Photographs Written Historical and Descriptive
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Breaking the Pressure Barrier: a History of the Spacesuit Injection Patch
Breaking the Pressure Barrier: A History of the Spacesuit Injection Patch Shane M. McFarland1 Wyle/NASA-Johnson Space Center, Houston, TX Aaron S. Weaver2 NASA-Glenn Research Center, Columbus, OH The spacesuit assembly has a fascinating and complicated history dating back to the early 1930s. Much has been written on this history from an assembly perspective and, to a lesser extent, a component perspective. However, little has been written or preserved specifically on smaller, lesser-known aspects of pressure suit design. One example of this is the injection patch—a small 2–in.-diameter disk on the leg of the Apollo suit that facilitated a medical injection when pressurized, and the only known implementation of such a feature on a flight suit. Whereas many people are aware this feature existed, very little is known of its origin, design, and use, and the fact that the Apollo flight suit was not the only instance in which such a feature was implemented. This paper serves to tell the story of this seeming “afterthought” of a feature, as well as the design considerations heeded during the initial development of subsequent suits. Nomenclature EMU = Extravehicular Mobility Unit ETFE = ethylene tetrafluoroethylene EVA = extravehicular activity FEP = fluorinated ethylene propylene ILC = International Latex Corporation IM = intramuscular (injection) IO = intraosseal (injection) IV = intravascular (injection) LCG = liquid cooling garment NASA = National Aeronautics and Space Administration PGS = pressure garment subsystem TMG = thermal micromediorite garment UTC = urine transfer connector I. Introduction he earliest efforts in pressure suit design were driven by the need to survive high altitudes during attempts to T break speed or height flight records. -
A Quantitative Human Spacecraft Design Evaluation Model For
A QUANTITATIVE HUMAN SPACECRAFT DESIGN EVALUATION MODEL FOR ASSESSING CREW ACCOMMODATION AND UTILIZATION by CHRISTINE FANCHIANG B.S., Massachusetts Institute of Technology, 2007 M.S., University of Colorado Boulder, 2010 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Aerospace Engineering Sciences 2017 i This thesis entitled: A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization written by Christine Fanchiang has been approved for the Department of Aerospace Engineering Sciences Dr. David M. Klaus Dr. Jessica J. Marquez Dr. Nisar R. Ahmed Dr. Daniel J. Szafir Dr. Jennifer A. Mindock Dr. James A. Nabity Date: 13 March 2017 The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii Fanchiang, Christine (Ph.D., Aerospace Engineering Sciences) A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization Thesis directed by Professor David M. Klaus Crew performance, including both accommodation and utilization factors, is an integral part of every human spaceflight mission from commercial space tourism, to the demanding journey to Mars and beyond. Spacecraft were historically built by engineers and technologists trying to adapt the vehicle into cutting edge rocketry with the assumption that the astronauts could be trained and will adapt to the design. By and large, that is still the current state of the art. It is recognized, however, that poor human-machine design integration can lead to catastrophic and deadly mishaps. -
Issue 106, May 2006
37 th Lunar and Planetary Science Conference THE CONFERENCE IN REVIEW Attendance at the 37th Lunar and Planetary Science Conference (LPSC) set yet another record for this conference, with 1546 participants from 24 countries attending the meeting held at the South Shore Harbour Resort and Conference Center in League City, Texas, on March 13–17, 2006 (see inset for attendance statistics). Rearrangement of the confi guration of the meeting rooms, along with additional overfl ow seating, allowed conference organizers and staff to accommodate the marked increase in attendance, thereby being able to maintain the current meeting