Characterizing and Predicting the Antimicrobial Properties of Lignin Derivatives

Total Page:16

File Type:pdf, Size:1020Kb

Characterizing and Predicting the Antimicrobial Properties of Lignin Derivatives University of Kentucky UKnowledge Theses and Dissertations--Biosystems and Agricultural Engineering Biosystems and Agricultural Engineering 2020 CHARACTERIZING AND PREDICTING THE ANTIMICROBIAL PROPERTIES OF LIGNIN DERIVATIVES Ryan Kalinoski University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0001-8774-275X Digital Object Identifier: https://doi.org/10.13023/etd.2020.455 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Kalinoski, Ryan, "CHARACTERIZING AND PREDICTING THE ANTIMICROBIAL PROPERTIES OF LIGNIN DERIVATIVES" (2020). Theses and Dissertations--Biosystems and Agricultural Engineering. 76. https://uknowledge.uky.edu/bae_etds/76 This Doctoral Dissertation is brought to you for free and open access by the Biosystems and Agricultural Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Biosystems and Agricultural Engineering by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies. I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work. REVIEW, APPROVAL AND ACCEPTANCE The document mentioned above has been reviewed and accepted by the student’s advisor, on behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we verify that this is the final, approved version of the student’s thesis including all changes required by the advisory committee. The undersigned agree to abide by the statements above. Ryan Kalinoski, Student Dr. Jian Shi, Major Professor Dr. Donald Colliver, Director of Graduate Studies CHARACTERIZING AND PREDICTING THE ANTIMICROBIAL PROPERTIES OF LIGNIN DERIVATIVES ________________________________________ DISSERTATION ________________________________________ A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Colleges of Agriculture and Engineering at the University of Kentucky By Ryan Kalinoski Lexington, Kentucky Advisor: Dr. Jian Shi, Assistant Professor of Biosystems and Agricultural Engineering Lexington, Kentucky 2020 Copyright © Ryan Kalinoski https://orcid.org/0000-0001-8774-275X ABSTRACT OF DISSERTATION CHARACTERIZING AND PREDICTING THE ANTIMICROBIAL PROPERTIES OF LIGNIN DERIVATIVES Due to the overuse of antibiotics in our society, there has been a steady rise in highly antimicrobial-resistant bacteria in the last decade. This has created a renewed interest in natural phenolic compounds for antimicrobial discovery amongst the scientific community. To this end, lignin is the most abundant naturally occurring phenolic polymer on earth and has already been known to have antimicrobial properties due to its polyphenolic structure. In addition, lignin is considered a major waste product for lignocellulosic biorefineries, and its valorization into value-added products will generate extra profit for a biorefinery, making biofuels less expensive, increasing their marketability as an alternative to fossil fuels. However, the retention of lignin’s antimicrobial properties in different materials, as depolymerized products, or even the prediction of their antimicrobial properties is not well understood in the literature. Much work has utilized lignin as a functional polymer in a variety of composites and materials, but their antimicrobial properties have not been as widely explored. Therefore, ionic liquids were used in the facile preparation of cellulose-based hydrogels, and the addition of different lignocellulosic components (lignin and xylan) or the use of whole biomass (poplar and sorghum) were evaluated for their effects on hydrogel properties (mechanical and antimicrobial). The addition of both lignin and xylan improved hydrogel mechanical strength/stiffness, and lignin-containing hydrogels showed retained antimicrobial properties when screened against the target organism (Escherichia coli). Utilizing raw biomass provided increased mechanical strength (poplar), similar water retention abilities (poplar and sorghum), and retained antimicrobial properties (poplar). These results indicate that the different components of lignocellulose can be used to fine tune the properties of cellulose-based hydrogels and that lignin can confer its antimicrobial properties when incorporated into hydrogels. The antimicrobial properties of different lignin depolymerization products were explored using a reductive and oxidative depolymerization method to produce phenolic rich lignin-based bio-oils. Purified alkali-enzymatic corn stover lignin (AEL) was depolymerized by catalytic transfer hydrogenolysis using supercritical ethanol and a Ru/C catalyst, generating a bio-oil stream at high yields. Sequential extraction was used to fractionate the bio-oil into five fractions with different phenolic compositions using hexane, petroleum ether, chloroform, and ethyl