SATELITES ARTIFICIALES. Capítulo 5º Subcap. 12 <> PROGRAMAS DE

Total Page:16

File Type:pdf, Size:1020Kb

SATELITES ARTIFICIALES. Capítulo 5º Subcap. 12 <> PROGRAMAS DE SATELITES ARTIFICIALES. Capítulo 5º Subcap. 12 <> PROGRAMAS DE SATÉLITES POR PAÍSES Y ENTIDADES. (Parte 2 de 3) > USA 2º país en lanzar y disponer un satélite propio. 1958. .SATÉLITE Fecha de País Tipo Características del satélite: lanzamiento VANGUARD 1957-1959 USA EXP Segundo programa americano de satélites artificiales, que pretendió ser el primero infructuosamente y ser la aportación americana al AGI. Registró numerosos fracasos en su lanzador, el cohete del mismo nombre Vanguard. El proyecto nace el 1 de agosto de 1955 cuando se eligió al citado cohete para lanzar el primer satélite americano y comenzó efectivamente el 9 de septiembre siguiente con su definición. El organismo encargado fue el NRL y la base de disparo Cabo Cañaveral. El 7 de octubre de 1955 se contrata a la empresa Martín Co. El 11 de abril de 1957 se probaba la carga útil con un cohete sonda dentro del Año Geofísico Internacional y llega a los 200 Km de altura; tal carga llevaba instrumental para tomar datos sobre temperatura, rayos cósmicos, presión y polvo y micrometeoritos. El 1 de mayo de 1957 se hizo un lanzamiento suborbital Vanguard TV-1 que llega a una altura de 194 Km. El 23 de octubre de 1957 se hizo otra prueba suborbital, TV-2, desde la rampa 18ª de Cabo Cañaveral, siendo la carga útil simulada de 1,8 Tm; se alcanza una altura de 174 Km y una velocidad de 6.800 Km/h. VANGUARD-1A 06.12.1957 USA EXP Prueba TV-3. Satélite también llamado Pamplemouse. Primer lanzamiento Vanguard, primer intento USA de lanzar un satélite. El cohete parte en Cabo Cañaveral a las 16 h 45 min GMT pero explota a los 2 seg tras elevarse un metro en la misma rampa. Llevaba una carga útil de 1,8 Kg y 18 cm de diámetro. El primer intento, el día 4 anterior, hubo de ser suspendido. Tras el estallido del cohete, el satélite, caído en tierra, comenzó a funcionar transmitiendo... VANGUARD-1B 05.02.1958 USA EXP Prueba TV-3BU. Segundo lanzamiento Vanguard del NRL. Disparo a las 07 h 33 min GMT en el LC-18A de Cabo Cañaveral. A los 57 seg de vuelo y a 6 Km de altura el cohete tuerce su ruta al fallar su sistema de control, por llevar un defecto en los circuitos, se rompe en dos partes y explota. Llevaba una carga útil de 1,8 Kg. VANGUARD-1 17.03.1958 USA EXP Prueba TV-4. También llamado PLAMPLEMOUSE. Satélite del programa Vanguard lanzado a las 12 h 15 min 41 seg GMT en la rampa 18A de Cabo Cañaveral con un cohete Vanguard. Construido en aluminio, en forma de esfera, pesaba 1,47 Kg y medía 16,8 cm de diámetro. Llevaba células solares en 6 paneles, las primeras en un satélite, dos emisoras de radio, termómetros, baterías de mercurio un magnetómetro, un contador Geiger y un detector de micrometeoritos. Fue enviado a una órbita de 654 Km de perigeo, 3.868 Km de apogeo, período de 2 h 13,2 min y una inclinación de 34,25º respecto al Ecuador; la velocidad final de inserción orbital fue de 7,89 Km/seg. Descubrió la ligera forma de pera de la Tierra y alteraciones en la gravedad terrestre. Funcionó hasta mayo de 1964 pero su vida orbital será de unos 200 años, pese a que se dio la cifra de 1.000 años. Número COSPAR 1958-Beta-2. VANGUARD-2A 28.04.1958 USA EXP Satélite del programa Vanguard lanzado a las 02 h 53 min GMT en la rampa LC18A de Cabo Cañaveral con un cohete Vanguard TV-5. Construido en magnesio, pesaba casi 9 Kg y tenía, en forma