venue and hence the low registration fee, which enables the high number of student attendees. LPSC continues to be recognized among the international science community as the most important planetary conference in the world, and this year’s meeting substantiated the merit of that reputation. More than 1400 abstracts were submitted in consideration for presentation at the conference, and hundreds of planetary scientists and students attended both oral and poster sessions focusing on such diverse topics as the Moon, Mars, Mercury, and Venus; outer planets and satellites; meteorites; comets, asteroids, and other small bodies; Limpacts; interplanetary dust particles and presolar grains; origins of planetary systems; planetary formation and early evolution; and astrobiology. Sunday night’s registration and reception were again held at the Center for Advanced Space Studies, which houses the Lunar and Planetary Institute. Featured on Sunday night was an open house for the display of education and public outreach activities and programs. Highlights of the conference program, established by the program committee under the guidance of co-chairs Dr. -
Information Summaries
TIROS 8 12/21/63 Delta-22 TIROS-H (A-53) 17B S National Aeronautics and TIROS 9 1/22/65 Delta-28 TIROS-I (A-54) 17A S Space Administration TIROS Operational 2TIROS 10 7/1/65 Delta-32 OT-1 17B S John F. Kennedy Space Center 2ESSA 1 2/3/66 Delta-36 OT-3 (TOS) 17A S Information Summaries 2 2 ESSA 2 2/28/66 Delta-37 OT-2 (TOS) 17B S 2ESSA 3 10/2/66 2Delta-41 TOS-A 1SLC-2E S PMS 031 (KSC) OSO (Orbiting Solar Observatories) Lunar and Planetary 2ESSA 4 1/26/67 2Delta-45 TOS-B 1SLC-2E S June 1999 OSO 1 3/7/62 Delta-8 OSO-A (S-16) 17A S 2ESSA 5 4/20/67 2Delta-48 TOS-C 1SLC-2E S OSO 2 2/3/65 Delta-29 OSO-B2 (S-17) 17B S Mission Launch Launch Payload Launch 2ESSA 6 11/10/67 2Delta-54 TOS-D 1SLC-2E S OSO 8/25/65 Delta-33 OSO-C 17B U Name Date Vehicle Code Pad Results 2ESSA 7 8/16/68 2Delta-58 TOS-E 1SLC-2E S OSO 3 3/8/67 Delta-46 OSO-E1 17A S 2ESSA 8 12/15/68 2Delta-62 TOS-F 1SLC-2E S OSO 4 10/18/67 Delta-53 OSO-D 17B S PIONEER (Lunar) 2ESSA 9 2/26/69 2Delta-67 TOS-G 17B S OSO 5 1/22/69 Delta-64 OSO-F 17B S Pioneer 1 10/11/58 Thor-Able-1 –– 17A U Major NASA 2 1 OSO 6/PAC 8/9/69 Delta-72 OSO-G/PAC 17A S Pioneer 2 11/8/58 Thor-Able-2 –– 17A U IMPROVED TIROS OPERATIONAL 2 1 OSO 7/TETR 3 9/29/71 Delta-85 OSO-H/TETR-D 17A S Pioneer 3 12/6/58 Juno II AM-11 –– 5 U 3ITOS 1/OSCAR 5 1/23/70 2Delta-76 1TIROS-M/OSCAR 1SLC-2W S 2 OSO 8 6/21/75 Delta-112 OSO-1 17B S Pioneer 4 3/3/59 Juno II AM-14 –– 5 S 3NOAA 1 12/11/70 2Delta-81 ITOS-A 1SLC-2W S Launches Pioneer 11/26/59 Atlas-Able-1 –– 14 U 3ITOS 10/21/71 2Delta-86 ITOS-B 1SLC-2E U OGO (Orbiting Geophysical -
Technical History of the Environmental Control System for Project Mercury
https://ntrs.nasa.gov/search.jsp?R=19670029737 2020-03-24T01:19:15+00:00Z NASA TECHNICAL NOTE -NASA L_-TN D-4126 cp. \ LO KI TECHNICAL HISTORY OF THE ENVIRONMENTAL CONTROL SYSTEM FOR PROJECT MERCURY by Frank H, Samonski, Jr. Manned Spacecrafi Center Hozcston, Texas NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. OCTOBER 1967 ?" TECH LIBRARY KAFB, "I I llllll lllll1llll lllll Hlll IYH lllll Ill1 Ill 0330793 NASA TN D-4126 TECHNICAL HISTORY OF THE ENVIRONMENTAL CONTROL SYSTEM FOR PROJECT MERCURY By Frank H. Samonski, Jr. Manned Spacecraft Center Houston, Texas NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ~~ For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTl price $3.00 I ABSTRACT This report presents a technical history of the environmental control system for Project Mercury. Significant system changes and flight experience with the environmental control system are described. Attention is also given to the structure of test pro- grams employed to satisfy the mission objectives. ii CONTENTS Section Page SUMMARY .................................... 1 INTRODUCTION ................................. 1 ENVIRONMENTAL CONTROL SYSTEM DESCRIPTION ............ 2 Pressure-Suit Subsystem .......................... 2 Cabin Subsystem ............................... 5 SYSTEM CHANGES ............................... 7 Oxygen-Supply Filler Valve ......................... 7 Pressure- Switch Deletion .......................... 7 Oxygen Flow Sensor ............................ -