acetate. Antimicrobial properties of the bio- oils were screened against Gram-positive/negative bacteria and yeast by examining microbial growth inhibition. The monomers in the bio-oil fractions contained primarily alkylated phenols, hydrogenated hydroxycinnamic acid derivatives, syringol and guaiacol- type lignins created from reductive cleavages of ether linkages. After sequential extraction, the lignin derived compounds were fractionated into groups depending on solvent polarity. Results suggest that the total monomer concentration and the presence of specific monomers (i.e., syringyl propane) may correlate to the antimicrobial activity of lignin depolymerization products, but the exact mode of action or antimicrobial activity caused by the complex mixtures of monomers and unidentified oligomers remains unclear. The same AEL lignin was depolymerized through oxidative procedures using peracetic acid, and its applications as an antibiotic replacement in the fuel ethanol industry were explored. The resulting bio-oil had a low degree of depolymerization that mostly produced unidentifiable lignin oligomers. Nonetheless, this bio-oil displayed highly selective antimicrobial properties, with up to 90% inhibition of commercially sampled lactic acid bacteria (LAB) at 4 mg/ml and no inhibition of yeast. Using the bio-oil (4 mg/ml) as an alternative antibiotic treatment during simultaneous-saccharification and fermentation of raw corn starch showed an 8% increase in ethanol production at a yeast to LAB ratio of 1:100, compared to untreated contaminated controls. The ability of the bio- oil to improve ethanol yields clearly shows its efficacy as an alternative antibiotic and that depending on depolymerization method lignin derivates can display a variety of useful antimicrobial properties/applications. The final study was the first attempt in the literature to predict the antimicrobial properties of lignin derivatives using quantitative structure−activity relationship (QSAR) models. First, the open-access database ChEMBL, with non-lignin specific compounds, was used to create datasets of compounds with MIC activity measurements against both B. subtilis and E. coli. Machine learning algorithms were used to develop the QSARs for the large ChEMBL datasets and were found to underpredict the antimicrobial activity of actual lignin compounds. Conversely, as metanalysis of the literature containing MIC data of lignin derivatives were used to build QSAR models with ordinary least square regressions (OLS). An accurate QSAR model for E. coli was not found, but a satisfactory model was obtained for the B. subtilis metanalysis dataset. Molecular Operation Environment (MOE)- type descriptors and the number of aliphatic carboxylic acid groups showed strong correlations to the MIC values (R2 of 0.759). Comparatively, an additional dataset was experimentally derived by screening 25 lignin monomers and three dimers against B. subtilis by measuring bacterial load difference (BLD). This datasets QSAR, using OLS, found that MOE-type descriptors and the number of aromatic hydroxyl groups were better predictors of BLD (R2 of 0.831). Thus, the smaller datasets highlighted how the variability in antimicrobial measurements and the specific compounds used will impact the predictive nature of the resulting QSARs. Overall, this entire work provides critical knowledge and guidance on using lignin as an antimicrobial source in different industrial processes/products and the identification of lignin derivatives with enhanced activity. KEYWORDS: Biorefinery, Lignin, Depolymerization,
Recommended publications
  • Recent Developments in Identification of Genuine Odor- and Taste-Active Compounds in Foods
    Recent Developments in Identification of Genuine Odor- and Taste-Active Compounds in Foods Edited by Remedios Castro-Mejías and Enrique Durán-Guerrero Printed Edition of the Special Issue Published in Foods www.mdpi.com/journal/foods Recent Developments in Identification of Genuine Odor- and Taste-Active Compounds in Foods Recent Developments in Identification of Genuine Odor- and Taste-Active Compounds in Foods Editors Remedios Castro-Mej´ıas Enrique Dur´an-Guerrero MDPI Basel Beijing Wuhan Barcelona Belgrade Manchester Tokyo Cluj Tianjin • • • • • • • • • Editors Remedios Castro-Mej´ıas Enrique Duran-Guerrero´ Analytical Chemistry Analytical Chemistry Universidad de Cadiz´ Department Puerto Real University of Cadiz Spain Puerto Real Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Foods (ISSN 2304-8158) (available at: www.mdpi.com/journal/foods/special issues/Recent Developments Identification Genuine Odor- Taste-Active Compounds Foods). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, Page Range. ISBN 978-3-0365-1668-4 (Hbk) ISBN 978-3-0365-1667-7 (PDF) © 2021 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND.