esférica, 50 cm de diámetro. Falló la ignición de la tercera etapa y tras alcanzar 576 Km de altura y describir una trayectoria de 2.400 Km, cayó en el Atlántico, a 800 Km de Puerto Rico. VANGUARD-2B 27.05.1958 USA EXP También llamado Vanguard Lyman Alpha Satellite. Satélite del NRL del programa Vanguard lanzado a las 03 h 46 min 20 seg GMT en la rampa 18 A de Cabo Cañaveral con un cohete Vanguard SLV-1. Pesaba 9 Kg y tenía forma de esfera de 50 cm de diámetro. Fracasó por perder el control la tercera etapa. Cae sobre la atmósfera a 12.000 Km del lugar de partida. VANGUARD-2C 26.06.1958 USA EXP Satélite lanzado a las 5 h 00 min 52 seg GMT en el complejo 18A de Cabo Cañaveral con un cohete Vanguard SLV-2. Falla la segunda fase al apagarse prematuramente, tras funcionar solo 8 seg. Llevaba una carga útil de 9 Kg de las mismas características que la anterior. VANGUARD-2D 26.09.1958 USA EXP También llamado Cloud Cover Satellite. Satélite destinado a seguir el movimiento de las masas nubosas, lanzado a las 15 h 38 min GMT en la rampa 18A de Cabo Cañaveral. Fracasó el disparo del Vanguard SLV-3. Se alcanzan los 424 Km de altura y tras cubrir casi 15.000 Km en vuelo, sobre Centro-África, vuelve a reentrar sin satelizarse por falta de potencia de la segunda fase por causa desconocida. Llevaba una carga útil de 9,5 Kg y medía 51 cm de diámetro. VANGUARD-2 17.02.1959 USA EXP También llamado Cloud Cover Satellite. Satélite del programa Vanguard disparado a las 15 h 55 min GMT en la rampa 18A de Cabo Cañaveral con un cohete Vanguard (SLV-4). En el lanzamiento, la tercera fase y el satélite chocan y este último sigue su camino con un movimiento irregular lo que ocasionaría problemas en su actividad de observación. El satélite entra en órbita de 3.142 Km de apogeo y 558 Km de perigeo, con 2 h 3,8 min de período y 32,88º de inclinación. El mismo tiene forma casi esférica de 50,8 cm por 66 cm de diámetro, en magnesio, y pesa 9,8 Kg. Porta 2 fotocélulas para imágenes y una grabadora, además del aparato de radio para emitir y recibir. Aunque obtiene imágenes no resultan muy buenas. El 7 de marzo siguiente, 18 días después de su partida, agotadas las baterías de mercurio que llevaba, cesa de emitir. Su vida orbital es de unos 2 siglos. Su número COSPAR es 1959 Alfa 1. VANGUARD-3A 14.04.1959 USA EXP Satélite de estudios magnetosféricos, de forma esférica de 33 cm de diámetro, construido en fibra de vidrio, y acompañado del Vanguard 3B, un globo inflable en órbita de 76 cm de diámetro y construido en Mylar recubierto de aluminio. La carga útil pesa en total 10,3 Kg. Lanzado en la rampa 18A de Cabo Cañaveral a las 02 h 49 min 46 seg GMT, falla la fase segunda del cohete SLV-5 en la separación de la primera fase, y tiene que ser destruido. VANGUARD-3B 22.06.1959 USA EXP También llamado Vanguard Radiation Balance Satellite. El satélite que tenía por misión el estudio de las radiaciones y la atmósfera. Fracaso de lanzamiento Vanguard (SLV-6) en Cabo Cañaveral por un fallo de presión en el bombeo de propulsante en la segunda fase. Llevaba una carga útil de 10,8 Kg, era esférico de 50 cm de diámetro y estaba construido con una aleación de magnesio. El disparo tiene lugar a las 20 h 16 min 09 seg GMT y la caída del cohete tiene lugar sobre el Atlántico. VANGUARD-3 18.09.1959 USA EXP Prueba TV4BU. Satélite desarrollado por el Laboratorio Naval y encargado por el GSFC de la NASA. Pesaba 22,68 Kg y medía, en forma esférica, construido en magnesio, 50,8 cm de diámetro con