Gorse and Brooms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Site Synopsis
SITE SYNOPSIS SITE NAME: CLOONLOUM MORE BOG NHA SITE CODE: 002307 Cloonloum More Bog NHA is situated approximately 5 km south-west of Tulla, mainly in the townlands of Cloonloum More and Clooncool in Co. Clare. The site comprises a raised bog that includes both areas of high bog and cutover bog. The north-western margin of the site is bounded by a road, while the other margins are bounded by areas of cutover and grassland. The raised bog consists of one crescent-shaped lobe. There is an absence of permanent pools and hummocks/hollows on the high bog and there are large areas of cutover. This raised bog is of particular interest as it is one of the few remaining raised bogs in the county. A small lake, Lough Gara, is included at the south of the site. Much of the high bog vegetation is typical of raised bogs in Ireland, consisting of Ling Heather (Calluna vulgaris), Cross-leaved Heath (Erica tetralix), White Beak- sedge (Rhynchospora alba) and Deergrass (Scirpus cespitosus). Bog-rosemary (Andromeda polifolia) is found on this bog, although not in abundance. The bog moss (Sphagnum spp.) cover is quite variable, with species such as S. capillifolium, S. magellanicum and S. fuscum. The cutover areas surrounding the bog have become dominated by Purple Moor-grass (Molinia caerulea) and Gorse (Ulex europaeus). The lake at the south of the bog is surrounded by the Common Reed (Phragmites australis) and the Bulrush (Typha latifolia). Current landuse on the site consists of peat-cutting around the edge of the high bog, and the drainage associated with this. -
Genista Monspessulana – Montpellier Broom, Cape Broom, Canary Broom
Application for WoNS candidacy Genista monspessulana – Montpellier Broom, Cape Broom, Canary Broom Contact: Ashley Millar - (08) 9334 0312; Department of Environment and Conservation (WA) October 2010 Introduction Genista monspessulana (L.) L.A.S.Johnson (Fabaceae), also known more commonly as Montpellier Broom, Cape Broom and Canary Broom, is a woody legume weed with significant current and potential impacts on forestry production, biodiversity of natural ecosystems, grazing systems, access to amenity areas and fire risk. Infestations occur in all temperate states of Australia, with particularly severe infestations in the Adelaide Hills, southern Tasmania, central and southern Great Dividing Range of NSW, central Victoria and south west WA. G. monspessulana was ranked 37th in the initial evaluation of weeds nominated for Weeds of Natural Significance (WONS) (Thorp and Lynch 2000), with a particularly high impact score due to its formation of dense, impenetrable thickets arising from a long-lived soil seed bank (source: Henry et al . 2010). Species description: G. monspessulana is an erect, perennial slender shrub which grows up to 5-6m. It has trifoliolate petiolate leaves which are more or less glabrous. This species has yellow flowers which are produced from August to January. G. monspessulana occurs in loamy soil through to lateritic and peaty sand and is commonly found along rivers and roadsides (Parsons and Cuthbertson 2001; FLORABASE DEC 2010). G. monspessulana is native to the Mediterranean region that has become established, and is considered a persistent and deleterious plant, in several other regions of the world, including the Americas, Australia and New Zealand. It is considered deleterious because of its ability to form dense almost mono-cultural stands, which replace and suppress native flora and economically valuable timber plants (Lloyd 2000). -
Conserving Europe's Threatened Plants
Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database. -
Universidad Complutense De Madrid Facultad De Ciencias Biológicas
UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS BIOLÓGICAS TESIS DOCTORAL Estudio taxonómico de los genéros Ulex L. y Stauracanhus link. en la Península Ibérica MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Paloma Cubas Domínguez DIRECTOR: Salvador Rivas Martínez Madrid, 2015 © Paloma Cubas Domínguez, 1983 ) s ! Paloma Cubas Dominguez iiiiiiiiiiii ^5309867419 UNIVERSIDAD COMPLUTENSE rw ESTUDIO TAXONOMICO DE LOS GENEROS U Œ X L. Y STAURACANTHUS LINK. EN LA PENINSULA IBERICA Departamento de Botânica y Fisiologfa Vegetal Facultad de Ciencias Biologicas Universidad Complutense de Madrid 1984 # DîBIJOTECA Colecclôn Tesis Doctorales. NS 211/84 (c) Paloma Cubas Dominguez Edita e imprime la Editorial de la Universidad Complutense de Madrid. Servicio de Reprograffa Noviciado, 3 Madrid-8 Madrid, I984 Xerox 9200 XB 48 O Dep6sito Legal: M-20413-1984 Paloma Cubas Domfnguez Estudîo taxonomico de los génères Ulex L. y Stauracanfhus Link, en la Penfnsula Ibérica i ' ' Director: Prof. Dr. Salvador Rivas-Martfnez Catedrâtico de Boténica de la Facultad de Farmacia de la Universidad Complutense de Madrid. Universidad Complutense de Madrid Facultad de Biologfa Enero 1983 INDICE 1. Introducciôn ............................. 1 1.1 O bjeto.................................. .2 1.2 Desarrolio hîstôrico de la taxonomfa de los gêner os Ulex y Stauraconthus.. 3 1.3 Delimitaciôn genérîca y de tas secciones ...................................................................7 1 .4 Posiclon de los géneros Ulex y Stauracanthus en lo tribu G enîsteoe.. J.I 1.5 Esquema taxonômico J 8 2. Morfoiogfa general ....................................................................................................20 2 .1 Morfoiogfa végétative.................... 21 2 .1 .1 Porte y ram ificaclân ........................ 21 2.1 .2 .Formas de creclmlento ............... 23 2.1.3 Hojas y fîlodlos. ................................................... 25 . -
Introduction Methods Results
Papers and Proceedings Royal Society ofTasmania, Volume 1999 103 THE CHARACTERISTICS AND MANAGEMENT PROBLEMS OF THE VEGETATION AND FLORA OF THE HUNTINGFIELD AREA, SOUTHERN TASMANIA by J.B. Kirkpatrick (with two tables, four text-figures and one appendix) KIRKPATRICK, J.B., 1999 (31:x): The characteristics and management problems of the vegetation and flora of the Huntingfield area, southern Tasmania. Pap. Proc. R. Soc. Tasm. 133(1): 103-113. ISSN 0080-4703. School of Geography and Environmental Studies, University ofTasmania, GPO Box 252-78, Hobart, Tasmania, Australia 7001. The Huntingfield area has a varied vegetation, including substantial areas ofEucalyptus amygdalina heathy woodland, heath, buttongrass moorland and E. amygdalina shrubbyforest, with smaller areas ofwetland, grassland and E. ovata shrubbyforest. Six floristic communities are described for the area. Two hundred and one native vascular plant taxa, 26 moss species and ten liverworts are known from the area, which is particularly rich in orchids, two ofwhich are rare in Tasmania. Four other plant species are known to be rare and/or unreserved inTasmania. Sixty-four exotic plantspecies have been observed in the area, most ofwhich do not threaten the native biodiversity. However, a group offire-adapted shrubs are potentially serious invaders. Management problems in the area include the maintenance ofopen areas, weed invasion, pathogen invasion, introduced animals, fire, mechanised recreation, drainage from houses and roads, rubbish dumping and the gathering offirewood, sand and plants. Key Words: flora, forest, heath, Huntingfield, management, Tasmania, vegetation, wetland, woodland. INTRODUCTION species with the most cover in the shrub stratum (dominant species) was noted. If another species had more than half The Huntingfield Estate, approximately 400 ha of forest, the cover ofthe dominant one it was noted as a codominant. -
“Don't Plant a Pest: Central Coast” Brochure