    [Show full text]
  • Simple Models for the Quick Estimation of Ground State Hydrogen Tunneling Splittings in Alcohols Cite This: Phys
    PCCP View Article Online PAPER View Journal | View Issue Simple models for the quick estimation of ground state hydrogen tunneling splittings in alcohols Cite this: Phys. Chem. Chem. Phys., 2021, 23, 17591 and other compounds† Robert Medel Models for the quick estimation of energy splittings caused by coherent tunneling of hydrogen atoms are evaluated with available experimental data for alcohols and improvements are proposed. The discussed models are mathematically simple and require only results from routine quantum chemical computations, i.e. hybrid DFT calculation of the equilibrium geometry and the transition state within the harmonic approximation. A benchmark of experimental splittings spanning four orders of magnitude for 27 alcohol species is captured by three evaluated models with a mean symmetric deviation factor of 1.7, 1.5 and 1.4, respectively, i.e. the calculated values deviate on average by this factor in either direction. Limitations of the models are explored with alcohols featuring uncommon Creative Commons Attribution 3.0 Unported Licence. properties, such as an inverted conformational energy sequence, a very light molecular frame, an elevated torsional frequency, or a coupling with a second internal degree of freedom. If the splitting of either the protiated or deuterated form of an alcohol is already experimentally determined, the one of the second isotopolog can be estimated by three additional models with a mean symmetric deviation factor of 1.14, 1.19 and 1.15, respectively. It is shown that this can be achieved with a novel approach without any quantum chemical calculation by directly correlating experimental splittings of isotopologs across related species.
    [Show full text]
  • Standard Methods for the Examination of Water and Wastewater
    Standard Methods for the Examination of Water and Wastewater Part 1000 INTRODUCTION 1010 INTRODUCTION 1010 A. Scope and Application of Methods The procedures described in these standards are intended for the examination of waters of a wide range of quality, including water suitable for domestic or industrial supplies, surface water, ground water, cooling or circulating water, boiler water, boiler feed water, treated and untreated municipal or industrial wastewater, and saline water. The unity of the fields of water supply, receiving water quality, and wastewater treatment and disposal is recognized by presenting methods of analysis for each constituent in a single section for all types of waters. An effort has been made to present methods that apply generally. Where alternative methods are necessary for samples of different composition, the basis for selecting the most appropriate method is presented as clearly as possible. However, samples with extreme concentrations or otherwise unusual compositions or characteristics may present difficulties that preclude the direct use of these methods. Hence, some modification of a procedure may be necessary in specific instances. Whenever a procedure is modified, the analyst should state plainly the nature of modification in the report of results. Certain procedures are intended for use with sludges and sediments. Here again, the effort has been to present methods of the widest possible application, but when chemical sludges or slurries or other samples of highly unusual composition are encountered, the methods of this manual may require modification or may be inappropriate. Most of the methods included here have been endorsed by regulatory agencies. Procedural modification without formal approval may be unacceptable to a regulatory body.