un mástil de 66 cm; la altura total era de 1,17 m. Fue lanzado por un cohete Vanguard a las 5 h 20 min 07 seg GMT en la rampa 18A de Cabo Cañaveral. Llevaba un magnetómetro y sensores de rayos equis, así como de micrometeoritos. Estuvo en una órbita de 506 por 3.823 Km, período 2 h 10 min e inclinación 33,35º. Dejó de transmitir el 11 de diciembre, a los 84 días de funcionamiento, si bien sus baterías de plata-zinc se habían calculado para unos días más. Informó sobre impactos micrometeoríticos (detectó en un tiempo determinado 1.900 impactos por hora) y densidad del flujo de rayos equis del Sol, así como un mapa de los cinturones de Van Allen. Su vida orbital se calculó en más de 50 años. Su número COSPAR es 1959 Eta-1. EXPLORER 1958-1975 USA CIE Primer programa americano de satélites. Los Explorer fueron una serie de ingenios lanzados inicialmente con el Júpiter C de von Braun, perteneciente al Ejército. Tenían entonces un peso de unos 14 Kg y sus aparatos científicos fueron diseñados por William Pickering y James van Allen. El proyecto data de junio de 1954 cuando se quería lanzar los ingenios con el cohete Redstone del Ejército y sufrió un retraso al dar preferencia ante su primer disparo al proyecto Vanguard, que luego sin embargo fue un fracaso. Fueron dedicados a diversos propósitos, militares y de estudios magnetosféricos, atmosféricos (AE y ADE), de micrometeoritos (S-55), de la radiación en el espacio (IMP) y con fines astronómicos (lunares y solares), como los GEOS de la NASA. También se utilizaron 3 (los 42, 48 y 53) del programa SAS de ITALIA con lanzamientos en la base keniata de San Marco, donde también se lanzaron otros en cooperación entre americanos e italianos. Los 5 primeros los lanzó el Ejército y el resto la NASA.
Recommended publications
  • AAS Worldwide Telescope: Seamless, Cross-Platform Data Visualization Engine for Astronomy Research, Education, and Democratizing Data
    AAS WorldWide Telescope: Seamless, Cross-Platform Data Visualization Engine for Astronomy Research, Education, and Democratizing Data The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Rosenfield, Philip, Jonathan Fay, Ronald K Gilchrist, Chenzhou Cui, A. David Weigel, Thomas Robitaille, Oderah Justin Otor, and Alyssa Goodman. 2018. AAS WorldWide Telescope: Seamless, Cross-Platform Data Visualization Engine for Astronomy Research, Education, and Democratizing Data. The Astrophysical Journal: Supplement Series 236, no. 1. Published Version https://iopscience-iop-org.ezp-prod1.hul.harvard.edu/ article/10.3847/1538-4365/aab776 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41504669 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP Draft version January 30, 2018 Typeset using LATEX twocolumn style in AASTeX62 AAS WorldWide Telescope: Seamless, Cross-Platform Data Visualization Engine for Astronomy Research, Education, and Democratizing Data Philip Rosenfield,1 Jonathan Fay,1 Ronald K Gilchrist,1 Chenzhou Cui,2 A. David Weigel,3 Thomas Robitaille,4 Oderah Justin Otor,1 and Alyssa Goodman5 1American Astronomical Society 1667 K St NW Suite 800 Washington, DC 20006, USA 2National Astronomical Observatories, Chinese Academy of Sciences 20A Datun Road, Chaoyang District Beijing, 100012, China 3Christenberry Planetarium, Samford University 800 Lakeshore Drive Birmingham, AL 35229, USA 4Aperio Software Ltd. Headingley Enterprise and Arts Centre, Bennett Road Leeds, LS6 3HN, United Kingdom 5Harvard Smithsonian Center for Astrophysics 60 Garden St.
