Hhmi Bulletin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Meet the Faculty Candidates
MEET THE FACULTY CANDIDATES Candidates are displayed in alphabetically by last name. Prospective employers are invited to attend and while no event pre-registration is required however they must be registered for the BMES 2018 Annual Meeting. A business card will be required to enter the event. COMPLETE DETAILED CANDIDATE INFORMATION AVAILABLE AT www.bmes.org/faculty. Specialty - Biomaterials Alessia Battigelli Woo-Sik Jang Sejin Son John Clegg Patrick Jurney Young Hye Song R. Cornelison Kevin McHugh Ryan Stowers Yonghui Ding Yifeng Peng Varadraj Vernekar Victor Hernandez-Gordillo Shantanu Pradhan Scott Wilson Marian Hettiaratchi Eiji Saito Yaoying Wu Era Jain Andrew Shoffstall Specialty - Biomechanics Adam Abraham Vince Fiore Panagiotis Mistriotis Edward Bonnevie Zeinab Hajjarian Simone Rossi Alexander Caulk Xiao Hu Alireza Yazdani Venkat Keshav Chivukula Heidi Kloefkorn Rana Zakerzadeh Jacopo Ferruzzi Yizeng Li Specialty - Biomedical Imaging Mahdi Bayat Chong Huang Katheryne Wilson Zhichao Fan Jingfei Liu Kihwan Han Alexandra Walsh Specialty - BioMEMS Jaehwan Jung Aniruddh Sarkar Mengxi Wu Specialty - Cardiovascular Engineering Reza Avaz Kristin French Zhenglun (Alan) Wei Specialty - Cellular Engineering Annie Bowles Kate Galloway Kuei-Chun Wang Alexander Buffone Laurel Hind Mahsa Dabagh Matthew Kutys See other side for more candidates Specialty - Device Engineering (Microfluidics, Electronics, Machine-Body interface) Taslim Al-Hilal Brian Johnson David Myers Jungil Choi Tae Jin Kim Max Villa Haishui Huang Jiannan Li Ying Wang Specialty -
Elaine Fuchs
Women in Cell Science 4877 Elaine Fuchs FMW: How has your research career impacted on your personal life and vice Elaine Fuchs was born in the United versa? States and raised just outside Chicago. In 1972 she graduated with EF: My father was a geochemist who a B.S. and highest distinction in specialized in meteorites at Argonne the Chemical Sciences from the National Laboratories. My aunt, who University of Illinois. Her lived in the house next door, was a undergraduate thesis research in biologist at Argonne, and an ardent physical chemistry focused on the feminist. My sister, four years my senior, electrodiffusion of nickel through is now a neuroscientist. My mother is a quartz. She moved from Illinois to housewife, who loves gardening and Princeton University to study for her cooking and used to play piano and paint PhD in Biochemistry, investigating in oils. Growing up in such a family, and changes in bacterial cell walls during with farm fields, creeks and ponds in the sporulation in Bacillus megaterium. near vicinity, I developed a deep interest Elaine Fuchs in her lab in 1980. In 1977, she joined Howard Green, in science that has carried me through then at Massachusetts Institute my professional life. of Technology (MIT), for her If I think back to the family influences during Vietnam War protests. Although postdoctoral studies. There, she that shaped my choice of career, I my near perfect performances on tough focused on elucidating the remember that my Dad strongly physics and chemistry exams may have mechanisms underlying the balance advocated my being an elementary turned a few heads, I don’t feel that it between growth and differentiation in school teacher. -
Medical Advisory Board September 1, 2006–August 31, 2007
hoWard hughes medical iNstitute 2007 annual report What’s Next h o W ard hughes medical i 4000 oNes Bridge road chevy chase, marylaNd 20815-6789 www.hhmi.org N stitute 2007 a nn ual report What’s Next Letter from the president 2 The primary purpose and objective of the conversation: wiLLiam r. Lummis 6 Howard Hughes Medical Institute shall be the promotion of human knowledge within the CREDITS thiNkiNg field of the basic sciences (principally the field of like medical research and education) and the a scieNtist 8 effective application thereof for the benefit of mankind. Page 1 Page 25 Page 43 Page 50 seeiNg Illustration by Riccardo Vecchio Südhof: Paul Fetters; Fuchs: Janelia Farm lab: © Photography Neurotoxin (Brunger & Chapman): Page 3 Matthew Septimus; SCNT images: by Brad Feinknopf; First level of Rongsheng Jin and Axel Brunger; iN Bruce Weller Blake Porch and Chris Vargas/HHMI lab building: © Photography by Shadlen: Paul Fetters; Mouse Page 6 Page 26 Brad Feinknopf (Tsai): Li-Huei Tsai; Zoghbi: Agapito NeW Illustration by Riccardo Vecchio Arabidopsis: Laboratory of Joanne Page 44 Sanchez/Baylor College 14 Page 8 Chory; Chory: Courtesy of Salk Janelia Farm guest housing: © Jeff Page 51 Ways Illustration by Riccardo Vecchio Institute Goldberg/Esto; Dudman: Matthew Szostak: Mark Wilson; Evans: Fred Page 10 Page 27 Septimus; Lee: Oliver Wien; Greaves/PR Newswire, © HHMI; Mello: Erika Larsen; Hannon: Zack Rosenthal: Paul Fetters; Students: Leonardo: Paul Fetters; Riddiford: Steitz: Harold Shapiro; Lefkowitz: capacity Seckler/AP, © HHMI; Lowe: Zack Paul Fetters; Map: Reprinted by Paul Fetters; Truman: Paul Fetters Stewart Waller/PR Newswire, Seckler/AP, © HHMI permission from Macmillan Page 46 © HHMI for Page 12 Publishers, Ltd.: Nature vol. -
