Analytical Py-GC/MS of Genetically Modified Poplar for the Increased
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Recent Developments in Identification of Genuine Odor- and Taste-Active Compounds in Foods
Recent Developments in Identification of Genuine Odor- and Taste-Active Compounds in Foods Edited by Remedios Castro-Mejías and Enrique Durán-Guerrero Printed Edition of the Special Issue Published in Foods www.mdpi.com/journal/foods Recent Developments in Identification of Genuine Odor- and Taste-Active Compounds in Foods Recent Developments in Identification of Genuine Odor- and Taste-Active Compounds in Foods Editors Remedios Castro-Mej´ıas Enrique Dur´an-Guerrero MDPI Basel Beijing Wuhan Barcelona Belgrade Manchester Tokyo Cluj Tianjin • • • • • • • • • Editors Remedios Castro-Mej´ıas Enrique Duran-Guerrero´ Analytical Chemistry Analytical Chemistry Universidad de Cadiz´ Department Puerto Real University of Cadiz Spain Puerto Real Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Foods (ISSN 2304-8158) (available at: www.mdpi.com/journal/foods/special issues/Recent Developments Identification Genuine Odor- Taste-Active Compounds Foods). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, Page Range. ISBN 978-3-0365-1668-4 (Hbk) ISBN 978-3-0365-1667-7 (PDF) © 2021 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. -
Enhancement of Chemical Products in Bio-Crude-Oil from Lignocellulosic Residues – Effects of Biomass Type, Temperature, Pre-Treatment and Catalysts
Enhancement of Chemical Products in Bio-Crude-Oil from Lignocellulosic Residues – Effects of Biomass Type, Temperature, Pre-treatment and Catalysts. Dissertation Zur Erlangung des Doktorgrades vorgelegt von Akeem Mayowa Azeez Hamburg 2011 Universität Hamburg Fakultät für Mathematik Informatik und Naturwissenschaften Zentrum für Holzwirtschaft ii I hereby declare that this research work was carried out by me, Azeez Mayowa Akeem, at the University of Hamburg (Institute of Wood Science) in collaboration with Wood Chemistry/Chemical Technology Unit of Johann-Heinrich von Thünen Institute, Hamburg, between April 2008 and March 2011. And that all experiments and analyses herein reported were carried out at the Wood Chemistry/Chemical Technology Unit of Johann-Heinrich von Thünen Institute, Bergedorf, Hamburg. Supervisors: PD Dr. habil Juergen Odermatt Dr. rer. nat. Dipl.-Holzwirt Dietrich Meier (vTi, Hamburg) Prof. Dr. Ing. Thomas Willner (Hamburg University of Applied Science) iii Acknowledgement My special thanks goes to Dr. Dietrich Meier for supervising this work and his persistent words of encouragement. The unwavering support, trust and useful suggestions from my official supervisor, in person of Dr. Jürgen Odermatt, are greatly appreciated. I am equally grateful to Prof. Ing. Thomas Willner, who is instrumental to my sojourn to Hamburg and at the same time offered to co-supervise this research. The trio have contributed immensely to the successful completion of this program with enriched ideas, thorough supervision coupled with love. Their charming disposition is worthy of emulation. I will ever remain grateful. My interaction in the course of this work was unrestricted in all units within the Institute, largely due to open arms and affections of all workers. -
Characterizing and Predicting the Antimicrobial Properties of Lignin Derivatives
University of Kentucky UKnowledge Theses and Dissertations--Biosystems and Agricultural Engineering Biosystems and Agricultural Engineering 2020 CHARACTERIZING AND PREDICTING THE ANTIMICROBIAL PROPERTIES OF LIGNIN DERIVATIVES Ryan Kalinoski University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0001-8774-275X Digital Object Identifier: https://doi.org/10.13023/etd.2020.455 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Kalinoski, Ryan, "CHARACTERIZING AND PREDICTING THE ANTIMICROBIAL PROPERTIES OF LIGNIN DERIVATIVES" (2020). Theses and Dissertations--Biosystems and Agricultural Engineering. 76. https://uknowledge.uky.edu/bae_etds/76 This Doctoral Dissertation is brought to you for free and open access by the Biosystems and Agricultural Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Biosystems and Agricultural Engineering by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. -
Novel Analysis on Aroma Compounds of Wine, Vinegar and Derived Products