    [Show full text]
  • Surface Science 652 (2016) 26 –32
    Surface Science 652 (2016) 26 –32 Contents lists available at ScienceDirect Surface Science journal homepage: www.elsevier.com/locate/susc The role of low-energy ( ≤20 eV) electrons in astrochemistry Michael C. Boyer a,NathalieRivas b,AudreyA.Tran b, Clarissa A. Verish b, Christopher R. Arumainayagam b,⁎ aDepartment of Physics, Clark University, Worcester, MA 01610, United States bDepartment of Chemistry, Wellesley College, Wellesley, MA 02481, United States article info abstract Article history: UV photon-driven condensed phase cosmic ice reactions have been the main focus in understanding the extra- Received 7 January 2016 terrestrial synthesis of complex organic molecules. Low-energy ( ≤20 eV) electron-induced reactions, on the Received in revised form 2 March 2016 other hand, have been largely ignored. In this article, we review studies employing surface science techniques Accepted 8 March 2016 to study low-energy electron-induced condensed phase reactions relevant to astrochemistry. In particular, we Available online 12 March 2016 show that low-energy electron irradiation of methanol ices leads to the synthesis of many of the same complex Keywords: molecules formed through UV irradiation. Moreover, our results are qualitatively consistent with the hypothesis Astrochemistry that high-energy condensed phase radiolysis is mediated by low-energy electron-induced reactions. In addition, Low-energy electrons due to the numbers of available low-energy secondary electrons resulting from the interaction of high-energy Temperature programmed desorption radiation with matter as well as differences between electron- and photon-induced processes, low-energy Infrared re flection absorption spectroscopy electron-induced reactions are perhaps as, or even more, effective than photon-induced reactions in initiating Cosmic ices condensed-phase chemical reactions in the interstellar medium.
    [Show full text]
  • Enhancement of Chemical Products in Bio-Crude-Oil from Lignocellulosic Residues – Effects of Biomass Type, Temperature, Pre-Treatment and Catalysts
    Enhancement of Chemical Products in Bio-Crude-Oil from Lignocellulosic Residues – Effects of Biomass Type, Temperature, Pre-treatment and Catalysts. Dissertation Zur Erlangung des Doktorgrades vorgelegt von Akeem Mayowa Azeez Hamburg 2011 Universität Hamburg Fakultät für Mathematik Informatik und Naturwissenschaften Zentrum für Holzwirtschaft ii I hereby declare that this research work was carried out by me, Azeez Mayowa Akeem, at the University of Hamburg (Institute of Wood Science) in collaboration with Wood Chemistry/Chemical Technology Unit of Johann-Heinrich von Thünen Institute, Hamburg, between April 2008 and March 2011. And that all experiments and analyses herein reported were carried out at the Wood Chemistry/Chemical Technology Unit of Johann-Heinrich von Thünen Institute, Bergedorf, Hamburg. Supervisors: PD Dr. habil Juergen Odermatt Dr. rer. nat. Dipl.-Holzwirt Dietrich Meier (vTi, Hamburg) Prof. Dr. Ing. Thomas Willner (Hamburg University of Applied Science) iii Acknowledgement My special thanks goes to Dr. Dietrich Meier for supervising this work and his persistent words of encouragement. The unwavering support, trust and useful suggestions from my official supervisor, in person of Dr. Jürgen Odermatt, are greatly appreciated. I am equally grateful to Prof. Ing. Thomas Willner, who is instrumental to my sojourn to Hamburg and at the same time offered to co-supervise this research. The trio have contributed immensely to the successful completion of this program with enriched ideas, thorough supervision coupled with love. Their charming disposition is worthy of emulation. I will ever remain grateful. My interaction in the course of this work was unrestricted in all units within the Institute, largely due to open arms and affections of all workers.
