OCTOBER 2006 ASCB NEWSLETTER 3 Life and Place Work and Parenting in Greater Will Take a Toll, There Is Also a Relatively Harmony
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Role of Model Organisms in the History of Mitosis Research
Downloaded from http://cshperspectives.cshlp.org/ on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press The Role of Model Organisms in the History of Mitosis Research Mitsuhiro Yanagida Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan Correspondence: [email protected] Mitosis is a cell-cycle stage during which condensed chromosomes migrate to the middle of the cell and segregate into two daughter nuclei before cytokinesis (cell division) with the aid of a dynamic mitotic spindle. The history of mitosis research is quite long, commencing well before the discovery of DNA as the repository of genetic information. However, great and rapid progress has been made since the introduction of recombinant DNA technology and discovery of universal cell-cycle control. A large number of conserved eukaryotic genes required for the progression from early to late mitotic stages have been discovered, confirm- ing that DNA replication and mitosis are the two main events in the cell-division cycle. In this article, a historical overview of mitosis is given, emphasizing the importance of diverse model organisms that have been used to solve fundamental questions about mitosis. Onko Chisin—An attempt to discover new truths by checkpoint [SAC]), then metaphase (in which studying the past through scrutiny of the old. the chromosomes are aligned in the middle of cell), anaphase A (in which identical sister chro- matids comprising individual chromosomes LARGE SALAMANDER CHROMOSOMES separate and move toward opposite poles of ENABLED THE FIRST DESCRIPTION the cell), anaphase B (in which the spindle elon- OF MITOSIS gates as the chromosomes approach the poles), itosis means “thread” in Greek. -
Spindle Assembly in Xenopus Egg Extracts
Spindle Assembly in Xenopus Egg Extracts: Respective Roles of Centrosomes and Microtubule Self-Organization Rebecca Heald, Régis Tournebize, Anja Habermann, Eric Karsenti, and Anthony Hyman Cell Biology Program, European Molecular Biology Laboratory, 69117 Heidelberg, Germany Abstract. In Xenopus egg extracts, spindles assembled end–directed translocation of microtubules by cytoplas- around sperm nuclei contain a centrosome at each pole, mic dynein, which tethers centrosomes to spindle poles. while those assembled around chromatin beads do not. However, in the absence of pole formation, microtu- Poles can also form in the absence of chromatin, after bules are still sorted into an antiparallel array around addition of a microtubule stabilizing agent to extracts. mitotic chromatin. Therefore, other activities in addi- Using this system, we have asked (a) how are spindle tion to dynein must contribute to the polarized orienta- poles formed, and (b) how does the nucleation and or- tion of microtubules in spindles. When centrosomes are ganization of microtubules by centrosomes influence present, they provide dominant sites for pole forma- spindle assembly? We have found that poles are mor- tion. Thus, in Xenopus egg extracts, centrosomes are not phologically similar regardless of their origin. In all cases, necessarily required for spindle assembly but can regu- microtubule organization into poles requires minus late the organization of microtubules into a bipolar array. uring cell division, the correct organization of mi- and Lloyd, 1994). In the absence of centrosomes, bipolar crotubules in bipolar spindles is necessary to dis- spindle assembly seems to occur through the self-organiza- D tribute chromosomes to the daughter cells. The tion of microtubules around mitotic chromatin (McKim slow growing or minus ends of the microtubules are fo- and Hawley, 1995; Heald et al., 1996; Waters and Salmon, cused at each pole, while the plus ends interact with the 1997). -
Gurdon Institute 20122011 PROSPECTUS / ANNUAL REPORT 20112010
