Intracellular Scaling Mechanisms

Total Page:16

File Type:pdf, Size:1020Kb

Intracellular Scaling Mechanisms Downloaded from http://cshperspectives.cshlp.org/ on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Intracellular Scaling Mechanisms Simone Reber1,2 and Nathan W. Goehring3,4 1Max Planck Institute of Molecular Genetics and Cell Biology, 01307 Dresden, Germany 2Integrative Research Institute (IRI) for the Life Sciences, Humboldt-Universita¨t zu Berlin, 10115 Berlin, Germany 3The Francis Crick Institute, WC2A 3LY London, United Kingdom 4MRC Laboratory of Molecular Cell Biology, University College London, WC1E 6BT London, United Kingdom Correspondence: [email protected]; [email protected] Organelle function is often directly related to organelle size. However, it is not necessarily absolute size but the organelle-to-cell-size ratio that is critical. Larger cells generally have increased metabolic demands, must segregate DNA over larger distances, and require larger cytokinetic rings to divide. Thus, organelles often must scale to the size of the cell. The need for scaling is particularly acute during early development during which cell size can change rapidly. Here, we highlight scaling mechanisms for cellular structures as diverse as centro- somes, nuclei, and the mitotic spindle, and distinguish them from more general mechanisms of size control. In some cases, scaling is a consequence of the underlying mechanism of organelle size control. In others, size-control mechanisms are not obviously related to cell size, implying that scaling results indirectly from cell-size-dependent regulation of size- control mechanisms. cell is a highly organized unit in which We also know that cell size can vary dra- Afunctions are compartmentalized into spe- matically even within one organism. Xenopus cific organelles. Each cellular organelle carries laevis is an extreme example. The smallest so- out a distinct function, which is not only related matic cells are only a few micrometers in diam- to its molecular composition but, in many cas- eter, whereas the oocyte and one-cell embryo es, also to its size. The energetic capacity of span over a millimeter. In addition, in many the mitochondria and the biosynthetic capacity animals, including X. laevis, early cell divisions of endoplasmic reticulum (ER) and Golgi net- are rapid with little cell growth, leading to rap- works depend on their surface area. The mitotic idly changing cell size that is often characteris- spindle must be large enough to span sufficient tic for early embryogenesis. Thus, this transi- distance to physically separate chromosomes tion from very large to very small cells occurs into two opposite halves of the cell. The con- on the order of hours. Cellular organelles must, tractile ring must be able to span the cell diam- therefore, possess dynamic and robust mecha- eter and generate sufficient force to drive ingres- nisms to regulate their size, or scale, with the sion. Clearly, size matters. However, in each of size of the cell. these cases, it is not absolute size, but the ratio of Strictly speaking, the term scaling describes organelle to cell size that is critical. a mathematical relationship between measured Editors: Rebecca Heald, Iswar K. Hariharan, and David B. Wake Additional Perspectives on Size Control in Biology: From Organelles to Organisms available at www.cshperspectives.org Copyright # 2015 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a019067 Cite this article as Cold Spring Harb Perspect Biol 2015;7:a019067 1 Downloaded from http://cshperspectives.cshlp.org/ on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press S. Reber and N.W. Goehring quantities of a system, for example, length, vol- with a fixed length and shape, thereby templat- ume, or area. Scaling relations typically take ing the size of the target organelle (Fig. 1A). An the form of a power law y ¼ xa, with a being example is the product of gene H in the bacter- the scaling exponent of the law. For example, the iophage l, which sets phage tail length (Fig. circumference of a sphere scales with its radius, 1B). Here, tail length is proportional to gene its surface with radius squared, and its volume H protein length, with smaller gene H protein with radius cubed. products resulting in correspondingly shorter- In cell biology, the term “scaling” is often tailed phage particles (Katsura 1987). YscP plays used more loosely to describe the change in a similar role in regulating the length of the organelle size or functional capacity in response injectisome needle used by pathogenic bacteria to changes in cell size. Simply speaking, larger to introduce factors into host cells (Journet et al. cells typically have proportionally larger or 2003; Wagner et al. 2010). The giant protein, more organelles (see also Marshall 2015). The nebulin, may have a similar molecular ruler key parameter of organelle functional capacity function in actin filament length control in may vary depending on the