G roundcovers & Perennials G roundcove rs & Perennials G roundcove rs & Perennials G a rdening green Many of the characteristics that make a G roundcove rs plant a good choice for the garden may Instead of periwinkle, wild ginger also make it a successful invader: & Perennials DON’T PLAN T: English ivy or Algerian ivy, (Asarum caudatum) Don’t California is a gardener’s dream. Our mild climate allows A California native, this Garden Plants Invasive Plants us to have fantastic gardens, showcasing a wide variety periwinkle evergreen groundcover has Easy to propagate Broad germination T RY THESE VARIETIES: of ornamental plants from DON’T PLAN T: (Vinca major) heart-shaped leaves and unusual Establish rapidly Colonizer all around the world. This aggressive grower pachysandra maroon flowers. Mature early Mature early iceplant or Hottentot fig Howitt, © 1999 Beatrice F. Calif. Academy of Sciences has trailing stems that Plant a But sometimes, our Abundant flowers Prolific seeds (Carpobrotus edulis) (Pachysandra terminalis) root wherever they touch bear’s foot hellebore garden plants “jump the Pest / disease tolerant Few natural predators Small mammals can carry seeds of Grows more slowly than Vinca the soil. This ability to and Hedera, but has a crisp, (Helleborus foetidus) fence” and invade natural iceplant from landscape settings to resprout from stem areas. These invasive nearby coastal dunes and other neat growth form. New foliage Unusual foliage and delicate, Invasive plants are by nature a regional problem. A plant fragments enables is bright green, changing to complex flowers. The intriguing plants can become serious sensitive areas. The vigorous Alfred Brousseau, © 1995 Br. -
Soil: Plant Relationships of Species-Rich Molinia Caerulea
Soil: plant relationships of species-rich Molinia i caerulea dominated communities of the Culm ! I I I I I Measures, North Devon, with special reference given to phosphorus cycling by M. Jane Goodwin ,I '' A thesis submitted to the University of Plymouth in panial fulfJ.lment for the degree of , DOCTOR OF PHILOSOPHY Seale-Hayne Faculty of Agriculture, Food:and Land Use In collaboration with Institute of Grassland and Environmental Research September 1995 Copyright Statement This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyrig)tt rests with the author and that no.quotation from the thesis and no information derived from it may be published without the author's prior written consent. 'I ii Abstract Soil:plant relationships of species-rich Molinia caerulea dominated communities of the Culm Measures, North Devon, with special reference given to phosphorus cycling. Margaret Jane Goodwin A semi-natural community known locally as Culm grassland in Devon and N. E. Cornwall is under threat from agricultural improvement, abandonment and inappropriate management In the last fifty years 87% of the original area has been lost. Funher loss may be prevented by ~ examination of the factors that influence the plant community and how they may be manipulated by management. Thus the research described in this thesis addressed the soil conditions and the plant communities, with particular reference to phosphorus cycling. In 1992 a preliminary characterisation of soil nutrient and water conditions, and species composition was conducted on a pristine Culm grassland, an improved grassland and a formerly abandoned Culm grassland. -
Fruits and Seeds of Genera in the Subfamily Faboideae (Fabaceae)
Fruits and Seeds of United States Department of Genera in the Subfamily Agriculture Agricultural Faboideae (Fabaceae) Research Service Technical Bulletin Number 1890 Volume I December 2003 United States Department of Agriculture Fruits and Seeds of Agricultural Research Genera in the Subfamily Service Technical Bulletin Faboideae (Fabaceae) Number 1890 Volume I Joseph H. Kirkbride, Jr., Charles R. Gunn, and Anna L. Weitzman Fruits of A, Centrolobium paraense E.L.R. Tulasne. B, Laburnum anagyroides F.K. Medikus. C, Adesmia boronoides J.D. Hooker. D, Hippocrepis comosa, C. Linnaeus. E, Campylotropis macrocarpa (A.A. von Bunge) A. Rehder. F, Mucuna urens (C. Linnaeus) F.K. Medikus. G, Phaseolus polystachios (C. Linnaeus) N.L. Britton, E.E. Stern, & F. Poggenburg. H, Medicago orbicularis (C. Linnaeus) B. Bartalini. I, Riedeliella graciliflora H.A.T. Harms. J, Medicago arabica (C. Linnaeus) W. Hudson. Kirkbride is a research botanist, U.S. Department of Agriculture, Agricultural Research Service, Systematic Botany and Mycology Laboratory, BARC West Room 304, Building 011A, Beltsville, MD, 20705-2350 (email = [email protected]). Gunn is a botanist (retired) from Brevard, NC (email = [email protected]). Weitzman is a botanist with the Smithsonian Institution, Department of Botany, Washington, DC. Abstract Kirkbride, Joseph H., Jr., Charles R. Gunn, and Anna L radicle junction, Crotalarieae, cuticle, Cytiseae, Weitzman. 2003. Fruits and seeds of genera in the subfamily Dalbergieae, Daleeae, dehiscence, DELTA, Desmodieae, Faboideae (Fabaceae). U. S. Department of Agriculture, Dipteryxeae, distribution, embryo, embryonic axis, en- Technical Bulletin No. 1890, 1,212 pp. docarp, endosperm, epicarp, epicotyl, Euchresteae, Fabeae, fracture line, follicle, funiculus, Galegeae, Genisteae, Technical identification of fruits and seeds of the economi- gynophore, halo, Hedysareae, hilar groove, hilar groove cally important legume plant family (Fabaceae or lips, hilum, Hypocalypteae, hypocotyl, indehiscent, Leguminosae) is often required of U.S. -
Impact of Seed Predators on the Herb Baptisia Lanceolata (Fabales: Fabaceae)
398 Florida Entomologist 87(3) September 2004 IMPACT OF SEED PREDATORS ON THE HERB BAPTISIA LANCEOLATA (FABALES: FABACEAE) Scorn HORN AND JAMES L. HANULA USDA Forest Service, 320 Green Street, Athens, GA 30602 The reproductive success of plants is a complex South Carolina were commonly infested byA. ros- interaction among beneficial organisms such as trum. Therefore, the objectives of this study were pollinators, and destructive ones such as defolia- to determine the extent ofA. rostrum seed preda- tors or seed predators that eat plant tissue. Many tion on B. lanceolata and the efficacy of an insec- insects that consume reproductive tissue destroy ticide to limit damage to B. lanceolata seed much of a plant’s reproductive output (Breedlove & production. Insecticides could provide managers Ehrlich 1968; Janzen 1971; Evans et al. 1989). In with an additional tool to use in efforts to increase particular, the predation of seeds serves as a major local populations. selective force affecting plant abundance, distribu- The study was conducted during the spring tion, and evolution (Harper et al. 1970; Moore and summer of 2003 at the Savannah River Site 1978; Duggan 1985). Seed predation (destruction (SRS) near Aiken, South Carolina. The SRS is prior to dispersal) often accounts for a large por- owned and operated by the Department of Energy tion of a plant population’s mortality (Janzen 1969; (DOE), and the land is managed as a National Louda 1978; Norambuena & Piper 2000). Environmental Research Park. Baptisia lan- Lance-leaf wild indigo, Baptisia lanceolata ceolata is only found at a few scattered localities (Walter) Elliott (Fabaceae), is a member of a large in the southwestern corner of the SRS where it is group of plants containing several alkaloids mainly associated with pine forests (Knox & (Cranmer & Turner 1967) that deter some herbi- Sharitz 1990). -
Declared Plant