The Wellcome Trust/Cancer Research UK Gurdon Institute 20122011 PROSPECTUS / ANNUAL REPORT 20112010 Gurdon I N S T I T U T E PROSPECTUS 2012 ANNUAL REPORT 2011 http://www.gurdon.cam.ac.uk CONTENTS THE INSTITUTE IN 2011 INTRODUCTION........................................................................................................................................3 HISTORICAL BACKGROUND..........................................................................................................4 CENTRAL SUPPORT SERVICES....................................................................................................5 FUNDING.........................................................................................................................................................5 RETREAT............................................................................................................................................................5 RESEARCH GROUPS.........................................................................................................6 MEMBERS OF THE INSTITUTE................................................................................44 CATEGORIES OF APPOINTMENT..............................................................................44 POSTGRADUATE OPPORTUNITIES..........................................................................44 SENIOR GROUP LEADERS.............................................................................................44 GROUP LEADERS.......................................................................................................................48 -
George Palade 1912-2008
George Palade, 1912-2008 Biography George Palade was born in November, 1912 in Jassy, Romania to an academic family. He graduated from the School of Medicine of the The Founding of Cell Biology University of Bucharest in 1940. His doctorial thesis, however, was on the microscopic anatomy of the cetacean delphinus Delphi. He The discipline of Cell Biology arose at Rockefeller University in the late practiced medicine in the second world war, and for a brief time af- 1940s and the 1950s, based on two complimentary techniques: cell frac- terwards before coming to the USA in 1946, where he met Albert tionation, pioneered by Albert Claude, George Palade, and Christian de Claude. Excited by the potential of the electron microscope, he Duve, and biological electron microscopy, pioneered by Keith Porter, joined the Rockefeller Institute for Medical Research, where he did Albert Claude, and George Palade. For the first time, it became possible his seminal work. He left Rockefeller in 1973 to chair the new De- to identify the components of the cell both structurally and biochemi- partment of Cell Biology at Yale, and then in 1990 he moved to the cally, and therefore begin understanding the functioning of cells on a University of California, San Diego as Dean for Scientific Affairs at molecular level. These individuals participated in establishing the Jour- the School of Medicine. He retired in 2001, at age 88. His first wife, nal of Cell Biology, (originally the Journal of Biochemical and Biophysi- Irina Malaxa, died in 1969, and in 1970 he married Marilyn Farquhar, cal Cytology), which later led, in 1960, to the organization of the Ameri- another prominent cell biologist, and his scientific collaborator. -
Mechanistic Mathematical Modeling of Spatiotemporal Microtubule Dynamics and Regulation in Vivo
Research Collection Doctoral Thesis Mechanistic mathematical modeling of spatiotemporal microtubule dynamics and regulation in vivo Author(s): Widmer, Lukas A. Publication Date: 2018 Permanent Link: https://doi.org/10.3929/ethz-b-000328562 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library diss. eth no. 25588 MECHANISTICMATHEMATICAL MODELINGOFSPATIOTEMPORAL MICROTUBULEDYNAMICSAND REGULATION INVIVO A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (dr. sc. eth zurich) presented by LUKASANDREASWIDMER msc. eth cbb born on 11. 03. 1987 citizen of luzern and ruswil lu, switzerland accepted on the recommendation of Prof. Dr. Jörg Stelling, examiner Prof. Dr. Yves Barral, co-examiner Prof. Dr. François Nédélec, co-examiner Prof. Dr. Linda Petzold, co-examiner 2018 Lukas Andreas Widmer Mechanistic mathematical modeling of spatiotemporal microtubule dynamics and regulation in vivo © 2018 ACKNOWLEDGEMENTS We are all much more than the sum of our work, and there is a great many whom I would like to thank for their support and encouragement, without which this thesis would not exist. I would like to thank my supervisor, Prof. Jörg Stelling, for giving me the opportunity to conduct my PhD research in his group. Jörg, you have been a great scientific mentor, and the scientific freedom you give your students is something I enjoyed a lot – you made it possible for me to develop my own theories, and put them to the test. I thank you for the trust you put into me, giving me a challenge to rise up to, and for always having an open door, whether in times of excitement or despair. -