organelle. Typical- myofibrils, although this remains somewhat ly, this parameter is volume, surface area, or controversial (Castillo et al. 2009; Pappas et al. length, which, for example, are important for 2010). centrosome, ER, and mitotic spindle function, Although perfectly good size-control mech- respectively. In other cases, the key parameter anisms, these simple molecular rulers have ob- could be force generation or a biochemical rate. vious limitations, most significant of which is Importantly, in many biological systems, scaling that protein size must equal organelle size. often is imperfect, obscuring the precise scaling There are few, if any, proteins that are large relation. enough to account for the majority of cellular For the purposes of this review, for a system structures, and, at least in the context of this to show scaling, there should be a clear, albeit review, it is very difficult to see how such a pro- potentially imperfect, relation between some tein ruler could allow the size of an organelle to parameter of cell size and the relevant parameter scale with cell size, or even to be adjusted by the describing organelle size or functional capacity. cell without inducing changes in protein se- Thus, we define scaling mechanisms as those quence. that directly regulate organelle size (or capacity) Other types of “molecular rulers” that are in response to changes in cell size and distin- more dynamically specified are potentially bet- guish these from size-control mechanisms, ter suited to achieve scaling. Such molecular which are the subject of reviews elsewhere in rulers could include structures, such as the pu- this collection (see also Amodeo and Skotheim tative spindle matrix (Schweizer et al. 2014) and 2015; Levy and Heald 2015; Marshall 2015; Golgi matrix (Xiang and Wang 2011), which Mitchison et al. 2015). Although scaling and have been proposed to be composed of complex size-control mechanisms are distinct, they are molecular networks. Although these structures often linked. We will highlight several cases are presumably subject to size control and, at where organelle size-control pathways either in- least in the case of the spindle matrix, also sub- herently show organelle scaling or can be mod- ject to cell-size-dependent scaling, we know lit- ified to achieve it. tle about how their size is controlled and even less about how their size is scaled appropriately to the size of the cell. INTRACELLULAR SCALING MECHANISMS Molecular gradients can also act as rulers, the clearest examples of which can be found Molecular Rulers during animal development where gradients Molecular rulers provide an intuitively simple of morphogens are established across tissues. method for size control. In its simplest form, a Cells then read out their position in the gradient molecular ruler provides a structural scaffold from local morphogen concentration. The sim- 2 Cite this article as Cold Spring Harb Perspect Biol 2015;7:a019067 Downloaded from http://cshperspectives.cshlp.org/ on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Intracellular Scaling Mechanisms A B Head Tail Tail length (No. of discs) Gene H (No. of aa) Bacteriophage λ C ) λ L length ( Wing Dpp decay Source Width (L) Drosophila imaginal wing disc D ABp P0 AB P1 ABa P2 EMS Half spindle length λ) TPX2 gradient length ( TPX2 decay C. elegans half spindle Half spindle length (L) Figure 1. Molecular rulers. (A) In its simplest form, a molecular ruler provides a structural scaffold templating the size of the target organelle. (B) Bacteriophage l tail length is set by the product of gene H. Tail length correlates with protein length (i.e., number of amino acids). (C) Decapentaplegic (Dpp) gradients scale with tissue size of imaginal discs during Drosophila development. (Adapted from data in Wartlick et al. 2011.) (D) Centrosome size sets mitotic spindle length by controlling the length scale of a TPX2 gradient along spindle microtubules (Greenan et al. 2010). Cite this article as Cold Spring Harb Perspect Biol 2015;7:a019067 3 Downloaded from http://cshperspectives.cshlp.org/ on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press S. Reber and N.W. Goehring plest examples of these gradients are formed size (Greenan et al. 2010). The centrosome itself by diffusion of morphogen away from a point scales with cell size via a limiting pool mecha- source. Diffusion of locally produced morpho- nism (discussed below), meaning that cell, cen- gen coupled to degradation or internalization trosome, and spindle size are all coupled in of the morphogen within the tissue gives rise to this system. The Ran gradient and its effectors an exponentially decaying gradient away from centered on chromatin appear to play a similar the source. In this case, the lengthpffiffiffiffiffiffi scale of the role in regulating spindle length in other sys- gradient, l, is specified by l ¼ Dt, where D tems (Kalab et al. 2002, 2006; Bird and Hyman is the diffusion coefficient and t is the mole- 2008).
