Microtubules: 50 Years on from the Discovery of Tubulin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PDW CV March 2014
Curriculum Vitae Dr. ir. Peter De Wulf Contact information European Institute of Oncology Department of Experimental Oncology Via Adamello 16 20139 Milan, Italy E-mail: [email protected] Tel: (++39) 0294375036 Fax: (++39) 0294375990 Position 08/2005 - present Principal Investigator Director Kinetochore and Chromosome Segregation Research Unit Department of Experimental Oncology European Institute of Oncology Milan, Italy Education and training 11/1999 - 06/2005 Post-Doctoral Research in Yeast Kinetochore Biology Department of Biology Massachusetts Institute of Technology 77 Massachusetts Avenue 02139 Cambridge (MA), USA Mentor: Prof. Dr. Peter K. Sorger (now at Harvard Medical School, Department of Systems Biology) 07/1996 - 10/1999 Post-Doctoral Research in Bacterial Two-Component Signal Transduction Department of Microbiology and Molecular Genetics Harvard Medical School 210 Longwood Avenue 02115 Boston (MA), USA Mentor: Prof. Dr. Edmund C.C. Lin (deceased) 04-20/07/1999 Course in Protein Purification and Characterization Cold Spring Harbor Laboratory. Cold Spring Harbor (NY), USA Instructors: Dr. Richard Burgess, Dr. Albert Courey, Dr. Sue-Hwa Lin, Dr. Sheenah Mische 06-20/06/1997 Course in Advanced Bacterial Genetics Cold Spring Harbor Laboratory. Cold Spring Harbor (NY), USA Instructors: Dr. Bonnie Bassler, Dr. Colin Manoil, Dr. James Slauch 06/1995 - 06/1996 Training in Yeast Cell Biology Department of Applied Biochemistry University of Milan via Celoria 26 20133 Milan, Italy Mentor: Prof. Dr. Lilia Alberghina (now at the University of Milan-Bicocca, Department of Biotechnology and Biosciences) 1 01/1992-05/1995 Ph.D. in Industrial Microbiology and Biocatalysis Department of Biochemical and Microbial Technology School of Bioengineering University of Ghent Coupure Links 653 B-9000 Ghent, Belgium Mentor: Prof. -
Spindle Assembly in Xenopus Egg Extracts
Spindle Assembly in Xenopus Egg Extracts: Respective Roles of Centrosomes and Microtubule Self-Organization Rebecca Heald, Régis Tournebize, Anja Habermann, Eric Karsenti, and Anthony Hyman Cell Biology Program, European Molecular Biology Laboratory, 69117 Heidelberg, Germany Abstract. In Xenopus egg extracts, spindles assembled end–directed translocation of microtubules by cytoplas- around sperm nuclei contain a centrosome at each pole, mic dynein, which tethers centrosomes to spindle poles. while those assembled around chromatin beads do not. However, in the absence of pole formation, microtu- Poles can also form in the absence of chromatin, after bules are still sorted into an antiparallel array around addition of a microtubule stabilizing agent to extracts. mitotic chromatin. Therefore, other activities in addi- Using this system, we have asked (a) how are spindle tion to dynein must contribute to the polarized orienta- poles formed, and (b) how does the nucleation and or- tion of microtubules in spindles. When centrosomes are ganization of microtubules by centrosomes influence present, they provide dominant sites for pole forma- spindle assembly? We have found that poles are mor- tion. Thus, in Xenopus egg extracts, centrosomes are not phologically similar regardless of their origin. In all cases, necessarily required for spindle assembly but can regu- microtubule organization into poles requires minus late the organization of microtubules into a bipolar array. uring cell division, the correct organization of mi- and Lloyd, 1994). In the absence of centrosomes, bipolar crotubules in bipolar spindles is necessary to dis- spindle assembly seems to occur through the self-organiza- D tribute chromosomes to the daughter cells. The tion of microtubules around mitotic chromatin (McKim slow growing or minus ends of the microtubules are fo- and Hawley, 1995; Heald et al., 1996; Waters and Salmon, cused at each pole, while the plus ends interact with the 1997). -
Mechanistic Mathematical Modeling of Spatiotemporal Microtubule Dynamics and Regulation in Vivo