Nov. Issue of ASCB Newsletter
ASCB NOVEMBER 2010 NEWSLETTER VOLUME 33, NUMBER 10 Improving Submit Images to Work–Life Satisfaction The Cell: An Image Library Page 15 Published Images and Videos Accepted To further discovery and education, the ASCB’s repository for cellular images and videos accepts Are You First published and unpublished work. According to Caroline Kane, the PI for The Cell: An Image Author or Last? Library, “This new repository of cell images is expertly reviewed and annotated to provide a valuable resource for researchers, educators, and the general public. Access to the database is Page 21 free and open. The Cell aims to advance research and, ultimately, have a positive impact upon human health and education.” The Cell’s expanded licensing options for contributors and users will promote faster growth and enhanced usefulness. The Cell is available as a repository for images in published articles Cell Biology and supplementary materials. It can also serve as an archive for additional images and movies Italian Style that helped lead to discovery. Page 23 Understanding Distribution Rights The Cell welcomes unpublished and previously published images, but contributors must have the distribution rights. Many publishers, like the ASCB, which publishes Molecular Biology of the Cell, allow authors to retain copyright. However, publishers may nevertheless limit distribution Inside of the work. Limitations may relate to intended use (commercial and/or educational), alteration, and attribution. Authors should confirm the distribution rights before selecting the appropriate Public Policy Briefing 3 option when contributing to The Cell. Contributors with appropriate distribution rights might select a public domain license. Annual Meeting Program 6 This license is appropriate for those who own copyright without limitations as well as for those Networking at Annual Meeting 11 submitting images or videos where all authors are U.S. -
Marilyn Gist Farquhar (1928-2019)
Marilyn Gist Farquhar 1928–2019 A Biographical Memoir by Dorothy Ford Bainton, Pradipta Ghosh, and Samuel C. Silverstein ©2021 National Academy of Sciences. Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. MARILYN GIST FARQUHAR July 11, 1928–November 23, 2019 Elected to the NAS, 1984 Marilyn Farquhar will be remembered professionally for her original contributions to the fields of intercellular junctions, which she discovered and described in collab- oration with George Palade, membrane trafficking (endo- cytosis, regulation of pituitary hormone secretion, and crinophagy), localization, signaling, the pharmacology of intracellular heterotrimeric G proteins and the discovery of novel modulators of these G proteins, and podocyte biology and pathology. Over her 65-year career she was a founder of three of these fields (intercellular junctions, crinophagy, and spatial regulation of intracellular G-pro- tein signaling) and was a recognized and valued leader in guiding the evolution of all of them. She sponsored, mentored, and nurtured 64 pre- and postdoctoral fellows, By Dorothy Ford Bainton, Pradipta Ghosh, and Samuel research associates, and visiting scientists. Her work was C. Silverstein largely supported by uninterrupted funding from the National Institutes of Health (NIH). She was listed as one of the ten most cited women authors by Citation Index from 1981 to 1989. She served as President of the American Society of Cell Biology (1981-1982) and received the society’s prestigious E. B. Wilson Award for her many contributions to basic cell biology in 1987, the Distinguished Scientist Medal of the Electron Microscopy Society of America (1987), the Homer Smith Award of the American Society of Nephrology (1988), the Histochemical Society’s Gomori award (1999), FASEB’s Excel- lence in Science Award (2006), and the Rous-Whipple (1991) and Gold Headed Cane (2020) awards of the American Society for Investigative Pathology. -