Recommended publications
  • Spindle Assembly in Xenopus Egg Extracts
    Spindle Assembly in Xenopus Egg Extracts: Respective Roles of Centrosomes and Microtubule Self-Organization Rebecca Heald, Régis Tournebize, Anja Habermann, Eric Karsenti, and Anthony Hyman Cell Biology Program, European Molecular Biology Laboratory, 69117 Heidelberg, Germany Abstract. In Xenopus egg extracts, spindles assembled end–directed translocation of microtubules by cytoplas- around sperm nuclei contain a centrosome at each pole, mic dynein, which tethers centrosomes to spindle poles. while those assembled around chromatin beads do not. However, in the absence of pole formation, microtu- Poles can also form in the absence of chromatin, after bules are still sorted into an antiparallel array around addition of a microtubule stabilizing agent to extracts. mitotic chromatin. Therefore, other activities in addi- Using this system, we have asked (a) how are spindle tion to dynein must contribute to the polarized orienta- poles formed, and (b) how does the nucleation and or- tion of microtubules in spindles. When centrosomes are ganization of microtubules by centrosomes influence present, they provide dominant sites for pole forma- spindle assembly? We have found that poles are mor- tion. Thus, in Xenopus egg extracts, centrosomes are not phologically similar regardless of their origin. In all cases, necessarily required for spindle assembly but can regu- microtubule organization into poles requires minus late the organization of microtubules into a bipolar array. uring cell division, the correct organization of mi- and Lloyd, 1994). In the absence of centrosomes, bipolar crotubules in bipolar spindles is necessary to dis- spindle assembly seems to occur through the self-organiza- D tribute chromosomes to the daughter cells. The tion of microtubules around mitotic chromatin (McKim slow growing or minus ends of the microtubules are fo- and Hawley, 1995; Heald et al., 1996; Waters and Salmon, cused at each pole, while the plus ends interact with the 1997).
    [Show full text]
  • Mechanistic Mathematical Modeling of Spatiotemporal Microtubule Dynamics and Regulation in Vivo
    Research Collection Doctoral Thesis Mechanistic mathematical modeling of spatiotemporal microtubule dynamics and regulation in vivo Author(s): Widmer, Lukas A. Publication Date: 2018 Permanent Link: https://doi.org/10.3929/ethz-b-000328562 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library diss. eth no. 25588 MECHANISTICMATHEMATICAL MODELINGOFSPATIOTEMPORAL MICROTUBULEDYNAMICSAND REGULATION INVIVO A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (dr. sc. eth zurich) presented by LUKASANDREASWIDMER msc. eth cbb born on 11. 03. 1987 citizen of luzern and ruswil lu, switzerland accepted on the recommendation of Prof. Dr. Jörg Stelling, examiner Prof. Dr. Yves Barral, co-examiner Prof. Dr. François Nédélec, co-examiner Prof. Dr. Linda Petzold, co-examiner 2018 Lukas Andreas Widmer Mechanistic mathematical modeling of spatiotemporal microtubule dynamics and regulation in vivo © 2018 ACKNOWLEDGEMENTS We are all much more than the sum of our work, and there is a great many whom I would like to thank for their support and encouragement, without which this thesis would not exist. I would like to thank my supervisor, Prof. Jörg Stelling, for giving me the opportunity to conduct my PhD research in his group. Jörg, you have been a great scientific mentor, and the scientific freedom you give your students is something I enjoyed a lot – you made it possible for me to develop my own theories, and put them to the test. I thank you for the trust you put into me, giving me a challenge to rise up to, and for always having an open door, whether in times of excitement or despair.
    [Show full text]
  • Intracellular Scaling Mechanisms
    Downloaded from http://cshperspectives.cshlp.org/ on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Intracellular Scaling Mechanisms Simone Reber1,2 and Nathan W. Goehring3 1Max Planck Institute of Molecular Genetics and Cell Biology, 01307 Dresden, Germany 2Integrative Research Institute (IRI) for the Life Sciences, Humboldt-Universita¨t zu Berlin, 10115 Berlin, Germany 3MRC Laboratory of Molecular Cell Biology, University College London, WC1E 6BT London, United Kingdom Correspondence: [email protected] Organelle function is often directly related to organelle size. However, it is not necessarily absolute size but the organelle-to-cell-size ratio that is critical. Larger cells generally have increased metabolic demands, must segregate DNA over larger distances, and require larger cytokinetic rings to divide. Thus, organelles often must scale to the size of the cell. The need for scaling is particularly acute during early development during which cell size can change rapidly. Here, we highlight scaling mechanisms for cellular structures as diverse as centro- somes, nuclei, and the mitotic spindle, and distinguish them from more general mechanisms of size control. In some cases, scaling is a consequence of the underlying mechanism of organelle size control. In others, size-control mechanisms are not obviously related to cell size, implying that scaling results indirectly from cell-size-dependent regulation of size- control mechanisms. cell is a highly organized unit in which We also know that cell size can vary dra- Afunctions are compartmentalized into spe- matically even within one organism. Xenopus cific organelles. Each cellular organelle carries laevis is an extreme example. The smallest so- out a distinct function, which is not only related matic cells are only a few micrometers in diam- to its molecular composition but, in many cas- eter, whereas the oocyte and one-cell embryo es, also to its size.