USA Space Debris Environment, Operations, and Research Updates
National Aeronautics and Space Administration USA Space Debris Environment, Operations, and Research Updates J.-C. Liou, PhD Chief Scientist for Orbital Debris National Aeronautics and Space Administration U.S.A. 53 rd Session of the Scientific and Technical Subcommittee Committee on the Peaceful Uses of Outer Space, United Nations 15-26 February 2016 National Aeronautics and Space Administration Presentation Outline • Earth Satellite Population • Space Missions in 2014 • Satellite Fragmentations • Collision Avoidance Maneuvers • Satellite Reentries • 2015 IADC Meeting and MCAT 2 • National Aeronautics Nationaland Aeronautics Space Administration Number of Objects slightly in 2015. Earth increased objectsorbitin numberCatalog,toU.S. theSatellite Accordingthe 10000 12000 14000 16000 18000 2000 4000 6000 8000 Evolution of the Cataloged Satellite Population Satellite Cataloged the of Evolution 0 1957 1959 1961 1963 Rocket Bodies Mission-related Debris Spacecraft FragmentationDebris TotalObjects 1965 1967 1969 1971 1973 1975 1977 1979 Collision of Cosmos and 2251 Iridium 33 1981 1983 3 1985 1987 Destruction of Fengyun-1C 1989 1991 1993 1995 1997 1999 of 10 cm and larger andcm larger 10 of 2001 2003 2005 2007 2009 2011 2013 2015 • National Aeronautics Nationaland Aeronautics Space Administration 7000 metric metric in2015. tons7000 toorbit in Earth incre continued mass Thematerial Mass in Near-Earth Space Continued to Increase to Continued Space Near-Earth in Mass Mass in Orbit (millions of kg) 0 1 2 3 4 5 6 7 8 1957 1959 1961 1963 1965 Mission-related Debris FragmentationDebris Rocket Bodies Spacecraft TotalObjects 1967 1969 1971 1973 1975 1977 1979 1981 1983 4 1985 1987 1989 1991 1993 1995 1997 1999 and exceeded ase 2001 2003 2005 2007 2009 2011 2013 2015 National Aeronautics and Space Administration World-Wide Space Activity in 2015 • A total of 83 space launches placed more than 200 spacecraft into Earth orbits during 2015, following the trend of increase over the past decade. -
The Turtle Club
The Turtle Club The Turtle Club was dreamed up by test pilots during WWII, the Interstellar Association of Turtles believes that you never get anywhere in life without sticking your neck out. When asked,” Are you a Turtle?” Shepard leads you must answer with the password in full no matter the Corvette how embarassing or inappropriate the timing is, or and Astronaut you forfeit a beverage of their choice. parade, Coca Beach, FL. To become a part of the time honored tradition, you must be 18 years of age or older and be approved by the Imperial Potentate or High Potentate. Memebership cards will be individually signed by Wally Schirra and Schirra rides his Sigma 7 Ed Buckbee. A limited number of memberships are Mercury available. Apply today by filling out the order form spacecraft. below or by visiting www.apogee.com and follow the prompts to be a card carrying member of the Turtle Club! A portion of the monies raised by the Turtle Club Membership Drive will be donated to the Astronaut Scholarship Foundation and Space Camp Scholarships. Turtle Club co-founder Shepard, High Potentate Buckbee and Imeperial Potentate and co-founder Schirra enjoy a gotcha! Order your copy today of The Real Space Cowboys along with your Turtle Club Membership _______________________________________________ Name _______________________________________________ Address _______________________________________________ _______________________________________________ City ___________________________ __________________ State Zip _______________________________________________ email ______________________ _____ __________________ Phone Age Birthdate You must be 18 years of age or older to become a member of the Turtle Club. __ No. of books @ $23.95 ______ Available Spring 2005 __ No. -
Intelligent Protection