Intracellular Scaling Mechanisms
Downloaded from http://cshperspectives.cshlp.org/ on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Intracellular Scaling Mechanisms Simone Reber1,2 and Nathan W. Goehring3 1Max Planck Institute of Molecular Genetics and Cell Biology, 01307 Dresden, Germany 2Integrative Research Institute (IRI) for the Life Sciences, Humboldt-Universita¨t zu Berlin, 10115 Berlin, Germany 3MRC Laboratory of Molecular Cell Biology, University College London, WC1E 6BT London, United Kingdom Correspondence: [email protected] Organelle function is often directly related to organelle size. However, it is not necessarily absolute size but the organelle-to-cell-size ratio that is critical. Larger cells generally have increased metabolic demands, must segregate DNA over larger distances, and require larger cytokinetic rings to divide. Thus, organelles often must scale to the size of the cell. The need for scaling is particularly acute during early development during which cell size can change rapidly. Here, we highlight scaling mechanisms for cellular structures as diverse as centro- somes, nuclei, and the mitotic spindle, and distinguish them from more general mechanisms of size control. In some cases, scaling is a consequence of the underlying mechanism of organelle size control. In others, size-control mechanisms are not obviously related to cell size, implying that scaling results indirectly from cell-size-dependent regulation of size- control mechanisms. cell is a highly organized unit in which We also know that cell size can vary dra- Afunctions are compartmentalized into spe- matically even within one organism. Xenopus cific organelles. Each cellular organelle carries laevis is an extreme example. The smallest so- out a distinct function, which is not only related matic cells are only a few micrometers in diam- to its molecular composition but, in many cas- eter, whereas the oocyte and one-cell embryo es, also to its size. -
Findings Magazine
FindingsFALL 2017 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of General Medical Sciences features 1 Protein Paradox: Enrique De La Cruz Aims to Understand Actin 18 The Science of Size: Rebecca Heald Explores Size Control in Amphibians articles 5 A World Without Pain 6 Demystifying General Anesthetics 10 There’s an “Ome” for That —TORSTEN WITTMANN, UNIVERSITY OF CALIFORNIA, SAN FRANCISCO ON THE COVER This human skin cell was bathed 17 Lighting Up the Promise of Gene Therapy in a liquid containing a growth factor. The procedure for Glaucoma triggered the formation of specialized protein structures that enable the cell to move. We depend on our cells 24 NIGMS Is on Instagram! being able to move for basic functions such as the healing of wounds and the launch of immune responses. departments 3 Cool Tools: High-Resolution Microscopy— Editor In Living Color Chris Palmer 9 Spotlight on Videos: Scientists in Action Contributing Writers Carolyn Beans 14 S potlight on the Cell: The Extracellular Matrix, Kathryn Calkins Emily Carlson a Multitasking Marvel Alisa Zapp Machalek Chris Palmer Erin Ross Ruchi Shah activities Production Manager 22 Superstars of Science Quiz Susan Athey Online Editor The Last Word (inside back cover) Susan Athey Find Us At Image credits: Unless otherwise credited, images are royalty-free stock images. https://twitter.com/nigms https://www.facebook.com/nigms.nih.gov Produced by the Offce of Communications and Public Liaison https://www.instagram.com/nigms_nih National Institute of General Medical Sciences National Institutes of Health https://www.youtube.com/user/NIGMS U.S. -
Ordered Proteolysis in Anaphase Inactivates Plk1 To