    [Show full text]
  • Findings Magazine
    FindingsFALL 2017 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of General Medical Sciences features 1 Protein Paradox: Enrique De La Cruz Aims to Understand Actin 18 The Science of Size: Rebecca Heald Explores Size Control in Amphibians articles 5 A World Without Pain 6 Demystifying General Anesthetics 10 There’s an “Ome” for That —TORSTEN WITTMANN, UNIVERSITY OF CALIFORNIA, SAN FRANCISCO ON THE COVER This human skin cell was bathed 17 Lighting Up the Promise of Gene Therapy in a liquid containing a growth factor. The procedure for Glaucoma triggered the formation of specialized protein structures that enable the cell to move. We depend on our cells 24 NIGMS Is on Instagram! being able to move for basic functions such as the healing of wounds and the launch of immune responses. departments 3 Cool Tools: High-Resolution Microscopy— Editor In Living Color Chris Palmer 9 Spotlight on Videos: Scientists in Action Contributing Writers Carolyn Beans 14 S potlight on the Cell: The Extracellular Matrix, Kathryn Calkins Emily Carlson a Multitasking Marvel Alisa Zapp Machalek Chris Palmer Erin Ross Ruchi Shah activities Production Manager 22 Superstars of Science Quiz Susan Athey Online Editor The Last Word (inside back cover) Susan Athey Find Us At Image credits: Unless otherwise credited, images are royalty-free stock images. https://twitter.com/nigms https://www.facebook.com/nigms.nih.gov Produced by the Offce of Communications and Public Liaison https://www.instagram.com/nigms_nih National Institute of General Medical Sciences National Institutes of Health https://www.youtube.com/user/NIGMS U.S.
    [Show full text]
  • A Lab Co-Op Helps Young Faculty Members to Thrive
    WORLD VIEW A personal take on events A lab co-op helps young MARK JOSEPH HANSON faculty members to thrive Linking a lab with others fosters crucial camaraderie, collaboration and productivity, writes Rebecca Heald. hen I started my lab at the University of California, Berkeley, form the group. Proximity is key. I advise postdocs who want to follow two decades ago, what terrified me most was the thought that conventional paths in academia to prioritize jobs in departments that I alone was responsible for everything — from formulating are hiring lots of junior faculty members, and to avoid institutions — Wsuccessful PhD-thesis projects to picking the right freezer. Fortunately, even prestigious ones — that force assistant professors to compete with my stress was mitigated because, within a year, two new assistant profes- each other. That makes everyone in the lab miserable. sors, Matt Welch and Karsten Weis, were hired and given lab space next Matt, Karsten and I had each previously experienced collaborative to mine. Although we all focused on different areas of cell biology, we environments — Matt at the University of California, San Francisco; me shared common interests and values and quickly saw benefits in joining at the European Molecular Biology Laboratory in Heidelberg, Germany; forces. We called our joint groups the Trilab. and Karsten at both — which helped us conceive of the Trilab. We were Matt, Karsten and I saved space by sharing chemical and microscopy exceedingly fortunate to be at the same career stage at the same place and rooms, and saved money by pooling equipment. We even tore down a time.
