Microtubules: 50 Years on from the Discovery of Tubulin

Total Page:16

File Type:pdf, Size:1020Kb

Microtubules: 50 Years on from the Discovery of Tubulin PERSPECTIVES microtubule dynamics and organization VIEWPOINT emerge from a defined set of proteins Microtubules: 50 years on from through reconstitution experiments. Jonathon Howard. One of the big questions back when I got into the microtubule the discovery of tubulin business, around 1990, was how motor proteins such as kinesin and dynein use Gary Borisy, Rebecca Heald, Jonathon Howard, Carsten Janke, ATP hydrolysis to generate force for Andrea Musacchio and Eva Nogales transport along microtubules (such as axonal transport) or for cell motility (such as Abstract | Next year will be the 50th anniversary of the discovery of tubulin. ciliary or flagellar motion). The interaction To celebrate this discovery, six leaders in the field of microtubule research reflect of kinesin with microtubules was a model on key findings and technological breakthroughs over the past five decades, system, because it was clear that only a discuss implications for therapeutic applications and provide their thoughts on relatively small number of kinesins must what questions need to be addressed in the near future. be capable of moving small vesicles along microtubules. A related question was how microtubule growth and shrinkage could Identifying the main component of Rebecca Heald. In the mid-1990s, one generate force to move chromosomes microtubules was obviously the pressing question was why microtubules during mitosis. Polymerization and pressing task in the field around 50 years ago. in cells were so much more dynamic than depolymerization forces were very What key questions were being pursued microtubules assembled from purified mysterious: how could you hold on to the when you entered the arena of tubulin. Neuronal microtubule-associated end of a depolymerizing microtubule? How microtubule research? proteins (MAPs) had been identified could a microtubule grow, and new tubulin and studied (in large part because they subunits get in, if its end was pushing up Gary Borisy. Actually, I had no idea in the co-purified with tubulin isolated from brain against something? What role did the GTP cap early 1960s that I was entering the arena tissue, where it is most abundant), but these have, and how was energy from GTP used to of microtubule research, because it hadn’t proteins all stabilized microtubules, and generate pulling or pushing forces? How did yet been defined as an arena. Although factors that induced the transition from MAPs regulate growth and shrinkage? the term ‘microtubule’ was first coined in growth to shrinkage (catastrophe) were 1963, the structures had not, in fact, been unknown. A related question was how the Carsten Janke. I entered the field of observed in most cells, because the fixation microtubule cytoskeleton transformed microtubule research somewhat through methods used at the time did not preserve from a relatively stable interphase array to a a back door. During my Ph.D. studies, them. It was only after the introduction of highly dynamic bipolar spindle in mitosis. I worked on the role of the MAP tau in glutaraldehyde as a fixative, also in 1963, At the time, the centrosome was thought neurodegeneration, and in my postdoctoral that they began to be observed routinely. to be the sole ‘microtubule-organizing’ work, I characterized new kinetochore The concept of the microtubule as a centre of the cell, determining the site of protein complexes in budding yeast. This ‘ubiquitous’ cytoskeletal structure wasn’t microtubule growth and their polarized was in the late 1990s, and at the time, the put forward until 1965. My entry point orientation. In my opinion, the discovery field had already expanded a lot: different into the field was mitosis: I wanted to get of a large family of kinesin motor proteins, research communities pursued their own a molecular handle on how cells divide. as well as cytoplasmic dynein, spawned interests. There were many parallel advances Working with Ed Taylor at the University key investigations into how cellular factors at the time, such as the biochemical and of Chicago (Illinois, USA), we were trying affect microtubule behaviour. The diverse functional dissection of the kinetochore, to identify and purify the molecule that activities of different motor proteins to the understanding of the role of primary bound to colchicine, because colchicine was induce catastrophe, crosslink and move cilia as the ‘cell