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central JCBArticle Ordered proteolysis in anaphase inactivates Plk1 to contribute to proper mitotic exit in human cells Catherine Lindon and Jonathon Pines Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Zoology, University of Cambridge, Cambridge CB2 1QR, England, UK e have found that key mitotic regulators show identified a putative destruction box in Plk1 that is required distinct patterns of degradation during exit from for degradation of Plk1 in anaphase, and have examined W mitosis in human cells. Using a live-cell assay for the effect of nondegradable Plk1 on mitotic exit. Our results proteolysis, we show that two of these regulators, polo-like show that Plk1 proteolysis contributes to the inactivation of kinase 1 (Plk1) and Aurora A, are degraded at different Plk1 in anaphase, and that this is required for the proper times after the anaphase-promoting complex/cyclosome control of mitotic exit and cytokinesis. Our experiments (APC/C) switches from binding Cdc20 to Cdh1. Therefore, reveal a role for APC/C-mediated proteolysis in exit from events in addition to the switch from Cdc20 to Cdh1 control mitosis in human cells. the proteolysis of APC/CCdh1 substrates in vivo. We have Introduction In animal cells, the regulated proteolysis of cyclin A, cyclin APC/C switches from its Cdc20- to Cdh1-activated form, or B1, and securin during mitosis are all essential for the proper whether they are degraded at distinct times, perhaps to coor- timing of events leading up to separation of sister chromatids dinate exit from mitosis. -
NIH Conflict of Interest Regs Revised
OCTOBEROCTOBER 2005 www.asbmb.org Constituent Society of FASEB AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY NIH Conflict of Interest Regs Revised SEE PAGE 30 FOR NEW CLARA BENSON TRAVEL FELLOWSHIP AWARD Held in conjunction with EB2006 Custom Antibodies Your Way! Choose the protocol that is right for you! QwikScreen ™: 65 day, 2 rabbit protocol - 4 immunizations, 3 bleeds/rabbit (~100ml serum), customer supplied peptide/protein - Options: Peptide synthesis, immunograde Conjugation to carrier u ELISA u u Animal extensionsMS analysis $685 Standard: 80 day, 2 rabbit protocol - 5 immunizations, 5 bleeds/rabbit (~ 200ml ser Options: um), ELISA, customer supplied peptide/pr Peptide synthesis MS Check™ peptide sequence confirmation u HPLC purified peptide Affinity purification otein - Pinnacle: $975 u HPLC and MS analysis u Complete Affinity Purified Protocol- Animal extensions 2 rabbit pr 5 bleeds/rabbitotocol, (~ 200mlepitope serum), design, peptide PhD technical synthesis support, (up to 20mer),5 immunizations, HPLC purified to ~85%, 5+mg peptide to customer, ELISA, evaluation period, affinity purification, and morMS Check™ peptide sequence confirmationNo Hidden Charges! e… - Discounts for Multiple Protocols$1795 , Includes peptide sequencing by CID MS/MS– u Guaranteed Peptide Let our enthusiasm for scienceExpert workTechnical for SupportFidelity! P: 508.303.8222 www.21stcenturybio.com Toll-free: 877.217.8238 F: 508.303.8333 you! E: [email protected] www.asbmb.org AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY OCTOBER -
Sugar Coated Sugar Has Become Notorious, with Countless Claims of Its Ill Effects on Health
HHMI BULLETIN N OV . ’11 VOL.24 • NO.04 • 4000 Jones Bridge Road Chevy Chase, Maryland 20815-6789 Hughes Medical Institute Howard www.hhmi.org Address Service Requested Sugar Coated Sugar has become notorious, with countless claims of its ill effects on health. But not all sugars are bad for you. Consider fucose, an essential sugar the body needs. Without it, neurons can’t communicate, kidneys can’t filter blood, and skin can’t stay hydrated. Chemical biologist Carolyn • Bertozzi and her group are trying to learn more about the role of fucose in www.hhmi.org development. To do this, they injected modified versions of fucose into live, single-celled zebrafish embryos. As the embryos developed, the altered fucose molecules were incorporated into the sugars that coat cell surfaces. Using a simple chemical reaction, the team attached a labeled probe molecule to the altered fucose so they could visualize its location in the developing embryo. In this image of a 19-hour-old zebrafish embryo, labeled fucose (red) glows in the peripheral cells. Just one of many ways chemistry is helping answer biological questions (see “Living Chemistry,” page 12). YEAR OF CHEMISTRY Chemists fascinated by the complexity of biology are solving problems in neuroscience, immunology, and cell signaling. v ol. 24 / no. no. / Karen Dehnert and Scott Laughlin / Bertozzi lab In This Issue: Traveling Microscope / Lemur vs Mouse / Spotlight on Science Teacher Training 04 ObservatiOns ThE GIvInG TREE The history of science overflows with captivating stories of break- Johann Kraut in 1869 and Hermann Kolbe in 1874, but then, unfortunately, throughs that led to innovative disease treatments.