Research Collection Doctoral Thesis Mechanistic mathematical modeling of spatiotemporal microtubule dynamics and regulation in vivo Author(s): Widmer, Lukas A. Publication Date: 2018 Permanent Link: https://doi.org/10.3929/ethz-b-000328562 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library diss. eth no. 25588 MECHANISTICMATHEMATICAL MODELINGOFSPATIOTEMPORAL MICROTUBULEDYNAMICSAND REGULATION INVIVO A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (dr. sc. eth zurich) presented by LUKASANDREASWIDMER msc. eth cbb born on 11. 03. 1987 citizen of luzern and ruswil lu, switzerland accepted on the recommendation of Prof. Dr. Jörg Stelling, examiner Prof. Dr. Yves Barral, co-examiner Prof. Dr. François Nédélec, co-examiner Prof. Dr. Linda Petzold, co-examiner 2018 Lukas Andreas Widmer Mechanistic mathematical modeling of spatiotemporal microtubule dynamics and regulation in vivo © 2018 ACKNOWLEDGEMENTS We are all much more than the sum of our work, and there is a great many whom I would like to thank for their support and encouragement, without which this thesis would not exist. I would like to thank my supervisor, Prof. Jörg Stelling, for giving me the opportunity to conduct my PhD research in his group. Jörg, you have been a great scientific mentor, and the scientific freedom you give your students is something I enjoyed a lot – you made it possible for me to develop my own theories, and put them to the test. I thank you for the trust you put into me, giving me a challenge to rise up to, and for always having an open door, whether in times of excitement or despair. -
Intracellular Scaling Mechanisms
Downloaded from http://cshperspectives.cshlp.org/ on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Intracellular Scaling Mechanisms Simone Reber1,2 and Nathan W. Goehring3 1Max Planck Institute of Molecular Genetics and Cell Biology, 01307 Dresden, Germany 2Integrative Research Institute (IRI) for the Life Sciences, Humboldt-Universita¨t zu Berlin, 10115 Berlin, Germany 3MRC Laboratory of Molecular Cell Biology, University College London, WC1E 6BT London, United Kingdom Correspondence: [email protected] Organelle function is often directly related to organelle size. However, it is not necessarily absolute size but the organelle-to-cell-size ratio that is critical. Larger cells generally have increased metabolic demands, must segregate DNA over larger distances, and require larger cytokinetic rings to divide. Thus, organelles often must scale to the size of the cell. The need for scaling is particularly acute during early development during which cell size can change rapidly. Here, we highlight scaling mechanisms for cellular structures as diverse as centro- somes, nuclei, and the mitotic spindle, and distinguish them from more general mechanisms of size control. In some cases, scaling is a consequence of the underlying mechanism of organelle size control. In others, size-control mechanisms are not obviously related to cell size, implying that scaling results indirectly from cell-size-dependent regulation of size- control mechanisms. cell is a highly organized unit in which We also know that cell size can vary dra- Afunctions are compartmentalized into spe- matically even within one organism. Xenopus cific organelles. Each cellular organelle carries laevis is an extreme example. The smallest so- out a distinct function, which is not only related matic cells are only a few micrometers in diam- to its molecular composition but, in many cas- eter, whereas the oocyte and one-cell embryo es, also to its size. -
Findings Magazine
FindingsFALL 2017 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of General Medical Sciences features 1 Protein Paradox: Enrique De La Cruz Aims to Understand Actin 18 The Science of Size: Rebecca Heald Explores Size Control in Amphibians articles 5 A World Without Pain 6 Demystifying General Anesthetics 10 There’s an “Ome” for That —TORSTEN WITTMANN, UNIVERSITY OF CALIFORNIA, SAN FRANCISCO ON THE COVER This human skin cell was bathed 17 Lighting Up the Promise of Gene Therapy in a liquid containing a growth factor. The procedure for Glaucoma triggered the formation of specialized protein structures that enable the cell to move. We depend on our cells 24 NIGMS Is on Instagram! being able to move for basic functions such as the healing of wounds and the launch of immune