antennae’, and advances in known to specifically inhibit mitosis. We microtubules relative to one another the characterization of neuronal transport had no preconceived idea about what the revealed the ability of microtubule arrays mediated by microtubules. Specifically colchicine target would be, but we believed to ‘self-organize’. This process allows regarding microtubule research, I think that identifying the target would teach us the spindle to form in the absence of a highlight of the 1990s and 2000s was something important about mitosis. So, centrosomes — for example, during female the use of highly sophisticated, in vitro the key questions for us at the time were meiosis in many animal species, or when reconstructions of microtubule assemblies how to isolate, purify and characterize the the centrosome is inactivated genetically from recombinant components, and their colchicine-binding protein and then to or by laser ablation. An important ongoing biophysical characterization. This allowed establish its identity1,2. challenge is to fully understand how the definition of minimal functional units 322 | MAY 2016 | VOLUME 17 www.nature.com/nrm ©2016 Mac millan Publishers Li mited. All ri ghts reserved. ©2016 Mac millan Publishers Li mited. All ri ghts reserved. PERSPECTIVES of microtubule assemblies such as the agents that targeted tubulin and affected to be used on cytoskeletal filaments. This microtubule arrays of the mitotic spindle. dynamic instability were being discovered. was the time when Dick Wade (CNRS) was A second highlight was the amazing advances But what I remember as the most exciting imaging microtubules and proposed the in imaging of microtubule structures development at the time was the publication lattice accommodation theory to explain the in vivo, which were driven by substantial of the structure of actin by Ken Holmes existence of microtubules with different improvements in light microscopy. and colleagues (Max Planck Institute at protofilament numbers. Also using Heidelberg, Germany). It became obvious cryo-EM, the Mandelkows and Ron Milligan Andrea Musacchio. When I entered the that there was also a pressing need for a (Scripps Research Institute, California, field, approximately 15 years ago, studies on structure of tubulin. Many were trying to USA) visualized the depolymerization of my main research interest, the kinetochore, crystallize it, like actin, in an inhibited form. microtubules by protofilament peeling, had remained traditionally distinct from At the same time, the new technique of producing images that inspired me and studies of microtubules as cytoskeletal cryoelectron microscopy (cryo-EM) started influenced my scientific career. components. The search-and-capture model offered a conceptual basis for how microtubules that interact with kinetochores The contributors* might become selectively stabilized to Gary Borisy completed his Ph.D. in 1966 at the University of Chicago, Illinois, USA, and was formerly generate kinetochore fibres, but the a member of faculty at the University of Wisconsin and Northwestern University, USA, and President/ mechanism was obscure. The critical gap in Director of the Marine Biological Laboratory, Massachusetts, USA. He is best known for his work on knowledge was in our understanding of how the molecular biology of the cytoskeleton. Currently, he is a Senior Investigator at the Forsyth kinetochores, which are among the largest Institute in Cambridge, Massachusetts, and is exploring the biogeography of microbial communities (if not the largest) microtubule-binding at the micrometre scale through combinatorial labelling, spectral imaging and metagenomics. machines, bind to and stabilize microtubules Gary Borisy’s homepage: http://forsyth.org/person/scientist/gary-borisy to link them to chromosomes. Research Rebecca Heald is a Professor in the Department of Molecular and Cell Biology at the University of therefore focused on the identification of California Berkeley, USA. She pursued her Ph.D. training with Frank McKeon at Harvard University, potential linking proteins and how they are Cambridge, Massachusetts, USA, and carried out postdoctoral work with Eric Karsenti at the harnessed to align the sister chromatids European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany. Her laboratory is to the metaphase plate, and later to part interested in mechanisms of spindle assembly, cell division and size control. them to the opposite spindle poles. The Jonathon Howard has a Ph.D. from the Australian National University in Canberra, Australia, and identification of an array of new kinetochore was Professor of Physiology and Biophysics at the University of Washington in Seattle, USA, before proteins in the early 2000s facilitated the joining the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, Germany, as a identification of such proteins. Most notably, group leader and director. The Howard laboratory recently moved to Yale University, New Haven, teams led by Arshad Desai (University of Connecticut, USA. His research interests include molecular motors and cytoskeletal polymers, especially their roles in