    [Show full text]
  • Information Summaries
    TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical
    [Show full text]
  • USA Space Debris Environment, Operations, and Research Updates
    National Aeronautics and Space Administration USA Space Debris Environment, Operations, and Research Updates J.-C. Liou, PhD Chief Scientist for Orbital Debris National Aeronautics and Space Administration U.S.A. 53 rd Session of the Scientific and Technical Subcommittee Committee on the Peaceful Uses of Outer Space, United Nations 15-26 February 2016 National Aeronautics and Space Administration Presentation Outline • Earth Satellite Population • Space Missions in 2014 • Satellite Fragmentations • Collision Avoidance Maneuvers • Satellite Reentries • 2015 IADC Meeting and MCAT 2 • National Aeronautics Nationaland Aeronautics Space Administration Number of Objects slightly in 2015. Earth increased objectsorbitin numberCatalog,toU.S. theSatellite Accordingthe 10000 12000 14000 16000 18000 2000 4000 6000 8000 Evolution of the Cataloged Satellite Population Satellite Cataloged the of Evolution 0 1957 1959 1961 1963 Rocket Bodies Mission-related Debris Spacecraft FragmentationDebris TotalObjects 1965 1967 1969 1971 1973 1975 1977 1979 Collision of Cosmos and 2251 Iridium 33 1981 1983 3 1985 1987 Destruction of Fengyun-1C 1989 1991 1993 1995 1997 1999 of 10 cm and larger andcm larger 10 of 2001 2003 2005 2007 2009 2011 2013 2015 • National Aeronautics Nationaland Aeronautics Space Administration 7000 metric metric in2015. tons7000 toorbit in Earth incre continued mass Thematerial Mass in Near-Earth Space Continued to Increase to Continued Space Near-Earth in Mass Mass in Orbit (millions of kg) 0 1 2 3 4 5 6 7 8 1957 1959 1961 1963 1965 Mission-related Debris FragmentationDebris Rocket Bodies Spacecraft TotalObjects 1967 1969 1971 1973 1975 1977 1979 1981 1983 4 1985 1987 1989 1991 1993 1995 1997 1999 and exceeded ase 2001 2003 2005 2007 2009 2011 2013 2015 National Aeronautics and Space Administration World-Wide Space Activity in 2015 • A total of 83 space launches placed more than 200 spacecraft into Earth orbits during 2015, following the trend of increase over the past decade.
    [Show full text]
  • Novell® Platespin® Recon 3.7.4 User Guide 5.6.4 Printing and Exporting Reports
    www.novell.com/documentation User Guide Novell® PlateSpin® Recon 3.7.4 September 2012 Legal Notices Novell, Inc., makes no representations or warranties with respect to the contents or use of this documentation, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc., reserves the right to revise this publication and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes. Further, Novell, Inc., makes no representations or warranties with respect to any software, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. Further, Novell, Inc., reserves the right to make changes to any and all parts of Novell software, at any time, without any obligation to notify any person or entity of such changes. Any products or technical information provided under this Agreement may be subject to U.S. export controls and the trade laws of other countries. You agree to comply with all export control regulations and to obtain any required licenses or classification to export, re-export or import deliverables. You agree not to export or re-export to entities on the current U.S. export exclusion lists or to any embargoed or terrorist countries as specified in the U.S. export laws. You agree to not use deliverables for prohibited nuclear, missile, or chemical biological weaponry end uses. See the Novell International Trade Services Web page (http://www.novell.com/info/exports/) for more information on exporting Novell software.