responses. departments 3 Cool Tools: High-Resolution Microscopy— Editor In Living Color Chris Palmer 9 Spotlight on Videos: Scientists in Action Contributing Writers Carolyn Beans 14 S potlight on the Cell: The Extracellular Matrix, Kathryn Calkins Emily Carlson a Multitasking Marvel Alisa Zapp Machalek Chris Palmer Erin Ross Ruchi Shah activities Production Manager 22 Superstars of Science Quiz Susan Athey Online Editor The Last Word (inside back cover) Susan Athey Find Us At Image credits: Unless otherwise credited, images are royalty-free stock images. https://twitter.com/nigms https://www.facebook.com/nigms.nih.gov Produced by the Offce of Communications and Public Liaison https://www.instagram.com/nigms_nih National Institute of General Medical Sciences National Institutes of Health https://www.youtube.com/user/NIGMS U.S. -
Molecular Determinants of the Ska-Ndc80 Interaction and Their
RESEARCH ARTICLE Molecular determinants of the Ska-Ndc80 interaction and their influence on microtubule tracking and force-coupling Pim J Huis in ’t Veld1†, Vladimir A Volkov2†, Isabelle D Stender1, Andrea Musacchio1,3*, Marileen Dogterom2* 1Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany; 2Department of Bionanoscience, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands; 3Centre for Medical Biotechnology, Faculty of Biology, University Duisburg, Essen, Germany Abstract Errorless chromosome segregation requires load-bearing attachments of the plus ends of spindle microtubules to chromosome structures named kinetochores. How these end-on kinetochore attachments are established following initial lateral contacts with the microtubule lattice is poorly understood. Two microtubule-binding complexes, the Ndc80 and Ska complexes, are important for efficient end-on coupling and may function as a unit in this process, but precise conditions for their interaction are unknown. Here, we report that the Ska-Ndc80 interaction is phosphorylation-dependent and does not require microtubules, applied force, or several previously identified functional determinants including the Ndc80-loop and the Ndc80-tail. Both the Ndc80- tail, which we reveal to be essential for microtubule end-tracking, and Ndc80-bound Ska stabilize microtubule ends in a stalled conformation. Modulation of force-coupling efficiency demonstrates *For correspondence: that the duration of stalled microtubule -
Structure of Human Mad1 C-Terminal Domain Reveals Its Involvement in Kinetochore Targeting
Structure of human Mad1 C-terminal domain reveals its involvement in kinetochore targeting Soonjoung Kima,b,1, Hongbin Suna,1,2, Diana R. Tomchickc, Hongtao Yua,b,3, and Xuelian Luoa,3 aDepartment of Pharmacology, bHoward Hughes Medical Institute, and cDepartment of Biochemistry, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390 Edited by Edward D. Salmon, University of North Carolina, Chapel Hill, NC, and accepted by the Editorial Board February 28, 2012 (received for review November 4, 2011) The spindle checkpoint prevents aneuploidy by delaying anaphase and sufficient for its kinetochore localization and checkpoint func- onset until all sister chromatids achieve proper microtubule attach- tion (18). By contrast, an N-terminal fragment of Xenopus Mad1 ment. The kinetochore-bound checkpoint protein complex Mad1- lacking the CTD has been shown to localize to kinetochores (19). Mad2 promotes the conformational activation of Mad2 and serves Finally, mutation of T680, a residue within the CTD and a poten- as a catalytic engine of checkpoint signaling. How Mad1 is targeted tial Plk1 phosphorylation site, in human Mad1 has been reported to kinetochores is not understood. Here, we report the crystal to diminish its kinetochore localization (20). It is thus unclear structure of the conserved C-terminal domain (CTD) of human whether Mad1 has conserved kinetochore-targeting domains. Mad1. Mad1 CTD forms a homodimer and, unexpectedly, has a fold The kinetochore receptor or receptors of Mad1 are also unknown. similar to those of the kinetochore-binding domains of Spc25 and In this study, we have determined the crystal structure of the Csm1. -
Farewell Symposium Erich Nigg, Director Biozentrum