Novel Analysis on Aroma Compounds of Wine, Vinegar and Derived Products Edited by Enrique Durán-Guerrero and Remedios Castro-Mejías Printed Edition of the Special Issue Published in Foods www.mdpi.com/journal/foods Novel Analysis on Aroma Compounds of Wine, Vinegar and Derived Products Novel Analysis on Aroma Compounds of Wine, Vinegar and Derived Products Editors Enrique Dur´an-Guerrero Remedios Castro-Mej´ıas MDPI Basel Beijing Wuhan Barcelona Belgrade Manchester Tokyo Cluj Tianjin • • • • • • • • • Editors Enrique Duran-Guerrero´ Remedios Castro-Mej´ıas University of Cadiz´ University of Cadiz´ Spain Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Foods (ISSN 2304-8158) (available at: https://www.mdpi.com/journal/foods/special issues/Wine Aroma). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, Page Range. ISBN 978-3-0365-0000-0 (Hbk) ISBN 978-3-0365-0000-0 (PDF) © 2021 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. -
Heliyon 6 (2020) E05586
Heliyon 6 (2020) e05586 Contents lists available at ScienceDirect Heliyon journal homepage: www.cell.com/heliyon Research article Lignin-derived phenolic compounds in cachaça aged in new barrels made from two oak species Mariana C. Castro, Aline M. Bortoletto, Giovanni C. Silvello, Andre R. Alcarde * Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de Sao~ Paulo, Av. Padua Dias 11, CP 9, 13418-900, Piracicaba, SP, Brazil ARTICLE INFO ABSTRACT Keywords: Aging cachaça in wooden barrels is essential to improve its quality. The level of maturation of distillates can be Food analysis determined based on the contents of aging-marker phenolic compounds extracted from the lignin of the wooden Food technology barrel. This study aimed to characterize the aging process of cachaça by analyzing the mechanism of lignin Sugarcane spirit degradation during its maturation in new barrels made from two oak species, European (Quercus petraea) and Aging American (Quercus alba), for up to 60 months. Evaluation was based on the analyses of cinnamic aldehydes Oak species Lignin (sinapaldehyde and coniferaldehyde), benzoic aldehydes (syringaldehyde and vanillin), and benzoic acids Phenolic compounds (syringic and vanillic acids) using high-performance liquid chromatography. Oak species had a significant effect on all the studied phenolic compounds. Higher contents of all the identified phenolic compounds were found in cachaça aged in barrels made from American oak. The total contents of benzoic acids (vanillic and syringic acids) can be considered for predicting the level of maturation of cachaça aged in barrels made from both oak species. Based on the composition of maturation-related congeners, it is likely that for cachaça each year of aging in new oak barrels corresponds to approximately 5 years of aging for spirits in general commercialized worldwide. -
Bioresources.Com
PEER-REVIEWED REVIEW ARTICLE bioresources.com A CONCISE REVIEW OF THE NATURAL EXISTANCE, SYNTHESIS, PROPERTIES, AND APPLICATIONS OF SYRINGALDEHYDE Mohamad Nasir Mohamad Ibrahim,* R. B. Sriprasanthi, Shaharuddin Shamsudeen, Farook Adam, and Showkat A. Bhawani Syringaldehyde is a promising aromatic aldehyde that no longer deserves to remain in obscurity. It possesses worthy bioactive properties and is, therefore, used in pharmaceuticals, food, cosmetics, textiles, pulp and paper industries, and even in biological control applications. Mostly, the synthetic form of syringaldehyde is being used. This review serves as an appraisal of potential research and commercialization of naturally occurring syringaldehyde beyond the scope of the food and cosmetic industries. This article also provides a comprehensive account of the various conventional extraction and chromatographic techniques used in the separation, isolation, and quantification of syringaldehyde. Further, to understand this unique compound, a brief outline on the natural formation of syringaldehyde in lignin is accentuated in this article. Keywords: Syringaldehyde; Bioactive properties; Separation and extraction; Lignin Contact information: a: Lignocellulosic Research Group, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia *Corresponding author: [email protected] INTRODUCTION The ever-increasing safety concerns over synthetic antioxidants and the harmful side effects of chemo-therapeutic drugs, coupled with their high costs (Goodwin and Shepherd 1998; Sacristán et al. 2000; Vergnenegre 2001), have created a new path for the development of cheaper, sustainable, and most crucially, natural anti-oxidants, drugs, and food additives (Garrote et al. 2004). Syringaldehyde, a compound found only in a minute quantity in nature, is believed to be a promising source that matches the above- mentioned requisites. -
Bioactivities of Wood Polyphenols: Antioxidants and Biological Effects