    [Show full text]
  • A New Polarimeter to Study the Curl Component of the Cosmic Microwave Background Polarization
    UNIVERSITA` DEGLI STUDI DI ROMA \LA SAPIENZA" Facolt`adi Scienze Matematiche Fisiche e Naturali A new polarimeter to study the curl component of the Cosmic Microwave Background polarization Tesi di Laurea Specialistica in Astronomia ed Astro¯sica Anno Accademico 2005/2006 Author Supervisor Lorenzo Moncelsi Prof. Paolo de Bernardis Register: 1071681 Co-supervisor Dott. Federico Nati Contents Introduzione 6 Introduction 10 1 The Hot Big Bang Model and the Inflation add-on 11 1.1 Introduction . 11 1.2 The Standard Cosmological Model . 11 1.3 The Unsolved Problems . 17 1.3.1 The flatness problem . 17 1.3.2 The horizons problem . 18 1.3.3 The absence of magnetic monopoles . 19 1.4 The Solution: Inflation . 20 1.5 The Physics of Inflation . 22 1.5.1 Scalar Fields . 22 1.5.2 Slow-Roll Approximation . 25 1.5.3 Exact Solutions . 26 1.5.4 Hamilton-Jacobi Formulation . 28 1.5.5 Reheating . 29 1.5.6 Scalar Fluctuations . 30 1.5.7 Tensor Fluctuations . 34 2 The Cosmic Microwave Background 37 2.1 Introduction . 37 2.2 Earth's Absolute Motion: The Dipole Anisotropy . 39 2.3 The Last Scattering Surface . 42 2.4 The Temperature Power Spectrum . 44 2.4.1 Physical E®ects at Recombination . 44 2.4.2 Statistical Treatment . 47 2.4.3 The Shape of the Spectrum . 49 2.5 Polarization . 54 2.5.1 Thomson Scattering at Recombination . 54 2.5.2 Statistical Treatment . 56 2.5.3 Quadrupole Anisotropy From Scalar Perturbations . 65 I 2.5.4 Quadrupole Anisotropy From Tensor Perturbations .
    [Show full text]
  • Spacecraft Solar Cell Arrays
    NASA NASA SP-8074 SPACE VEHICLE DESIGN CRITERIA (GUIDANCE AND CONTROL) SPACECRAFT SOLAR CELL ARRAYS MAY 1971 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION c GUIDE TO THE USE OF THIS MONOGRAPH The purpose of this monograph is to organize and present, for effective use in design, the signifi- cant experience and knowledge accumulated in operational programs to date. It reviews and assesses current state-of-the-art design practices, and from them establishes firm guidance for achieving greater consistency in design, increased reliability in the end product, and greater efficiency in the design effort for conventional missions. The monograph is organized into three major sections that are preceded by a brief introduction and complemented by a set of references. The State of the Art, Section 2, reviews and discusses the total design problem, and identifies which1 design elements are involved in successful design. It describes succinctly the current tech- nology pertaining to these elements. When detailed information is required, the best available references are cited. This section serves as a survey of the subject that provides background material and prepares a proper technological base for the Design Criteria and Recommended Practices. The Design Criteria, shown in Section 3, state clearly and briefly what rule, guide, limitation, or standard must be considered for each essential design element to ensure successful design. The Design Criteria can serve effectively as a checklist of rules for the project manager to use in guiding a design or in assessing its adequacy. The Recommended Practices, as shown in Section 4, state how to satisfy each of the criteria.
