Atmos. Chem. Phys., 20, 539–559, 2020 https://doi.org/10.5194/acp-20-539-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Relationship between the molecular composition, visible light absorption, and health-related properties of smoldering woodsmoke aerosols Lam Kam Chan1, Khanh Q. Nguyen1, Noreen Karim1, Yatian Yang1,a, Robert H. Rice1, Guochun He1, Michael S. Denison1, and Tran B. Nguyen1 1Department of Environmental Toxicology, University of California Davis, Davis, CA 95616, USA anow at: Department of Biochemistry and Molecular Medicine, UC Davis School of Medicine, Sacramento, CA, USA Correspondence: Tran B. Nguyen (
[email protected]) Received: 21 August 2019 – Discussion started: 10 September 2019 Revised: 22 November 2019 – Accepted: 8 December 2019 – Published: 17 January 2020 Abstract. Organic aerosols generated from the smoldering biological and optical properties of the smoldering WSA are combustion of wood critically impact air quality and health not attributed to PAHs. Syringyl compounds tend to correlate for billions of people worldwide; yet, the links between with cell toxicity, while the more conjugated molecules (in- the chemical components and the optical or biological ef- cluding several compounds assigned to dimers) have higher fects of woodsmoke aerosol (WSA) are still poorly under- AhR activity and MACvis. The negative correlation between stood. In this work, an untargeted analysis of the molecu- cell toxicity and AhR activity suggests that the toxicity of lar composition of smoldering WSA, generated in a con- smoldering WSA to cells is not mediated by the AhR. Both trolled environment from nine types of heartwood fuels mass-normalized biological outcomes have a statistically sig- (African mahogany, birch, cherry, maple, pine, poplar, red nificant dependence on the degree of combustion of the oak, redwood, and walnut), identified several hundred com- wood.