    [Show full text]
  • Gas-Phase Basicities of Polyfunctional Molecules. Part 2 : Saturated Basic Sites Guy Bouchoux, Jean-Yves Salpin
    Gas-phase basicities of polyfunctional molecules. Part 2 : saturated basic sites Guy Bouchoux, Jean-Yves Salpin To cite this version: Guy Bouchoux, Jean-Yves Salpin. Gas-phase basicities of polyfunctional molecules. Part 2 : saturated basic sites. Mass Spectrometry Reviews, Wiley, 2012, 31 (3), pp.353-390. 10.1002/mas.20343. hal- 00760015 HAL Id: hal-00760015 https://hal.archives-ouvertes.fr/hal-00760015 Submitted on 5 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. BOUCHOUX AND SALPIN POLYFUNCTIONAL MOLECULES WITH SATURATED BASIC SITES Gas-phase basicities of polyfunctional molecules. Part 2: saturated basic sites Guy Bouchoux1,2* and Jean-Yves Salpin3,4 (1) Ecole Polytechnique - Laboratoire des Mécanismes Réactionnels (DCMR) - Département de Chimie - 91120 Palaiseau. France. (2) CNRS – UMR 7651 (3) Université d'Evry Val d'Essonne - Laboratoire Analyse et Modélisation pour la Biologie et l'Environnement (LAMBE) – Bâtiment Maupertuis – Bd F. Mitterrand - 91025 Evry. France (4) CNRS – UMR 8587 * Correspondence to: Guy Bouchoux. Laboratoire des Mécanismes Réactionnels. Département de Chimie. Ecole Polytechnique. 91120 Palaiseau. France. E-mail address: [email protected] Telephone: (33) 1 69 33 48 42 FAX: (33) 1 69 33 48 03 -1- BOUCHOUX AND SALPIN POLYFUNCTIONAL MOLECULES WITH SATURATED BASIC SITES Table of contents I.
    [Show full text]
  • Novel Analysis on Aroma Compounds of Wine, Vinegar and Derived Products
    Novel Analysis on Aroma Compounds of Wine, Vinegar and Derived Products Edited by Enrique Durán-Guerrero and Remedios Castro-Mejías Printed Edition of the Special Issue Published in Foods www.mdpi.com/journal/foods Novel Analysis on Aroma Compounds of Wine, Vinegar and Derived Products Novel Analysis on Aroma Compounds of Wine, Vinegar and Derived Products Editors Enrique Dur´an-Guerrero Remedios Castro-Mej´ıas MDPI Basel Beijing Wuhan Barcelona Belgrade Manchester Tokyo Cluj Tianjin • • • • • • • • • Editors Enrique Duran-Guerrero´ Remedios Castro-Mej´ıas University of Cadiz´ University of Cadiz´ Spain Spain Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Foods (ISSN 2304-8158) (available at: https://www.mdpi.com/journal/foods/special issues/Wine Aroma). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, Page Range. ISBN 978-3-0365-0000-0 (Hbk) ISBN 978-3-0365-0000-0 (PDF) © 2021 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND.
    [Show full text]
  • Detection of Methoxymethanol As a Photochemistry Product Of
    Detection of Methoxymethanol as a Photochemistry Product of Condensed Methanol Hope Schneider,1 Anna Caldwell-Overdier,1 Sophie Coppieters ‘t Wallant,1 Lan Dau, 1 Jean Huang,1 Ifunanya Nwolah,1 Muhammad Kasule,2 Christina Buffo,1 Ella Mullikin,1 Lily Widdup,1 Aury Hay,1 Si Tong Bao,1 Jeniffer Perea,1 Mayla Thompson,1 Rhoda Tano-Menka, 1 Mileva Van Tuyl,1 Amy Wang,1 Sophia Bussey,1 Nina Sachdev,1 Christine Zhang,1 Michael C. Boyer,2 and Christopher R. Arumainayagam1* 1 Department of Chemistry, Wellesley College, Wellesley, MA 02481 2 Department of Physics, Clark University, Worcester, MA 01610 Abstract We report the identification of methoxymethanol (CH3OCH2OH) as a photochemistry product of condensed methanol (CH3OH) based on temperature-programmed desorption studies conducted following photon irradiation at energies below the ionization threshold (9.8 eV) of condensed methanol. The first detection of methoxymethanol in the interstellar medium was reported in 2017 based on data from Bands 6 and 7 from the Atacama Large Millimeter/submillimeter Array (ALMA). The cosmic synthesis of “complex” organic molecules such as methyl formate (HCOOCH3), dimethyl ether (CH3OCH3), acetic acid (CH3COOH), ethylene glycol (HOCH2CH2OH), and glycolaldehyde (HOCH2CHO) has been attributed to UV photolysis of condensed methanol found in interstellar ices. Experiments conducted in 1995 demonstrated that electron-induced radiolysis of methanol cosmic ice analogues yields methoxymethanol. In three recent publications (2016, 2017, and 2018), methoxymethanol was considered as a potential tracer for reactions induced by secondary electrons resulting from the interaction of cosmic rays with interstellar ices. However, the results presented in this study suggest that methoxymethanol can be formed from both radiation chemistry and photochemistry of condensed methanol.