Recommended publications
  • PDW CV March 2014
    Curriculum Vitae Dr. ir. Peter De Wulf Contact information European Institute of Oncology Department of Experimental Oncology Via Adamello 16 20139 Milan, Italy E-mail: [email protected] Tel: (++39) 0294375036 Fax: (++39) 0294375990 Position 08/2005 - present Principal Investigator Director Kinetochore and Chromosome Segregation Research Unit Department of Experimental Oncology European Institute of Oncology Milan, Italy Education and training 11/1999 - 06/2005 Post-Doctoral Research in Yeast Kinetochore Biology Department of Biology Massachusetts Institute of Technology 77 Massachusetts Avenue 02139 Cambridge (MA), USA Mentor: Prof. Dr. Peter K. Sorger (now at Harvard Medical School, Department of Systems Biology) 07/1996 - 10/1999 Post-Doctoral Research in Bacterial Two-Component Signal Transduction Department of Microbiology and Molecular Genetics Harvard Medical School 210 Longwood Avenue 02115 Boston (MA), USA Mentor: Prof. Dr. Edmund C.C. Lin (deceased) 04-20/07/1999 Course in Protein Purification and Characterization Cold Spring Harbor Laboratory. Cold Spring Harbor (NY), USA Instructors: Dr. Richard Burgess, Dr. Albert Courey, Dr. Sue-Hwa Lin, Dr. Sheenah Mische 06-20/06/1997 Course in Advanced Bacterial Genetics Cold Spring Harbor Laboratory. Cold Spring Harbor (NY), USA Instructors: Dr. Bonnie Bassler, Dr. Colin Manoil, Dr. James Slauch 06/1995 - 06/1996 Training in Yeast Cell Biology Department of Applied Biochemistry University of Milan via Celoria 26 20133 Milan, Italy Mentor: Prof. Dr. Lilia Alberghina (now at the University of Milan-Bicocca, Department of Biotechnology and Biosciences) 1 01/1992-05/1995 Ph.D. in Industrial Microbiology and Biocatalysis Department of Biochemical and Microbial Technology School of Bioengineering University of Ghent Coupure Links 653 B-9000 Ghent, Belgium Mentor: Prof.
    [Show full text]
  • Spindle Assembly in Xenopus Egg Extracts
    Spindle Assembly in Xenopus Egg Extracts: Respective Roles of Centrosomes and Microtubule Self-Organization Rebecca Heald, Régis Tournebize, Anja Habermann, Eric Karsenti, and Anthony Hyman Cell Biology Program, European Molecular Biology Laboratory, 69117 Heidelberg, Germany Abstract. In Xenopus egg extracts, spindles assembled end–directed translocation of microtubules by cytoplas- around sperm nuclei contain a centrosome at each pole, mic dynein, which tethers centrosomes to spindle poles. while those assembled around chromatin beads do not. However, in the absence of pole formation, microtu- Poles can also form in the absence of chromatin, after bules are still sorted into an antiparallel array around addition of a microtubule stabilizing agent to extracts. mitotic chromatin. Therefore, other activities in addi- Using this system, we have asked (a) how are spindle tion to dynein must contribute to the polarized orienta- poles formed, and (b) how does the nucleation and or- tion of microtubules in spindles. When centrosomes are ganization of microtubules by centrosomes influence present, they provide dominant sites for pole forma- spindle assembly? We have found that poles are mor- tion. Thus, in Xenopus egg extracts, centrosomes are not phologically similar regardless of their origin. In all cases, necessarily required for spindle assembly but can regu- microtubule organization into poles requires minus late the organization of microtubules into a bipolar array. uring cell division, the correct organization of mi- and Lloyd, 1994). In the absence of centrosomes, bipolar crotubules in bipolar spindles is necessary to dis- spindle assembly seems to occur through the self-organiza- D tribute chromosomes to the daughter cells. The tion of microtubules around mitotic chromatin (McKim slow growing or minus ends of the microtubules are fo- and Hawley, 1995; Heald et al., 1996; Waters and Salmon, cused at each pole, while the plus ends interact with the 1997).