Bioactivities of Wood Polyphenols: Antioxidants and Biological Effects By Tasahil Albishi A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy of Science Department of Biochemistry Memorial University of Newfoundland August 2018 ST. JOHN’S NEWFOUNDLAND AND LABRADOR CANADA TABLE OF CONTENTS LIST OF ABBREVATION .................................................................................................... viii LIST OF TABLES ..................................................................................................................x LIST OF FIGURES ........................................................................................................... ……xi ABSTRACT ......................................................................................................................... xiv ACKNOWLEDGEMENTS .................................................................................................. xvii CHAPTER 1.0 – INTRODUCTION…………………………………………………….…...1 CHAPTER 2.0 - LITERATURE REVIEW …………………………………………..............5 2.1 Historical Background of wood……………………………………..…………… 5 2.1.1 Major uses of wood extractives…………..………..…………………….5 2.1.2 The use of woods……….……….…….……………………………...….6 2.2 Woody plants and their chemical composition……….….…………………..…...6 2.3 The chemistry of Wood ……….……...……….………….………….…............10 2.3.1 Cellulose ………….………….………………………………………... 10 2.3.2 Hemicellulose ……….…….……………………………………………11 2.3.3 Lignin ……………….……….…….………………...…………………12 2.3.4 Phenolic compounds….……….…………………………….……..…....14 -
Wound Induced Plant Phenolic Compounds And
WOUND INDUCED PLANT PHENOLIC COMPOUNDS AND VIRULENCE GENE EXPRESSION IN AGROBACTERIUM SPECIES by PAUL ANTHONY SPENCER B.Sc, The University of Victoria, 1985 M.Sc, The University of British Columbia, 1988 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF " ^. THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Botany) We accept this thesis as conforming to the required standard: THE UNIVERSITY OF BRITISH COLUMBIA April 1991 © Paul Anthony Spencer, 1991 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of The University of British Columbia Vancouver, Canada DE-6 (2/88) Abstract Crown gall disease of plants is caused by introduction of foreign DNA into susceptible plant cells by strains of Agrobacterium tumefaciens. The expression of bacterial virulence genes is triggered by chemicals present in plant wound exudates. The exudates contain a number of phenolic compounds which act as chemical signals inducing expression of a number of genes directing the DNA transfer process. These are the virulence or vir genes, and virv.lac reporter gene fusions have been widely used to assay vir gene induction in Agrobacterium tumefaciens strains. -
Relationship Between the Molecular Composition, Visible Light Absorption, and Health-Related Properties of Smoldering Woodsmoke Aerosols
Atmos. Chem. Phys., 20, 539–559, 2020 https://doi.org/10.5194/acp-20-539-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Relationship between the molecular composition, visible light absorption, and health-related properties of smoldering woodsmoke aerosols Lam Kam Chan1, Khanh Q. Nguyen1, Noreen Karim1, Yatian Yang1,a, Robert H. Rice1, Guochun He1, Michael S. Denison1, and Tran B. Nguyen1 1Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA anow at: Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA Correspondence: Tran B. Nguyen ([email protected]) Received: 21 August 2019 – Discussion started: 10 September 2019 Revised: 22 November 2019 – Accepted: 8 December 2019 – Published: 17 January 2020 Abstract. Organic aerosols generated from the smoldering biological and optical properties of the smoldering WSA are combustion of wood critically impact air quality and health not attributed to PAHs. Syringyl compounds tend to correlate for billions of people worldwide; yet, the links between with cell toxicity, while the more conjugated molecules (in- the chemical components and the optical or biological ef- cluding several compounds assigned to dimers) have higher fects of woodsmoke aerosol (WSA) are still poorly under- AhR activity and MACvis. The negative correlation between stood. In this work, an untargeted analysis of the molecu- cell toxicity and AhR activity suggests that the toxicity of lar composition of smoldering WSA, generated in a con- smoldering WSA to cells is not mediated by the AhR. Both trolled environment from nine types of heartwood fuels mass-normalized biological outcomes have a statistically sig- (African mahogany, birch, cherry, maple, pine, poplar, red nificant dependence on the degree of combustion of the oak, redwood, and walnut), identified several hundred com- wood. -
And Sinapaldehyde and Higher Saccharification Upon
Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD11[OPEN] Rebecca Van Acker,a,b Annabelle Déjardin,c Sandrien Desmet,a,b Lennart Hoengenaert,a,b Ruben Vanholme,a, b Kris Morreel,a,b Françoise Laurans,c Hoon Kim,d,e Nicholas Santoro,d Cliff Foster,d Geert Goeminne,a,b Frédéric Légée,f Catherine Lapierre,f Gilles Pilate,c John Ralph,d and Wout Boerjana,b,2 aGhent University, Department of Plant Biotechnology and Bioinformatics, 9052 Ghent, Belgium bVIB Center for Plant Systems Biology, 9052 Ghent, Belgium cAGPF, INRA, 45075 Orléans, France dDepartment of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, Wisconsin 53726-4084 eDepartment of Biochemistry, University of Wisconsin, Madison, Wisconsin 53726-4084 fINRA/AgroParisTech, UMR1318, Saclay Plant Science, Jean-Pierre Bourgin Institute, Versailles, France ORCID IDs: 0000-0002-0092-1155 (R.V.A.); 0000-0002-7576-5476 (A.D.); 0000-0002-0957-708X (S.D.); 0000-0002-7101-734X (L.H.); 0000-0001-5848-3138 (R.V.); 0000-0002-3121-9705 (K.M.); 0000-0001-7425-7464 (H.K.); 0000-0001-5428-2160 (N.S.); 0000-0002-0337-2999 (G.G.); 0000-0002-6757-1524 (C.L.); 0000-0003-4802-8849 (G.P.); 0000-0002-6093-4521 (J.R.); 0000-0003-1495-510X (W.B.); In the search for renewable energy sources, genetic engineering is a promising strategy to improve plant cell wall composition for biofuel and bioproducts generation. Lignin is a major factor determining saccharification efficiency and, therefore, is a prime target to engineer. Here, lignin content and composition were modified in poplar (Populus tremula 3 Populus alba) by specifically down-regulating CINNAMYL ALCOHOL DEHYDROGENASE1 (CAD1) by a hairpin-RNA-mediated silencing approach, which resulted in only 5% residual CAD1 transcript abundance. -
Promoting Microbial Utilization of Phenolic Substrates from Bio-Oil Kirsten Davis Iowa State University, [email protected]
Mechanical Engineering Publications Mechanical Engineering 7-4-2019 Promoting microbial utilization of phenolic substrates from bio-oil Kirsten Davis Iowa State University, [email protected] Marjorie R. Rover Iowa State University, [email protected] Davinia Salvachúa National Renewable Energy Laboratory Ryan G. Smith Iowa State University, [email protected] Gregg T. Beckham National Renewable Energy Laboratory SeFoe nelloxtw pa thige fors aaddndition addal aitutionhorsal works at: https://lib.dr.iastate.edu/me_pubs Part of the Biochemical and Biomolecular Engineering Commons, Biomechanical Engineering Commons, Food Biotechnology Commons, and the Oil, Gas, and Energy Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ me_pubs/368. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Mechanical Engineering at Iowa State University Digital Repository. It has been accepted for inclusion in Mechanical Engineering Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Promoting microbial utilization of phenolic substrates from bio-oil Abstract The ce onomic viability of the biorefinery concept is limited by the valorization of lignin. One possible method of lignin valorization is biological upgrading with aromatic-catabolic microbes. In conjunction, lignin monomers can be produced by fast pyrolysis and fractionation. However, biological upgrading of these lignin monomers is limited by low water solubility. Here, we address the problem of low water solubility with an emulsifier blend containing approximately 70 wt% Tween® 20 and 30 wt% Span® 80. -
Bioresources.Com
PEER-REVIEWED ARTICLE bioresources.com FORMATION OF VANILLIN AND SYRINGALDEHYDE IN AN OXYGEN DELIGNIFICATION PROCESS Zhaojiang Wong, Kefu Chen, and Jun Li * The formation of vanillin and syringaldehyde during an oxygen delignification process was evaluated. The cleavage of conjugated Cα-Cβ bonds in phenolic lignin caused by the attack of oxygen leads to the formation of aromatic aldehydes and ketones. The formation mechanism was confirmed by the organic compounds identified in the spent liquor by GC/MS. Additionally, the formation of aromatic aldehydes and ketones of hardwood, softwood, and grass was investigated. The results showed that the formed aromatic aldehydes and ketones were related to the units of lignin structure. Among the aromatic aldehydes and ketones present in the spent liquor from oxygen delignification, vanillin and syringaldehyde are of high content, making the spent liquor a potential resource for vanillin and syringaldehyde production. Key words: Formation; Oxygen delignification; Syringaldehyde; Vanillin Contact information: State Key Laboratory of Pulp & Paper Engineering South China University of Technology, Tianhe District, Guangzhou City, China. Post code: 510640. *Corresponding author: [email protected] INTRODUCTION Vanillin and syringaldehyde are widely used aromatic molecules in the food, pharmaceutical, and cosmetic industries. At present, there are two commercial ways to carry out synthetic vanillin and syringaldehyde production, i.e. synthesis based on either petroleum-derived compounds or biomass. It is reported that up to 85% of the production is highly dependent on petroleum-derived compounds (Sales et al. 2004; Cortez and Roberto 2010; Xiang and Lee 2001). Stimulated by an awareness of energy and resources shortages, the concept of a biorefinery has attracted much attention and gained great popularity.