    [Show full text]
  • California State University, Northridge Low Earth Orbit
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE LOW EARTH ORBIT BUSINESS CENTER A Project submitted in partial satisfaction of the requirements for the degree of Master of Science in Engineering by Dallas Gene Bienhoff May 1985 The Proj'ectof Dallas Gene Bienhoff is approved: Dr. B. J. Bluth Professor T1mothy Wm. Fox - Chair California State University, Northridge ii iii ACKNOWLEDGEHENTS I wish to express my gratitude to those who have helped me over the years to complete this thesis by providing encouragement, prodding and understanding: my advisor, Tim Fox, Chair of Mechanical and Chemical Engineering; Dr. B. J. Bluth for her excellent comments on human factors; Dr. B. J. Campbell for improving the clarity; Richard Swaim, design engineer at Rocketdyne Division of Rockwell International for providing excellent engineering drawings of LEOBC; Mike Morrow, of the Advanced Engineering Department at Rockwell International who provided the Low Earth Orbit Business Center panel figures; Bob Bovill, a commercial artist, who did all the artistic drawings because of his interest in space commercialization; Linda Martin for her word processing skills; my wife, Yolanda, for egging me on without nagging; and finally Erik and Danielle for putting up with the excuse, "I have to v10rk on my paper," for too many years. iv 0 ' PREFACE The Low Earth Orbit Business Center (LEOBC) was initially conceived as a modular structure to be launched aboard the Space Shuttle, it evolved to its present configuration as a result of research, discussions and the desire to increase the efficiency of space utilization. Although the idea of placing space stations into Earth orbit is not new, as is discussed in the first chapter, and the configuration offers nothing new, LEOBC is unique in its application.
    [Show full text]
  • Future of Space Astronomy: a Global Road Map for the Next Decades
    Available online at www.sciencedirect.com Advances in Space Research 50 (2012) 1–55 www.elsevier.com/locate/asr Review Future of Space Astronomy: A global Road Map for the next decades Pietro Ubertini a,⇑, Neil Gehrels b, Ian Corbett c, Paolo de Bernardis d, Marcos Machado e, Matt Griffin f, Michael Hauser g, Ravinder K. Manchanda h, Nobuyuki Kawai i, Shuang-Nan Zhang j, Mikhail Pavlinsky k a Institute for Space Astrophysics and Planetology, INAF, Via del Fosso del Cavaliere 100, 00133 Rome, Italy b Astroparticle Physics Laboratory, NASA-GSFC, Greenbelt, MD 20771, USA c IAU–UAI Secretariat, F75014 Paris, France d Department of Physics, Sapienza University of Rome, P.le A. Moro 2, 00185 Rome, Italy e Comisio´n Nacional de Actividades Espaciales, 1063 Buenos Aires, Argentina f School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK g Space Telescope Science Institute, Baltimore, MD 21218, USA h Tata Institute of Fundamental Research, 400005 Mumbai, India i Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan j Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China k Russian Academy of Science, 117997 Moscow, Russia Received 15 July 2011; received in revised form 4 March 2012; accepted 5 March 2012 Available online 23 March 2012 Abstract The use of space techniques continues to play a key role in the advance of astrophysics by providing access to the entire electromag- netic spectrum from radio to high energy c rays. The increasing size, complexity and cost of large space observatories places a growing emphasis on international collaboration.