    [Show full text]
  • Microtubules: 50 Years on from the Discovery of Tubulin
    PERSPECTIVES microtubule dynamics and organization VIEWPOINT emerge from a defined set of proteins Microtubules: 50 years on from through reconstitution experiments. Jonathon Howard. One of the big questions back when I got into the microtubule the discovery of tubulin business, around 1990, was how motor proteins such as kinesin and dynein use Gary Borisy, Rebecca Heald, Jonathon Howard, Carsten Janke, ATP hydrolysis to generate force for Andrea Musacchio and Eva Nogales transport along microtubules (such as axonal transport) or for cell motility (such as Abstract | Next year will be the 50th anniversary of the discovery of tubulin. ciliary or flagellar motion). The interaction To celebrate this discovery, six leaders in the field of microtubule research reflect of kinesin with microtubules was a model on key findings and technological breakthroughs over the past five decades, system, because it was clear that only a discuss implications for therapeutic applications and provide their thoughts on relatively small number of kinesins must what questions need to be addressed in the near future. be capable of moving small vesicles along microtubules. A related question was how microtubule growth and shrinkage could Identifying the main component of Rebecca Heald. In the mid-1990s, one generate force to move chromosomes microtubules was obviously the pressing question was why microtubules during mitosis. Polymerization and pressing task in the field around 50 years ago. in cells were so much more dynamic than depolymerization forces were very What key questions were being pursued microtubules assembled from purified mysterious: how could you hold on to the when you entered the arena of tubulin.
    [Show full text]
  • Program Book
    The Genetics Society of America Conferences 15th International Xenopus Conference August 24-28, 2014 • Pacific Grove, CA PROGRAM GUIDE LEGEND Information/Guest Check-In Disabled Parking E EV Charging Station V Beverage Vending Machine N S Ice Machine Julia Morgan Historic Building W Roadway Pedestrian Pathway Outdoor Group Activity Area Program and Abstracts Meeting Organizers Carole LaBonne, Northwestern University John Wallingford, University of Texas at Austin Organizing Committee: Julie Baker, Stanford Univ Chris Field, Harvard Medical School Carmen Domingo, San Francisco State Univ Anna Philpott, Univ of Cambridge 9650 Rockville Pike, Bethesda, Maryland 20814-3998 Telephone: (301) 634-7300 • Fax: (301) 634-7079 E-mail: [email protected] • Web site: genetics-gsa.org Thank You to the Following Companies for their Generous Support Platinum Sponsor Gold Sponsors Additional Support Provided by: Carl Zeiss Microscopy, LLC Monterey Convention & Gene Tools, LLC Visitors Bureau Leica Microsystems Xenopus Express 2 Table of Contents General Information ........................................................................................................................... 5 Schedule of Events ............................................................................................................................. 6 Exhibitors ........................................................................................................................................... 8 Opening Session and Plenary/Platform Sessions ............................................................................
    [Show full text]
  • OCTOBER 2006 ASCB NEWSLETTER 3 Life and Place Work and Parenting in Greater Will Take a Toll, There Is Also a Relatively Harmony
    ASCB OCTOBER 2006 NEWSLETTER VOLUME 29, NUMBER 10 Women in Science: A ASCB Launches Disappearing Image & Video Library Act? A New Electronic Resource Page 2 Frustrated in their search for images or videos to (IVL). As part of its mission to teach cell illustrate cell organelles and functions, many cell biology to a broad range of science students Pope Questions biology educators, researchers, around the world, the ASCB has and students have given up. The created a new educational tool Role of Science process has often been extremely that illustrates the cell in a variety Page 15 difficult, if not impossible, for of multimedia formats. The IVL’s both historical micrographs and easy-to-use digital library format cutting-edge discoveries. And offers a growing collection of Take