    [Show full text]
  • Mechanistic Mathematical Modeling of Spatiotemporal Microtubule Dynamics and Regulation in Vivo
    Research Collection Doctoral Thesis Mechanistic mathematical modeling of spatiotemporal microtubule dynamics and regulation in vivo Author(s): Widmer, Lukas A. Publication Date: 2018 Permanent Link: https://doi.org/10.3929/ethz-b-000328562 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library diss. eth no. 25588 MECHANISTICMATHEMATICAL MODELINGOFSPATIOTEMPORAL MICROTUBULEDYNAMICSAND REGULATION INVIVO A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (dr. sc. eth zurich) presented by LUKASANDREASWIDMER msc. eth cbb born on 11. 03. 1987 citizen of luzern and ruswil lu, switzerland accepted on the recommendation of Prof. Dr. Jörg Stelling, examiner Prof. Dr. Yves Barral, co-examiner Prof. Dr. François Nédélec, co-examiner Prof. Dr. Linda Petzold, co-examiner 2018 Lukas Andreas Widmer Mechanistic mathematical modeling of spatiotemporal microtubule dynamics and regulation in vivo © 2018 ACKNOWLEDGEMENTS We are all much more than the sum of our work, and there is a great many whom I would like to thank for their support and encouragement, without which this thesis would not exist. I would like to thank my supervisor, Prof. Jörg Stelling, for giving me the opportunity to conduct my PhD research in his group. Jörg, you have been a great scientific mentor, and the scientific freedom you give your students is something I enjoyed a lot – you made it possible for me to develop my own theories, and put them to the test. I thank you for the trust you put into me, giving me a challenge to rise up to, and for always having an open door, whether in times of excitement or despair.
    [Show full text]
  • Intracellular Scaling Mechanisms
    Downloaded from http://cshperspectives.cshlp.org/ on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Intracellular Scaling Mechanisms Simone Reber1,2 and Nathan W. Goehring3 1Max Planck Institute of Molecular Genetics and Cell Biology, 01307 Dresden, Germany 2Integrative Research Institute (IRI) for the Life Sciences, Humboldt-Universita¨t zu Berlin, 10115 Berlin, Germany 3MRC Laboratory of Molecular Cell Biology, University College London, WC1E 6BT London, United Kingdom Correspondence: [email protected] Organelle function is often directly related to organelle size. However, it is not necessarily absolute size but the organelle-to-cell-size ratio that is critical. Larger cells generally have increased metabolic demands, must segregate DNA over larger distances, and require larger cytokinetic rings to divide. Thus, organelles often must scale to the size of the cell. The need for scaling is particularly acute during early development during which cell size can change rapidly. Here, we highlight scaling mechanisms for cellular structures as diverse as centro- somes, nuclei, and the mitotic spindle, and distinguish them from more general mechanisms of size control. In some cases, scaling is a consequence of the underlying mechanism of organelle size control. In others, size-control mechanisms are not obviously related to cell size, implying that scaling results indirectly from cell-size-dependent regulation of size- control mechanisms. cell is a highly organized unit in which We also know that cell size can vary dra- Afunctions are compartmentalized into spe- matically even within one organism. Xenopus cific organelles. Each cellular organelle carries laevis is an extreme example. The smallest so- out a distinct function, which is not only related matic cells are only a few micrometers in diam- to its molecular composition but, in many cas- eter, whereas the oocyte and one-cell embryo es, also to its size.
    [Show full text]
  • Findings Magazine
    FindingsFALL 2017 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of General Medical Sciences features 1 Protein Paradox: Enrique De La Cruz Aims to Understand Actin 18 The Science of Size: Rebecca Heald Explores Size Control in Amphibians articles 5 A World Without Pain 6 Demystifying General Anesthetics 10 There’s an “Ome” for That —TORSTEN WITTMANN, UNIVERSITY OF CALIFORNIA, SAN FRANCISCO ON THE COVER This human skin cell was bathed 17 Lighting Up the Promise of Gene Therapy in a liquid containing a growth factor. The procedure for Glaucoma triggered the formation of specialized protein structures that enable the cell to move. We depend on our cells 24 NIGMS Is on Instagram! being able to move for basic functions such as the healing of wounds and the launch of immune responses. departments 3 Cool Tools: High-Resolution Microscopy— Editor In Living Color Chris Palmer 9 Spotlight on Videos: Scientists in Action Contributing Writers Carolyn Beans 14 S potlight on the Cell: The Extracellular Matrix, Kathryn Calkins Emily Carlson a Multitasking Marvel Alisa Zapp Machalek Chris Palmer Erin Ross Ruchi Shah activities Production Manager 22 Superstars of Science Quiz Susan Athey Online Editor The Last Word (inside back cover) Susan Athey Find Us At Image credits: Unless otherwise credited, images are royalty-free stock images. https://twitter.com/nigms https://www.facebook.com/nigms.nih.gov Produced by the Offce of Communications and Public Liaison https://www.instagram.com/nigms_nih National Institute of General Medical Sciences National Institutes of Health https://www.youtube.com/user/NIGMS U.S.