DECLARED PLANT White weeping brooms Retama monosperma , R etama raetam January 2015 White weeping brooms are introduced ornamental shrubs growing to 4 m high, with leafless weeping branches and small white flowers. They are declared under the Natural Resources Management Act 2004; sale is prohibited and land owners may be required to control infestations in the Alinytjara Wilurara, Eyre Peninsula, SA Murray Darling Basin and South East NRM regions. Family: Fabaceae Synonyms: Genista raetam, Lygos raetam, Spartium monospermum, Genista monosperma, Lygos monosperma. Origin: Northern Africa and western Sahara, Sicily and the Middle East. The most drought-tolerant of the exotic brooms in Australia. WHY ARE THEY A PROBLEM? After being widely planted for ornament, white weeping brooms have escaped to become woody weeds of native vegetation and unimproved pasture. invade heath, scrub and woodland in coastal sandy habitats. form a shrub layer that outcompetes and shades out indigenous species. may infest grazing land, decreasing carrying capacity and land value. are unpalatable (bitter tasting) so animals avoid grazing on them, leaving them free to spread. DESCRIPTION Habit: shrub 2 to 4 m high and up to 6 m wide, with leafless, weeping branches. Leaves: very small leaves (approx.. 5 mm x 1mm) which drop, leaving blue-green, leafless stems for most of the year. Stems: short trunk branching from base, with weeping branches. Roots: shallow roots and very strong, deep tap root. Flowers: small, white, pea flowers, 8-10 mm on racemes of 3-15 flowers. Flowering time: July-October. Seed: 1-2 kidney-shaped seeds are contained in small pods. -
Monographs of Invasive Plants in Europe: Carpobrotus Josefina G
Monographs of invasive plants in Europe: Carpobrotus Josefina G. Campoy, Alicia T. R. Acosta, Laurence Affre, R Barreiro, Giuseppe Brundu, Elise Buisson, L Gonzalez, Margarita Lema, Ana Novoa, R Retuerto, et al. To cite this version: Josefina G. Campoy, Alicia T. R. Acosta, Laurence Affre, R Barreiro, Giuseppe Brundu, etal.. Monographs of invasive plants in Europe: Carpobrotus. Botany Letters, Taylor & Francis, 2018, 165 (3-4), pp.440-475. 10.1080/23818107.2018.1487884. hal-01927850 HAL Id: hal-01927850 https://hal.archives-ouvertes.fr/hal-01927850 Submitted on 11 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ARTICLE Monographs of invasive plants in Europe: Carpobrotus Josefina G. Campoy a, Alicia T. R. Acostab, Laurence Affrec, Rodolfo Barreirod, Giuseppe Brundue, Elise Buissonf, Luís Gonzálezg, Margarita Lemaa, Ana Novoah,i,j, Rubén Retuerto a, Sergio R. Roiload and Jaime Fagúndez d aDepartment of Functional Biology, Area of Ecology, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; bDipartimento -
Cytisus Scoparius (L.) J.H.F
Cytisus scoparius (L.) J.H.F. Link Scotch Broom (Genista andreana, Genista scoparia, Sarothamnus scoparius, Sarothamnus vulgaris, Spartium scoparium) Other Common Names: Broomtops, Common Broom, European Broom, Irish Broom, Scottish Broom. Family: Fabaceae (Leguminosae); sometimes placed in Papilionaceae . Cold Hardiness: USDA zones 6 (5) to 7 (8). Foliage: Alternate, semi-evergreen to deciduous, trifoliate (mostly) to simple (tips of some twigs) leaves are small, ¼O to eO long, medium to dark green in color, but covered in open whitish pubescence, lending a frosted appearance to the margins; no significant fall color develops. Flower: Flowering occurs in spring from buds on old wood with one or two bright yellow :O to 1O diameter indi- vidual flowers; the back petal is the largest and is bilobed; this petal may be yellow (most common color), pink, orangish red, to red outside; flowers are numerous and very showy in bloom. Fruit: Small seeds are borne in 1½O to 2O long pea pod-like explosively dehiscent fuzzy capsules; pods mature from green to tan-brown at maturity, but are not ornamentally effective. Stem / Bark: Stems — young stems are thin, stiff and held erect in a wisp-broom fashion; young and intermediate stems are square in cross-section; new growth is covered in a sparse white pubescence which is slowly lost as the twigs mature; the bark is initially bright green, becoming mottled white and brown as twigs age; Buds — 1 1 nearly foliose with poorly formed bud scales, the tiny /32O to /16O long roundish green buds are tightly ap- pressed to the stems; Bark — bark changes as stems age from green on new twigs, mottled green and brown on older twigs, to striated green and brown on young limbs, to smooth greenish gray to brownish gray on older trunks.