the Time when such visual representations items, all freely accessible on the cannot be obtained from credible Internet at http://cellimages.ascb. to Smell the sources, science education org. suffers. After all, cell biology is a Farquhar MG, Palade GE. The IVL is governed by two Roses? Epithelial cells from the proxi- foundation science, a cornerstone mal tubule of rat kidney dem- boards. A Scientific Advisory Page 24 for students and researchers in all onstrating tight junction seal Board (SAB), composed of biological professions. prominent academic scientists, Now ASCB offers an antidote for frustration, works closely with Curator David Ennist and Inside and a source for peer-reviewed, high-quality Assistant Curator Cindy Boeke, to develop the visual and written
    [Show full text]
  • Engineering Spatiotemporal Organization and Dynamics in Synthetic Cells
    " " !"#$%&'()$#&'*(+,-$,''"$,-(./0#$1#'2/1"0&(1"-0,$30#$1,(0,4(45,02$%.($,(.5,#6'#$%( %'&&.( !"#$%&'()5/'*(!470,%'4(8'7$'9 !:#61".*(! !"#$%&'(%)*#" #$%&&'()*+",*+'-."/(01%*&023"+4"506708'(."'8*+'-9:;067<%):" +,-*./&'(%)*#" =+&&%0("5+870;0'('11'$."/(01%*&023"+4"506708'(.";7+&&%0(9:;067<%):" 0)"#/&'(%)*#" >*'(6+"?'1%$$'."/(01%*&023"+4"506708'(."42'1%$$'9:;067<%):" !*(#%)&'(%)*#" ?+@0'&"A<",0%&&%(."BCDEFG"HHHHIHHH!IJKLMILHK!."/(01%*&023"+4"506708'("5%)06'$" N67++$."280%&&%(9:;067<%):" !"1%)&'(%)*#" #(27+(3",<"O%6670'*%$$0."BCDEFG"HHHHIHHHLIJ!PMIKLQR."/(01%*&023"+4"506708'(." '1%9:;067<%):" +"2%)&'(%)*#" S0+(8"T'(8."BCDEFG"HHHHIHHHLILQQLILHPQ."/(01%*&023"+4"506708'(."U0+(839:;067<%):" !" " +,3,.%)&'(%)*#" #$$%("V<"W0:X."BCDEFG"HHHHIHHHLIHKHPIYH!M."/(01%*&023"+4"506708'(."'$$%($0:9:;067<%):" " 45$%#'-%" D+(&2*:620(8"&3(27%206"6%$$&"7'&"*%6%(2$3"@%6+;%"'("'ZZ%'$0(8"'*%'"+4"*%&%'*67<"F%6')%&"+4"*%&%'*67"0(" @0+67%;0&2*3"'()"6%$$"@0+$+83"7'1%"';'&&%)")%2'0$%)"Z'*2"$0&2&"+4"6+;Z+(%(2&"0(1+$1%)"0("1'*0+:&"6%$$:$'*" Z*+6%&&%&<"[%1%*27%$%&&."*%6*%'20(8"'(3"6%$$:$'*"Z*+6%&&"!"#$!%&'"0("6%$$I&0-%)"6+;Z'*2;%(2&"*%;'0(&" ';@020+:&"'()"67'$$%(80(8<"?\+"@*+')"4%'2:*%&"+*"Z*0(60Z$%&"'*%"]%3"2+"27%")%1%$+Z;%(2"+4"&3(27%206" 6%$$&"I"6+;Z'*2;%(2'$0-'20+("'()"&%$4I+*8'(0-'20+(^&Z'20+2%;Z+*'$")3(';06&<"E("270&"*%10%\"'*206$%."\%" )0&6:&&"27%"6:**%(2"&2'2%"+4"27%"'*2"'()"*%&%'*67"2*%()&"0("27%"%(80(%%*0(8"+4"&3(27%206"6%$$";%;@*'(%&." )%1%$+Z;%(2"+4"0(2%*('$"6+;Z'*2;%(2'$0-'20+(."*%6+(&202:20+("+4"&%$4I+*8'(0-0(8")3(';06&."'()" 0(2%8*'20+("+4"'6201020%&"'6*+&&"&6'$%&"+4"&Z'6%"'()"20;%<"A%"'$&+"0)%(2043"&+;%"*%&%'*67"'*%'&"27'2"6+:$)"
    [Show full text]
  • 2013 Faseb Science Research Conferences Advisory Committee Meeting
    Proposal #: 15-19 2013 FASEB SCIENCE RESEARCH CONFERENCES ADVISORY COMMITTEE MEETING TOPIC FOR CONSIDERATION TOPIC NAME: MITOSIS: SPINDLE ASSEMBLY AND FUNCTION PREVIOUS TITLE: Mitosis: Spindle Assembly and Function SUBMITTED BY: Erich Nigg, Biozentrum der Universitat Basel Rebecca Heald, University of California-Berkeley YEAR REQUESTED FOR 2015 SCHEDULING: SITE REQUESTS: 1. Portugal 2. Nassau, Bahamas 3. Big Sky, MT DATE REQUESTS: 1. June 21-27, 2015 2. June 28-July 3, 2015 3. September 6-12, 2015 YEAR(S) CONFERENCE 2007, 2009, 2012 HAS BEEN HELD: NOTES: Avoid mid-to-late June dates if Gordon Conferences has similar conferences at that time. FASEB SRC Proposal Instructions Attached are the instructions and requirements for submitting a FASEB SRC proposal. Please complete sections 1-6 before submitting your information. Please submit your proposal by September 23, 2013 in order to be considered for the 2015 SRC Series. Proposals will be reviewed by the FASEB Science Research Conference Advisory Committee in mid November. Shortly thereafter, you will receive a letter with the committee’s decision on your submitted proposal. By the end of January 2014 you will receive a second letter which will indicate the location and date for your conference as well as the name of your assigned Conference Manager. Once your conference is approved, your conference manager will schedule a kick-off conference call to discuss timelines, expectations, instructions on fund raising, and program management to help make your organization process successful. Section 1: Organizer Responsibilities By submitting a FASEB Science Research Conference proposal for consideration by the FASEB SRC Advisory Committee, the organizer(s) accepts the responsibility for producing a successful conference.