    [Show full text]
  • Molecular Determinants of the Ska-Ndc80 Interaction and Their
    RESEARCH ARTICLE Molecular determinants of the Ska-Ndc80 interaction and their influence on microtubule tracking and force-coupling Pim J Huis in ’t Veld1†, Vladimir A Volkov2†, Isabelle D Stender1, Andrea Musacchio1,3*, Marileen Dogterom2* 1Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany; 2Department of Bionanoscience, Faculty of Applied Sciences, Delft University of Technology, Delft, Netherlands; 3Centre for Medical Biotechnology, Faculty of Biology, University Duisburg, Essen, Germany Abstract Errorless chromosome segregation requires load-bearing attachments of the plus ends of spindle microtubules to chromosome structures named kinetochores. How these end-on kinetochore attachments are established following initial lateral contacts with the microtubule lattice is poorly understood. Two microtubule-binding complexes, the Ndc80 and Ska complexes, are important for efficient end-on coupling and may function as a unit in this process, but precise conditions for their interaction are unknown. Here, we report that the Ska-Ndc80 interaction is phosphorylation-dependent and does not require microtubules, applied force, or several previously identified functional determinants including the Ndc80-loop and the Ndc80-tail. Both the Ndc80- tail, which we reveal to be essential for microtubule end-tracking, and Ndc80-bound Ska stabilize microtubule ends in a stalled conformation. Modulation of force-coupling efficiency demonstrates *For correspondence: that the duration of stalled microtubule
    [Show full text]
  • Structure of Human Mad1 C-Terminal Domain Reveals Its Involvement in Kinetochore Targeting
    Structure of human Mad1 C-terminal domain reveals its involvement in kinetochore targeting Soonjoung Kima,b,1, Hongbin Suna,1,2, Diana R. Tomchickc, Hongtao Yua,b,3, and Xuelian Luoa,3 aDepartment of Pharmacology, bHoward Hughes Medical Institute, and cDepartment of Biochemistry, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390 Edited by Edward D. Salmon, University of North Carolina, Chapel Hill, NC, and accepted by the Editorial Board February 28, 2012 (received for review November 4, 2011) The spindle checkpoint prevents aneuploidy by delaying anaphase and sufficient for its kinetochore localization and checkpoint func- onset until all sister chromatids achieve proper microtubule attach- tion (18). By contrast, an N-terminal fragment of Xenopus Mad1 ment. The kinetochore-bound checkpoint protein complex Mad1- lacking the CTD has been shown to localize to kinetochores (19). Mad2 promotes the conformational activation of Mad2 and serves Finally, mutation of T680, a residue within the CTD and a poten- as a catalytic engine of checkpoint signaling. How Mad1 is targeted tial Plk1 phosphorylation site, in human Mad1 has been reported to kinetochores is not understood. Here, we report the crystal to diminish its kinetochore localization (20). It is thus unclear structure of the conserved C-terminal domain (CTD) of human whether Mad1 has conserved kinetochore-targeting domains. Mad1. Mad1 CTD forms a homodimer and, unexpectedly, has a fold The kinetochore receptor or receptors of Mad1 are also unknown. similar to those of the kinetochore-binding domains of Spc25 and In this study, we have determined the crystal structure of the Csm1.