    [Show full text]
  • Heliyon 6 (2020) E05586
    Heliyon 6 (2020) e05586 Contents lists available at ScienceDirect Heliyon journal homepage: www.cell.com/heliyon Research article Lignin-derived phenolic compounds in cachaça aged in new barrels made from two oak species Mariana C. Castro, Aline M. Bortoletto, Giovanni C. Silvello, Andre R. Alcarde * Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de Sao~ Paulo, Av. Padua Dias 11, CP 9, 13418-900, Piracicaba, SP, Brazil ARTICLE INFO ABSTRACT Keywords: Aging cachaça in wooden barrels is essential to improve its quality. The level of maturation of distillates can be Food analysis determined based on the contents of aging-marker phenolic compounds extracted from the lignin of the wooden Food technology barrel. This study aimed to characterize the aging process of cachaça by analyzing the mechanism of lignin Sugarcane spirit degradation during its maturation in new barrels made from two oak species, European (Quercus petraea) and Aging American (Quercus alba), for up to 60 months. Evaluation was based on the analyses of cinnamic aldehydes Oak species Lignin (sinapaldehyde and coniferaldehyde), benzoic aldehydes (syringaldehyde and vanillin), and benzoic acids Phenolic compounds (syringic and vanillic acids) using high-performance liquid chromatography. Oak species had a significant effect on all the studied phenolic compounds. Higher contents of all the identified phenolic compounds were found in cachaça aged in barrels made from American oak. The total contents of benzoic acids (vanillic and syringic acids) can be considered for predicting the level of maturation of cachaça aged in barrels made from both oak species. Based on the composition of maturation-related congeners, it is likely that for cachaça each year of aging in new oak barrels corresponds to approximately 5 years of aging for spirits in general commercialized worldwide.
    [Show full text]
  • Stabilization Method of Vinyl Compound with Hydroxy Group and Composition Containing Such Vinyl Compound
    ^ ^ ^ ^ I ^ ^ ^ ^ ^ ^ II ^ II ^ II ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ I ^ European Patent Office Office europeen des brevets EP 0 763 518 A1 EUROPEAN PATENT APPLICATION (43) Date of publication: (51) |nt CI C07C 67/62, C07C 69/732, 19.03.1997 Bulletin 1997/12 C07C 255/1 5, C07C 253/32 (21) Application number: 96306611.3 (22) Date of filing: 12.09.1996 (84) Designated Contracting States: • Makino, Mitsuaki DE FR GB Himeji-shi, Hyogo 671-12 (JP) • Kita, Yuichi (30) Priority: 14.09.1995 J P 237440/95 Akashi-shi, Hyogo 673 (JP) (71) Applicant: NIPPON SHOKUBAI CO., LTD. (74) Representative: West, Alan Harry et al Chuo-ku, Osaka-shi, Osaka-fu 541 (JP) R.G.C. Jenkins & Co. 26 Caxton Street (72) Inventors: London SW1H 0RJ (GB) • Nakagawa, Koichi Himeji-shi, Hyogo 672 (JP) (54) Stabilization method of vinyl compound with hydroxy group and composition containing such vinyl compound (57) A vinyl compound having an hydroxy group is by mixing it with minor amounts of primary antioxidant stabilised against being denatured during storage, together with an alcohol and/or water, and/or with an or- transportation and use while maintaining its reactivity, ganic acid. < 00 lo CO CO o a. LU Printed by Jouve, 75001 PARIS (FR) EP0 763 518 A1 Description The present invention generally relates to a stabilization method of a vinyl compound with hydroxy group and a composition containing such vinyl compound, and more particularly relates to a stabilization method which offers an 5 improved stability of the vinyl compound with hydroxy group by preventing a vinyl compound with hydroxy group from being denatured on storage, transportation, manufacturing process, etc., and to a composition containing the vinyl compound of an improved stability.