CATALOGUE 8 ACCREDITATIONS AND TESTIMONIALS 2015 Testimonials “I received the trousers this morning and everything has fi nally come together! All three fi t wonderfully and are exactly what I was looking for! Th ank you for the expedited shipping and the help with the orders... I will defi nitely be ordering from you in the future and will recom- mend your company to anyone looking for a top quality product and customer service. Th anks again, Danny” “I just received my order and tried on the jacket and trousers. I want you to know that I am very thoroughly pleased and impressed with the quality of the jacket/trouser set. Th ey fi t perfectly and look very professional. You truly deliver a solid product. Th ank you very much. I will be sure to make more orders in the future and I am positive me wearing this jacket/trouser set will market itself for you in the off shore oil & gas industry here in Th ailand. Have a great day! Regards, Ryan” “To whom it may concern. I’m lucky enough to work with an organization that supplies me with Sisley Uniforms. Originally I scoff ed at the initial price of the Sisley gear, however over the years have come to appreciate the quality. I’ve spent a lifetime wearing emergency services uniforms in a few diff erent continents, and have yet to fi nd any that are harder wearing or more comfortable. Recently my two piece fl ight suit, which may I say I had been wearing for nearly four years, spent over six months being hand washed in a third-world country, and has endured the abuse very well. -
Project Mercury Fact Sheet
NASA Facts National Aeronautics and Space Administration Langley Research Center Hampton, Virginia 23681-0001 April 1996 FS-1996-04-29-LaRC ___________________________________________________________________________ Langley’s Role in Project Mercury Project Mercury Thirty-five years ago on May 5, 1961, Alan Shepard was propelled into space aboard the Mercury capsule Freedom 7. His 15-minute suborbital flight was part of Project Mercury, the United States’ first man-in-space program. The objectives of the Mer- cury program, eight unmanned flights and six manned flights from 1961 to 1963, were quite specific: To orbit a manned spacecraft around the Earth, investigate man’s ability to function in space, and to recover both man and spacecraft safely. Project Mercury included the first Earth orbital flight made by an American, John Glenn in February 1962. The five-year program was a modest first step. Shepard’s flight had been overshadowed by Russian Yuri Gagarin’s orbital mission just three weeks earlier. President Kennedy and the Congress were NASA Langley Research Center photo #59-8027 concerned that America catch up with the Soviets. Langley researchers conduct an impact study test of the Seizing the moment created by Shepard’s success, on Mercury capsule in the Back River in Hampton, Va. May 25, 1961, the President made his stirring chal- lenge to the nation –– that the United States commit Langley Research Center, established in 1917 itself to landing a man on the moon and returning as the National Advisory Committee for Aeronautics him to Earth before the end of the decade. Apollo (NACA) Langley Memorial Aeronautical Labora- was to be a massive undertaking –– the nation’s tory, was the first U.S. -
The John Glenn Story – 1963
Video Transcript for Archival Research Catalog (ARC) Identifier 45022 The John Glenn Story – 1963 President Kennedy: There are milestones in human progress that mark recorded history. From my judgment, this nation’s orbital pioneering in space is of such historic stature, representing as it does, a vast advancement that will profoundly influence the progress of all mankind. It signals also a call for alertness to our national opportunities and responsibilities. It requires physical and moral stamina to equal the stresses of these times and a willingness to meet the dangers and the challenges of the future. John Glenn throughout his life has eloquently portrayed these great qualities and is an inspiration to all Americans. This film, in paying tribute to John Glenn, also pays tribute to the best