George Palade 1912-2008
George Palade, 1912-2008 Biography George Palade was born in November, 1912 in Jassy, Romania to an academic family. He graduated from the School of Medicine of the The Founding of Cell Biology University of Bucharest in 1940. His doctorial thesis, however, was on the microscopic anatomy of the cetacean delphinus Delphi. He The discipline of Cell Biology arose at Rockefeller University in the late practiced medicine in the second world war, and for a brief time af- 1940s and the 1950s, based on two complimentary techniques: cell frac- terwards before coming to the USA in 1946, where he met Albert tionation, pioneered by Albert Claude, George Palade, and Christian de Claude. Excited by the potential of the electron microscope, he Duve, and biological electron microscopy, pioneered by Keith Porter, joined the Rockefeller Institute for Medical Research, where he did Albert Claude, and George Palade. For the first time, it became possible his seminal work. He left Rockefeller in 1973 to chair the new De- to identify the components of the cell both structurally and biochemi- partment of Cell Biology at Yale, and then in 1990 he moved to the cally, and therefore begin understanding the functioning of cells on a University of California, San Diego as Dean for Scientific Affairs at molecular level. These individuals participated in establishing the Jour- the School of Medicine. He retired in 2001, at age 88. His first wife, nal of Cell Biology, (originally the Journal of Biochemical and Biophysi- Irina Malaxa, died in 1969, and in 1970 he married Marilyn Farquhar, cal Cytology), which later led, in 1960, to the organization of the Ameri- another prominent cell biologist, and his scientific collaborator. -
Structure & Symmetry
HAPPY HOLIDAYS ASBMB MEMBERS December 2008 Structure & Symmetry American Society for Biochemistry and Molecular Biology J\\PfliGifk\`ej n`k_*.#'''>=G$kX^^\[FI=Zcfe\j 8 $@C- 9 "@C- : ; >=G$kX^^\[Kil\FI=Zcfe\jXi\kiXej]\Zk\[`ekf?<B)0* Z\ccjXe[k_\kX^^\[gifk\`ejXi\m`jlXc`q\[[li`e^@C$- `e[lZ\[elZc\XikiXejcfZXk`feJK8K*#gXe\c8Xe[9 Xe[`e Ôcfgf[`XXe[jki\jjÔY\i]fidXk`fe8Zk`e#gXe\c:Xe[; % Kil\FI= Fi`>\e\jXclk\j >\efd\n`[\FI=Zcfe\j k_\>=Gg`fe\\ij ]fik_\`iEfY\c ]fikX^^\[gifk\`e\ogi\jj`fe Gi`q\XnXi[ ×:$k\id`eXckX^f]>=G ×J\hl\eZ\m\i`Ô\[Xe[^lXiXek\\[ ×<Xj`cpj_lkkc\[`ekf)'[\jk`eXk`fem\Zkfij ×KiXej]\Zk`fe$i\X[p1('l^gcXjd`[;E8 fi`^\e\%Zfd&fi] ORG-041-GFPTaggedAd_ASBMB_v7.indd 1 10/20/08 12:29:39 PM contents DECEMBER 2008 ON THE COVER: Captivated by the symmetry society news of molecular structure, Sung-Hou Kim has been a 2 From the Editor leader in revealing symmetry 3 President’s Message through his studies in crystallography and 5 Letters to the Editor structural genomics. 30 6 Washington Update 12 Retrospective: Anthony G. San Pietro FASEB releases new Breakthroughs in special interest Bioscience. 6 13 Science’s Role in Foreign Policy 14 ASBMB Round Table: Jim Wells and Mary Woolley 16 Keeping Women in Science 19 Grammar and Writing Tips 2009 meeting 20 The 2009 Fritz Lipmann Lectureship: Douglas C. Rees 21 The 2009 ASBMB Merck Award: John Kuriyan 22 The 2009 FASEB Excellence in Science Award: Susan Lindquist science focus 30 Sung-Hou Kim: Consummate Crystallographer departments 7 News from the Hill 10 Member Spotlight 23 Education and Training A leaky pipeline for women scientists. -
Schedule of C Ourses