    [Show full text]
  • Bioresources.Com
    PEER-REVIEWED REVIEW ARTICLE bioresources.com A CONCISE REVIEW OF THE NATURAL EXISTANCE, SYNTHESIS, PROPERTIES, AND APPLICATIONS OF SYRINGALDEHYDE Mohamad Nasir Mohamad Ibrahim,* R. B. Sriprasanthi, Shaharuddin Shamsudeen, Farook Adam, and Showkat A. Bhawani Syringaldehyde is a promising aromatic aldehyde that no longer deserves to remain in obscurity. It possesses worthy bioactive properties and is, therefore, used in pharmaceuticals, food, cosmetics, textiles, pulp and paper industries, and even in biological control applications. Mostly, the synthetic form of syringaldehyde is being used. This review serves as an appraisal of potential research and commercialization of naturally occurring syringaldehyde beyond the scope of the food and cosmetic industries. This article also provides a comprehensive account of the various conventional extraction and chromatographic techniques used in the separation, isolation, and quantification of syringaldehyde. Further, to understand this unique compound, a brief outline on the natural formation of syringaldehyde in lignin is accentuated in this article. Keywords: Syringaldehyde; Bioactive properties; Separation and extraction; Lignin Contact information: a: Lignocellulosic Research Group, School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia *Corresponding author: [email protected] INTRODUCTION The ever-increasing safety concerns over synthetic antioxidants and the harmful side effects of chemo-therapeutic drugs, coupled with their high costs (Goodwin and Shepherd 1998; Sacristán et al. 2000; Vergnenegre 2001), have created a new path for the development of cheaper, sustainable, and most crucially, natural anti-oxidants, drugs, and food additives (Garrote et al. 2004). Syringaldehyde, a compound found only in a minute quantity in nature, is believed to be a promising source that matches the above- mentioned requisites.
    [Show full text]
  • Bioactivities of Wood Polyphenols: Antioxidants and Biological Effects
    Bioactivities of Wood Polyphenols: Antioxidants and Biological Effects By Tasahil Albishi A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy of Science Department of Biochemistry Memorial University of Newfoundland August 2018 ST. JOHN’S NEWFOUNDLAND AND LABRADOR CANADA TABLE OF CONTENTS LIST OF ABBREVATION .................................................................................................... viii LIST OF TABLES ..................................................................................................................x LIST OF FIGURES ........................................................................................................... ……xi ABSTRACT ......................................................................................................................... xiv ACKNOWLEDGEMENTS .................................................................................................. xvii CHAPTER 1.0 – INTRODUCTION…………………………………………………….…...1 CHAPTER 2.0 - LITERATURE REVIEW …………………………………………..............5 2.1 Historical Background of wood……………………………………..…………… 5 2.1.1 Major uses of wood extractives…………..………..…………………….5 2.1.2 The use of woods……….……….…….……………………………...….6 2.2 Woody plants and their chemical composition……….….…………………..…...6 2.3 The chemistry of Wood ……….……...……….………….………….…............10 2.3.1 Cellulose ………….………….………………………………………... 10 2.3.2 Hemicellulose ……….…….……………………………………………11 2.3.3 Lignin ……………….……….…….………………...…………………12 2.3.4 Phenolic compounds….……….…………………………….……..…....14
    [Show full text]