. Earlier work showed that four largely allopatric and genetically divergent lineages are present: Western (Pilbara and Gascoyne regions), Gulf (west and south of the Gulf of Carpentaria), Central (central ranges) and Eastern (Cooper and Darling Basins). None of these four populations are conspecific with true O. marmorata, a seperate species complex that is restricted to the Top End region of the Northern Territory.
    [Show full text]