Thursday, Farewell February 1, 2018 Lecture Hall 1, Pharmazentrum Klingelbergstrasse 50/70 Symposium Basel Erich Nigg, Director Biozentrum. Farewell Symposium Erich Nigg. 09.00 – 09.05 Welcome address 15.05 – 15.40 Time of change – change over time Erich Nigg, Director Biozentrum, University of Basel Katharina Sonnen, European Molecular Biology Laboratory, Heidelberg 09.05 – 09.40 Chromosomal dynamics during spermatogenesis in Drosophila melanogaster 15.40 – 16.15 Studies on NEK family kinases: From molecular Christian Lehner, Institute of Molecular Life Sciences, mechanisms to cancer therapies University of Zurich Andrew Fry, Department of Molecular and Cell Biology, University of Leicester 09.40 – 10.15 How do cells count centrosomes? Luca Fava, Centre for Integrative Biology, University of 16.15 – 16.45 Coffee Break Trento 16.45 – 17.20 Structure and function of the kinetochore 10.15 – 10.50 Checkpoint kinases: Beyond cell cycle control Andrea Musacchio, Max Planck Institute of Molecular Susan Gasser, Director of Friedrich Miescher Institute for Physiology, Dortmund Biomedical Research, Basel 17.20 – 17.55 Centrosome function and dynamics 10.50 – 11.15 Coffee Break Jordan Raff, Department of Biochemistry, University of Oxford 11.15 – 11.50 Regulation of cell growth and division Matthias Peter, Institute of Biochemistry, ETH Zurich 17.55 – 18.15 Short Break 11.50 – 12.25 The biology of hypoxia response pathways in cancer Wilhelm Krek, Molecular Health Sciences, ETH Zurich 18.15 – 18.25 Erich Nigg: Director of the Biozentrum Andrea Schenker-Wicki, -
Growtharrestinyeastwithaberrant
Growth arrest in yeast with aberrant [kinetochore] is rescued by the loss of [Gcn5] Biancamaria Ricci, Sara Monte, Stefano Vernarecci, Claudia Canzonetta, Paola Ballario, Patrizia Filetici Department of Orthopedics„ Washington University School of Medicine, St. Louis, MO, USA; Dept. Biology and Biotechnol- Correspondence ogy ”C.Darwin”, Institute of Molecular Biology and Pathology - CNR; Scientific Police Service, Forensic Genetics Laboratory, [email protected] Minister of Interior; Department of Immunology, IRCCS Bambino Gesù Children’s Hospital; Dept. Biology and Biotechnol- ogy ”C.Darwin”, Sapienza University of Rome; Sapienza University of Rome, Institute of Molecular Biology and Pathology - CNR Disciplines Genetics Keywords Abstract Ndc80 Complex The kinetochore provides the end-on attachment of central core complexes, suchas Kinetochore Ndc80, to the spindle microtubules (MTs) for a balanced chromosome segregation. The Saccharomyces Cerevisiae Gcn5 K-acetyltransferase Gcn5, involved in acetylation dependent processes, is also engaged Protein Subunits in the control of the cell cycle progression. Here we show that in budding yeast the deletion of the KAT GCN5 gene leads to a complete growth recovery of a strain missing Type of Observation the central kinetochore component Ndc80. Accordingly, we obtained full deletion of Standalone the essential, highly conserved, Ndc80 KT subunit in the gcn5Δ strain. We also demon- Type of Link strated that the deletion of Gim3, a subunit of the tubulin chaperone, abrogates the Standard Data recovery of cell growth in the ndc80-1-gcn5Δ strain suggesting an involvement of the kinetochore-MT attachment in this process. Our observations suggest the notion that Submitted Apr 12, 2017 ⴑ Published Jun 3, 2017 KAT Gcn5 exerts a regulatory role in the interaction of the central kinetochore Ndc80 complex to the spindle microtubules exhorting us to dig more into the mechanistic of this process. -
A Lab Co-Op Helps Young Faculty Members to Thrive
WORLD VIEW A personal take on events A lab co-op helps young MARK JOSEPH HANSON faculty members to thrive Linking a lab with others fosters crucial camaraderie, collaboration and productivity, writes Rebecca Heald. hen I started my lab at the University of California, Berkeley, form the group. Proximity is key. I advise postdocs who want to follow two decades ago, what terrified me most was the thought that conventional paths in academia to prioritize jobs in departments that I alone was responsible for everything — from formulating are hiring lots of junior faculty members, and to avoid institutions — Wsuccessful PhD-thesis projects to picking the right