in American life. [Introductory Music] Narrator: New Concord, Ohio wasn’t on many maps until February 20, 1962. It came to fame in a single day with an American adventure that history will call the John Glenn Story. Fashioned in the American image, this pleasant little city typifies a nation’s ideal way of life. A man might make a good life here in the circle of family and friends. And a boy might let his imagination soar. [Music] He might explore the wonders of the wide world all about him, life’s simple mysteries. With bright discovery daily opening doors to knowledge, he can look away to distant places, to exciting adventures, hidden only by the horizon and the future. Like this boy, like boys everywhere, young John Glenn dreamed of the future as he looked to far away new frontiers – why he might even learn to fly. -
Accesso Autonomo Ai Servizi Spaziali
Centro Militare di Studi Strategici Rapporto di Ricerca 2012 – STEPI AE-SA-02 ACCESSO AUTONOMO AI SERVIZI SPAZIALI Analisi del caso italiano a partire dall’esperienza Broglio, con i lanci dal poligono di Malindi ad arrivare al sistema VEGA. Le possibili scelte strategiche del Paese in ragione delle attuali e future esigenze nazionali e tenendo conto della realtà europea e del mercato internazionale. di T. Col. GArn (E) FUSCO Ing. Alessandro data di chiusura della ricerca: Febbraio 2012 Ai mie due figli Andrea e Francesca (che ci tiene tanto…) ed a Elisabetta per la sua pazienza, nell‟impazienza di tutti giorni space_20120723-1026.docx i Author: T. Col. GArn (E) FUSCO Ing. Alessandro Edit: T..Col. (A.M.) Monaci ing. Volfango INDICE ACCESSO AUTONOMO AI SERVIZI SPAZIALI. Analisi del caso italiano a partire dall’esperienza Broglio, con i lanci dal poligono di Malindi ad arrivare al sistema VEGA. Le possibili scelte strategiche del Paese in ragione delle attuali e future esigenze nazionali e tenendo conto della realtà europea e del mercato internazionale. SOMMARIO pag. 1 PARTE A. Sezione GENERALE / ANALITICA / PROPOSITIVA Capitolo 1 - Esperienze italiane in campo spaziale pag. 4 1.1. L'Anno Geofisico Internazionale (1957-1958): la corsa al lancio del primo satellite pag. 8 1.2. Italia e l’inizio della Cooperazione Internazionale (1959-1972) pag. 12 1.3. L’Italia e l’accesso autonomo allo spazio: Il Progetto San Marco (1962-1988) pag. 26 Capitolo 2 - Nascita di VEGA: un progetto europeo con una forte impronta italiana pag. 45 2.1. Il San Marco Scout pag. -
Apollo Space Suit
APOLLO SPACE S UIT 1962–1974 Frederica, Delaware A HISTORIC MECHANICAL ENGINEERING LANDMARK SEPTEMBER 20, 2013 DelMarVa Subsection Histor y of the Apollo Space Suit This model would be used on Apollo 7 through Apollo 14 including the first lunar mission of Neil Armstrong and Buzz International Latex Corporation (ILC) was founded in Aldrin on Apollo 11. Further design improvements were made to Dover, Delaware in 1937 by Abram Nathanial Spanel. Mr. Spanel improve mobility for astronauts on Apollo 15 through 17 who was an inventor who became proficient at dipping latex material needed to sit in the lunar rovers and perform more advanced to form bathing caps and other commercial products. He became mobility exercises on the lunar surface. This suit was known as famous for ladies apparel made under the brand name of Playtex the model A7LB. A slightly modified ILC Apollo suit would also go that today is known worldwide. Throughout WWII, Spanel drove on to support the Skylab program and finally the American-Soyuz the development and manufacture of military rubberized products Test Program (ASTP) which concluded in 1975. During the entire to help our troops. In 1947, Spanel used the small group known time the Apollo suit was produced, manufacturing was performed as the Metals Division to develop military products including at both the ILC plant on Pear Street in Dover, Delaware, as well as several popular pressure helmets for the U.S. Air Force. the ILC facility in Frederica, Delaware. In 1975, the Dover facility Based upon the success of the pressure helmets, the Metals was closed and all operations were moved to the Frederica plant.