    [Show full text]
  • Farewell Symposium Erich Nigg, Director Biozentrum
    Thursday, Farewell February 1, 2018 Lecture Hall 1, Pharmazentrum Klingelbergstrasse 50/70 Symposium Basel Erich Nigg, Director Biozentrum. Farewell Symposium Erich Nigg. 09.00 – 09.05 Welcome address 15.05 – 15.40 Time of change – change over time Erich Nigg, Director Biozentrum, University of Basel Katharina Sonnen, European Molecular Biology Laboratory, Heidelberg 09.05 – 09.40 Chromosomal dynamics during spermatogenesis in Drosophila melanogaster 15.40 – 16.15 Studies on NEK family kinases: From molecular Christian Lehner, Institute of Molecular Life Sciences, mechanisms to cancer therapies University of Zurich Andrew Fry, Department of Molecular and Cell Biology, University of Leicester 09.40 – 10.15 How do cells count centrosomes? Luca Fava, Centre for Integrative Biology, University of 16.15 – 16.45 Coffee Break Trento 16.45 – 17.20 Structure and function of the kinetochore 10.15 – 10.50 Checkpoint kinases: Beyond cell cycle control Andrea Musacchio, Max Planck Institute of Molecular Susan Gasser, Director of Friedrich Miescher Institute for Physiology, Dortmund Biomedical Research, Basel 17.20 – 17.55 Centrosome function and dynamics 10.50 – 11.15 Coffee Break Jordan Raff, Department of Biochemistry, University of Oxford 11.15 – 11.50 Regulation of cell growth and division Matthias Peter, Institute of Biochemistry, ETH Zurich 17.55 – 18.15 Short Break 11.50 – 12.25 The biology of hypoxia response pathways in cancer Wilhelm Krek, Molecular Health Sciences, ETH Zurich 18.15 – 18.25 Erich Nigg: Director of the Biozentrum Andrea Schenker-Wicki,
    [Show full text]
  • Growtharrestinyeastwithaberrant
    Growth arrest in yeast with aberrant [kinetochore] is rescued by the loss of [Gcn5] Biancamaria Ricci, Sara Monte, Stefano Vernarecci, Claudia Canzonetta, Paola Ballario, Patrizia Filetici Department of Orthopedics„ Washington University School of Medicine, St. Louis, MO, USA; Dept. Biology and Biotechnol- Correspondence ogy ”C.Darwin”, Institute of Molecular Biology and Pathology - CNR; Scientific Police Service, Forensic Genetics Laboratory, [email protected] Minister of Interior; Department of Immunology, IRCCS Bambino Gesù Children’s Hospital; Dept. Biology and Biotechnol- ogy ”C.Darwin”, Sapienza University of Rome; Sapienza University of Rome, Institute of Molecular Biology and Pathology - CNR Disciplines Genetics Keywords Abstract Ndc80 Complex The kinetochore provides the end-on attachment of central core complexes, suchas Kinetochore Ndc80, to the spindle microtubules (MTs) for a balanced chromosome segregation. The Saccharomyces Cerevisiae Gcn5 K-acetyltransferase Gcn5, involved in acetylation dependent processes, is also engaged Protein Subunits in the control of the cell cycle progression. Here we show that in budding yeast the deletion of the KAT GCN5 gene leads to a complete growth recovery of a strain missing Type of Observation the central kinetochore component Ndc80. Accordingly, we obtained full deletion of Standalone the essential, highly conserved, Ndc80 KT subunit in the gcn5Δ strain. We also demon- Type of Link strated that the deletion of Gim3, a subunit of the tubulin chaperone, abrogates the Standard Data recovery of cell growth in the ndc80-1-gcn5Δ strain suggesting an involvement of the kinetochore-MT attachment in this process. Our observations suggest the notion that Submitted Apr 12, 2017 ⴑ Published Jun 3, 2017 KAT Gcn5 exerts a regulatory role in the interaction of the central kinetochore Ndc80 complex to the spindle microtubules exhorting us to dig more into the mechanistic of this process.