freezer. Fortunately, even prestigious ones — that force assistant professors to compete with my stress was mitigated because, within a year, two new assistant profes- each other. That makes everyone in the lab miserable. sors, Matt Welch and Karsten Weis, were hired and given lab space next Matt, Karsten and I had each previously experienced collaborative to mine. Although we all focused on different areas of cell biology, we environments — Matt at the University of California, San Francisco; me shared common interests and values and quickly saw benefits in joining at the European Molecular Biology Laboratory in Heidelberg, Germany; forces. We called our joint groups the Trilab. and Karsten at both — which helped us conceive of the Trilab. We were Matt, Karsten and I saved space by sharing chemical and microscopy exceedingly fortunate to be at the same career stage at the same place and rooms, and saved money by pooling equipment. We even tore down a time. -
A Molecular Basis for the Differential Roles of Bub1 and Bubr1 In
RESEARCH ARTICLE elifesciences.org A molecular basis for the differential roles of Bub1 and BubR1 in the spindle assembly checkpoint Katharina Overlack1†, Ivana Primorac1†, Mathijs Vleugel2, Veronica Krenn1, Stefano Maffini1, Ingrid Hoffmann1, Geert J P L Kops3,4,6,7,8, Andrea Musacchio1,5* 1Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany; 2Molecular Cancer Research, University Medical Center Utrecht, Utrecht, Netherlands; 3Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, Netherlands; 4Department of Medical Oncology, University Medical Center Utrecht, Utrecht, Netherlands; 5Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany; 6Cancer Genomics Netherlands, University Medical Center, Utrecht, Netherlands; 7Department of Biology, Utrecht University, Utrecht, Netherlands; 8Netherlands Proteomics Center, Utrecht, Netherlands Abstract The spindle assembly checkpoint (SAC) monitors and promotes kinetochore–microtubule attachment during mitosis. Bub1 and BubR1, SAC components, originated from duplication of an ancestor gene. Subsequent sub-functionalization established subordination: Bub1, recruited first to kinetochores, promotes successive BubR1 recruitment. Because both Bub1 and BubR1 hetero-dimerize with Bub3, a targeting adaptor for phosphorylated kinetochores, the molecular basis for such sub- *For correspondence: andrea. functionalization is unclear. We demonstrate that Bub1, but not BubR1, enhances binding of Bub3 to [email protected]. -
Kinetochore-Driven Control of Meiotic DNA Break Formation and Recombination at Centromere-Proximal Regions
Kinetochore-driven control of meiotic DNA break formation and recombination at centromere-proximal regions Inaugural-Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für Biologie an der Universität Duisburg-Essen vorgelegt von Lisa-Marie Kuhl aus Witten durchgeführt am Max Planck Institut für molekulare Physiologie Abteilung für mechanistische Zellbiologie Februar 2018 Die der vorliegenden Arbeit zugrunde liegenden Experimente wurden am Max Planck Institut für molekulare Physiologie in der Abteilung für mechanistische Zellbiologie durchgeführt. 1. Gutachter: Prof. Dr. Andrea Musacchio 2. Gutachter: Prof. Dr. Stefan Westermann Vorsitzender des Prüfungsausschusses: Prof. Dr. Hemmo Meyer Tag der mündlichen Prüfung: 13. April 2018 Diese Dissertation wird über DuEPublico, dem Dokumenten- und Publikationsserver der Universität Duisburg-Essen, zur Verfügung gestellt und liegt auch als Print-Version vor. DOI: 10.17185/duepublico/46030 URN: urn:nbn:de:hbz:464-20190418-114218-2 Alle Rechte vorbehalten. In the context of this doctoral work, the following article was published: - Vincenten, N., Kuhl, LM., Lam, I., Oke, A., Kerr, ARW., Hochwagen, A., Fung, J., Keeney, S., Vader, G., Marston, AL. (2015). The kinetochore prevents centromere- proximal crossover recombination during meiosis. Elife 4: e10850 Index I Content Content………………………………..………………………………………………...........I List of Figures ........................................................................................................... V List of Tables .........................................................................................................