    [Show full text]
  • 2015 Annual Report
    RIKEN Center for Developmental Biology http://www.cdb.riken.jp/ RIKEN CENTER FOR DEVELOPMENTAL BIOLOGY 2-2-3 MINATOJIMA-MINAMIMACHI, CHUO-KU KOBE 650-0047 JAPAN PHONE: +81-78-306-0111 FAX: +81-78-306-0101 EMAIL: [email protected] 2015 Annual Report 2015 RIKEN Center for Developmental Biology 2015 Annual Report On The Cover 3D reconstructed image of developing mouse lung at E16.5 showing localization of epithelial and neuroen- docrine cells. Image: Laboratory for Lung Development Printed in Japan using soy inks, waterless printing methods, and paper from sustainable resources. RIKEN 2016-017 Contents 2015 2 Message from the Director 32 Hippocampal neurons from hES cells 54 Sensory Development Annual Report Lab. for Organogenesis and Neurogenesis; In Vitro Raj LADHER 4 Organizational Chart Histogenesis 6 2015 at the CDB 55 Cell Asymmetry 34 Putting a new spin on autonomously organized Fumio MATSUZAKI RIKEN epithelial movement 56 Lung Development Center for Research Highlights Lab. for Histogenetic Dynamics Mitsuru MORIMOTO Developmental Biology 36 Pulmonary neuroendocrine cell clusters at 57 Growth Control Signaling 10 Oocyte maturation directed by PLK1 airway branches Takashi NISHIMURA Lab. for Chromosome Segregation Lab. for Lung Development 58 Pluripotent Stem Cell Studies 12 Generating 3D cerebellar structure and 38 Doubling teeth from single tooth germ Hitoshi NIWA functional cerebellar neurons Lab. for Organ Regeneration 59 Early Embryogenesis Lab. for Organogenesis and Neurogenesis 40 Transplantation of hESC-derived retinal tissue in Guojun SHENG 14 Induction of retinal tissue with ciliary margin primate models of retinitis pigmentosa 60 Retinal Regeneration from hESCs Lab. for Retinal Regeneration Masayo TAKAHASHI Lab.
    [Show full text]
  • Transfection of Choanoflagellates Illuminates Their Cell Biology and the Ancestry of Animal Septins
    M BoC | ARTICLE Transfection of choanoflagellates illuminates their cell biology and the ancestry of animal septins David S. Booth†, Heather Szmidt-Middleton, and Nicole King‡,* Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 ABSTRACT As the closest living relatives of animals, choanoflagellates offer unique insights Monitoring Editor into animal origins and core mechanisms underlying animal cell biology. However, unlike tra- Doug Kellogg ditional model organisms, such as yeast, flies, and worms, choanoflagellates have been re- University of California, Santa Cruz fractory to DNA delivery methods for expressing foreign genes. Here we report a robust method for expressing transgenes in the choanoflagellateSalpingoeca rosetta, overcoming Received: Aug 16, 2018 barriers that have previously hampered DNA delivery and expression. To demonstrate how Revised: Sep 20, 2018 this method accelerates the study of S. rosetta cell biology, we engineered a panel of fluores- Accepted: Sep 24, 2018 cent protein markers that illuminate key features of choanoflagellate cells. We then investi- gated the localization of choanoflagellate septins, a family of GTP-binding cytoskeletal pro- teins that are hypothesized to regulate multicellular rosette development in S. rosetta. Fluorescently tagged septins localized to the basal poles of S. rosetta single cells and rosettes in a pattern resembling septin localization in animal epithelia. The establishment of transfec- tion in S. rosetta and its application to the study of septins represent critical advances in the use of S. rosetta as an experimental model for investigating choanoflagellate cell biology, core mechanisms underlying animal cell biology, and the origin of animals.
    [Show full text]