    [Show full text]
  • Signature Redacted Signature of Author: History, Anthropology, and Science, Technology Affd Society August 19, 2014
    Project Apollo, Cold War Diplomacy and the American Framing of Global Interdependence by MASSACHUSETTS 5NS E. OF TECHNOLOGY OCT 0 6 201 Teasel Muir-Harmony LIBRARIES Bachelor of Arts St. John's College, 2004 Master of Arts University of Notre Dame, 2009 Submitted to the Program in Science, Technology, and Society In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in History, Anthropology, and Science, Technology and Society at the Massachusetts Institute of Technology September 2014 D 2014 Teasel Muir-Harmony. All Rights Reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature redacted Signature of Author: History, Anthropology, and Science, Technology affd Society August 19, 2014 Certified by: Signature redacted David A. Mindell Frances and David Dibner Professor of the History of Engineering and Manufacturing Professor of Aeronautics and Astronautics Committee Chair redacted Certified by: Signature David Kaiser C01?shausen Professor of the History of Science Director, Program in Science, Technology, and Society Senior Lecturer, Department of Physics Committee Member Signature redacted Certified by: Rosalind Williams Bern Dibner Professor of the History of Technology Committee Member Accepted by: Signature redacted Heather Paxson William R. Kenan, Jr. Professor, Anthropology Director of Graduate Studies, History, Anthropology, and STS Signature
    [Show full text]
  • The Rae Table of Earth Satellites 1957-1986 the Rae Table Ofearth Satellites
    THE RAE TABLE OF EARTH SATELLITES 1957-1986 THE RAE TABLE OFEARTH SATELLITES 1957-1986 compiled at The Royal Aircraft Establishment, Famborough, Hants, England by D.G. King-Dele, FRS, D.M.C. Walker, PhD, J.A. Pilkington, BSc, A.N. Winterbottom, H. Hiller, BSc and G.E. Perry, MBE The Table is a chronological list of the 2869 launches of satellites and space vehicles between 1957 and the end of 1986, giving the name and international designation of each satellite and its associated rocket(s), with the date of launch, lifetime (actual or estimated), mass, shape, dimensions and at least one set of orbital parameters. Other fragments associated with a launch, and space vehicles that escape from the Earth's influence, are given without details. Including fragments, more than 17000 satellites appear in the 893 pages of the tabulation, and there is a full Index. M TOCKTON S P R E S S © Crown copyright 1981, 1983, 1987 Softcover reprint of the hardcover 3rd edition 1987 978-0-333-39275-1 Published by permission of the Controller of Her Majesty's Stationery Office. All rights reserved. No part of this publication may be reproduced, or transmitted, in any form or by any means, without permission. Published in the United States and Canada by STOCKTON PRESS, 1987 15 East 26th Street, New York, N.Y. 10010 Library of Congress Cataloging-in-Publication Data The R.A.E. table of earth satellites, 1957-1986. Rev. ed. of: The RAE table of earth satellites, 1957- 1980. 2nd ed. 1981. 1. Artificial satellites- Registers.
    [Show full text]
  • Photographs Written Historical and Descriptive
    CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District.
    [Show full text]
  • Accesso Autonomo Ai Servizi Spaziali
    Centro Militare di Studi Strategici Rapporto di Ricerca 2012 – STEPI AE-SA-02 ACCESSO AUTONOMO AI SERVIZI SPAZIALI Analisi del caso italiano a partire dall’esperienza Broglio, con i lanci dal poligono di Malindi ad arrivare al sistema VEGA. Le possibili scelte strategiche del Paese in ragione delle attuali e future esigenze nazionali e tenendo conto della realtà europea e del mercato internazionale. di T. Col. GArn (E) FUSCO Ing. Alessandro data di chiusura della ricerca: Febbraio 2012 Ai mie due figli Andrea e Francesca (che ci tiene tanto…) ed a Elisabetta per la sua pazienza, nell‟impazienza di tutti giorni space_20120723-1026.docx i Author: T. Col. GArn (E) FUSCO Ing. Alessandro Edit: T..Col. (A.M.) Monaci ing. Volfango INDICE ACCESSO AUTONOMO AI SERVIZI SPAZIALI. Analisi del caso italiano a partire dall’esperienza Broglio, con i lanci dal poligono di Malindi ad arrivare al sistema VEGA. Le possibili scelte strategiche del Paese in ragione delle attuali e future esigenze nazionali e tenendo conto della realtà europea e del mercato internazionale. SOMMARIO pag. 1 PARTE A. Sezione GENERALE / ANALITICA / PROPOSITIVA Capitolo 1 - Esperienze italiane in campo spaziale pag. 4 1.1. L'Anno Geofisico Internazionale (1957-1958): la corsa al lancio del primo satellite pag. 8 1.2. Italia e l’inizio della Cooperazione Internazionale (1959-1972) pag. 12 1.3. L’Italia e l’accesso autonomo allo spazio: Il Progetto San Marco (1962-1988) pag. 26 Capitolo 2 - Nascita di VEGA: un progetto europeo con una forte impronta italiana pag. 45 2.1. Il San Marco Scout pag.
    [Show full text]