    [Show full text]
  • A Lab Co-Op Helps Young Faculty Members to Thrive
    WORLD VIEW A personal take on events A lab co-op helps young MARK JOSEPH HANSON faculty members to thrive Linking a lab with others fosters crucial camaraderie, collaboration and productivity, writes Rebecca Heald. hen I started my lab at the University of California, Berkeley, form the group. Proximity is key. I advise postdocs who want to follow two decades ago, what terrified me most was the thought that conventional paths in academia to prioritize jobs in departments that I alone was responsible for everything — from formulating are hiring lots of junior faculty members, and to avoid institutions — Wsuccessful PhD-thesis projects to picking the right freezer. Fortunately, even prestigious ones — that force assistant professors to compete with my stress was mitigated because, within a year, two new assistant profes- each other. That makes everyone in the lab miserable. sors, Matt Welch and Karsten Weis, were hired and given lab space next Matt, Karsten and I had each previously experienced collaborative to mine. Although we all focused on different areas of cell biology, we environments — Matt at the University of California, San Francisco; me shared common interests and values and quickly saw benefits in joining at the European Molecular Biology Laboratory in Heidelberg, Germany; forces. We called our joint groups the Trilab. and Karsten at both — which helped us conceive of the Trilab. We were Matt, Karsten and I saved space by sharing chemical and microscopy exceedingly fortunate to be at the same career stage at the same place and rooms, and saved money by pooling equipment. We even tore down a time.
    [Show full text]
  • A Molecular Basis for the Differential Roles of Bub1 and Bubr1 In
    RESEARCH ARTICLE elifesciences.org A molecular basis for the differential roles of Bub1 and BubR1 in the spindle assembly checkpoint Katharina Overlack1†, Ivana Primorac1†, Mathijs Vleugel2, Veronica Krenn1, Stefano Maffini1, Ingrid Hoffmann1, Geert J P L Kops3,4,6,7,8, Andrea Musacchio1,5* 1Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany; 2Molecular Cancer Research, University Medical Center Utrecht, Utrecht, Netherlands; 3Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, Netherlands; 4Department of Medical Oncology, University Medical Center Utrecht, Utrecht, Netherlands; 5Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany; 6Cancer Genomics Netherlands, University Medical Center, Utrecht, Netherlands; 7Department of Biology, Utrecht University, Utrecht, Netherlands; 8Netherlands Proteomics Center, Utrecht, Netherlands Abstract The spindle assembly checkpoint (SAC) monitors and promotes kinetochore–microtubule attachment during mitosis. Bub1 and BubR1, SAC components, originated from duplication of an ancestor gene. Subsequent sub-functionalization established subordination: Bub1, recruited first to kinetochores, promotes successive BubR1 recruitment. Because both Bub1 and BubR1 hetero-dimerize with Bub3, a targeting adaptor for phosphorylated kinetochores, the molecular basis for such sub- *For correspondence: andrea. functionalization is unclear. We demonstrate that Bub1, but not BubR1, enhances binding of Bub3 to [email protected].
    [Show full text]
  • Kinetochore-Driven Control of Meiotic DNA Break Formation and Recombination at Centromere-Proximal Regions
    Kinetochore-driven control of meiotic DNA break formation and recombination at centromere-proximal regions Inaugural-Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakultät für Biologie an der Universität Duisburg-Essen vorgelegt von Lisa-Marie Kuhl aus Witten durchgeführt am Max Planck Institut für molekulare Physiologie Abteilung für mechanistische Zellbiologie Februar 2018 Die der vorliegenden Arbeit zugrunde liegenden Experimente wurden am Max Planck Institut für molekulare Physiologie in der Abteilung für mechanistische Zellbiologie durchgeführt. 1. Gutachter: Prof. Dr. Andrea Musacchio 2. Gutachter: Prof. Dr. Stefan Westermann Vorsitzender des Prüfungsausschusses: Prof. Dr. Hemmo Meyer Tag der mündlichen Prüfung: 13. April 2018 Diese Dissertation wird über DuEPublico, dem Dokumenten- und Publikationsserver der Universität Duisburg-Essen, zur Verfügung gestellt und liegt auch als Print-Version vor. DOI: 10.17185/duepublico/46030 URN: urn:nbn:de:hbz:464-20190418-114218-2 Alle Rechte vorbehalten. In the context of this doctoral work, the following article was published: - Vincenten, N., Kuhl, LM., Lam, I., Oke, A., Kerr, ARW., Hochwagen, A., Fung, J., Keeney, S., Vader, G., Marston, AL. (2015). The kinetochore prevents centromere- proximal crossover recombination during meiosis. Elife 4: e10850 Index I Content Content………………………………..………………………………………………...........I List of Figures ........................................................................................................... V List of Tables .........................................................................................................
    [Show full text]