2017–2018 Schedule of Courses Schedule The David Rockefeller Graduate Program offers a Required reading: Molecular Biology of the Cell by Bruce Alberts et al.; Molecular Cell Biology by James E. Darnell et al. selection of courses, many of which students can Recommended reading: Basic Histology by Luiz Carlos Junqueira choose based on their interests and area of thesis et al. research. Organized by Rockefeller faculty, and taught Method of evaluation: Attendance, participation in the discussions, by scientists at the top of their fields, both from within student presentations, and a final oral exam and outside of the university, these courses are designed to provide a stimulating and dynamic curriculum that Cell Cycle Control students can tailor to fit their personal goals, in FREDERICK R. CROSS and HIRONORI FUNABIKI consultation with the dean of graduate studies. This seminar explores the current understanding of eukaryotic cell cycle control. Topics include the construction of a biochemical oscillator and overall structure of cell cycle control; positive and Biochemical and Biophysical Methods negative control of DNA replication; spindle morphogenesis and function; chromosome cohesion control; surveillance mechanisms SETH A. DARST and MICHAEL P. ROUT (checkpoints) monitoring spindle and DNA integrity; and control of This course presents the fundamental principles of biochemistry proliferation (start/restriction point control). The seminar relies heavily and biophysics, with an emphasis on methodologies. It addresses on studies in model organisms, but the emphasis throughout will be issues of protein and nucleic acid structure and the forces that on aspects of cell cycle control conserved among eukaryotes. underlie stability and govern the formation of specific three- Class length and frequency: 2.5-hour lecture and discussion, dimensional structures. -
Nov. Issue of ASCB Newsletter
ASCB NOVEMBER 2010 NEWSLETTER VOLUME 33, NUMBER 10 Improving Submit Images to Work–Life Satisfaction The Cell: An Image Library Page 15 Published Images and Videos Accepted To further discovery and education, the ASCB’s repository for cellular images and videos accepts Are You First published and unpublished work. According to Caroline Kane, the PI for The Cell: An Image Author or Last? Library, “This new repository of cell images is expertly reviewed and annotated to provide a valuable resource for researchers, educators, and the general public. Access to the database is Page 21 free and open. The Cell aims to advance research and, ultimately, have a positive impact upon human health and education.” The Cell’s expanded licensing options for contributors and users will promote faster growth and enhanced usefulness. The Cell is available as a repository for images in published articles Cell Biology and supplementary materials. It can also serve as an archive for additional images and movies Italian Style that helped lead to discovery. Page 23 Understanding Distribution Rights The Cell welcomes unpublished and previously published images, but contributors must have the distribution rights. Many publishers, like the ASCB, which publishes Molecular Biology of the Cell, allow authors to retain copyright. However, publishers may nevertheless limit distribution Inside of the work. Limitations may relate to intended use (commercial and/or educational), alteration, and attribution. Authors should confirm the distribution rights before selecting the appropriate Public Policy Briefing 3 option when contributing to The Cell. Contributors with appropriate distribution rights might select a public domain license. Annual Meeting Program 6 This license is appropriate for those who own copyright without limitations as well as for those Networking at Annual Meeting 11 submitting images or videos where all authors are U.S. -
Marilyn Gist Farquhar (1928-2019)
Marilyn Gist Farquhar 1928–2019 A Biographical Memoir by Dorothy Ford Bainton, Pradipta Ghosh, and Samuel C. Silverstein ©2021 National Academy of Sciences. Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. MARILYN GIST FARQUHAR July 11, 1928–November 23, 2019 Elected to the NAS, 1984 Marilyn Farquhar will be remembered professionally for her original contributions to the fields of intercellular junctions, which she discovered and described in collab- oration with George Palade, membrane trafficking (endo- cytosis, regulation of pituitary hormone secretion, and crinophagy), localization, signaling, the pharmacology of intracellular heterotrimeric G proteins and the discovery of novel modulators of these G proteins, and podocyte biology and pathology. Over her 65-year career she was a founder of three of these fields (intercellular junctions, crinophagy, and spatial regulation of intracellular G-pro- tein signaling) and was a recognized and valued leader in guiding the evolution of all of them. She sponsored, mentored, and nurtured 64 pre- and postdoctoral fellows, By Dorothy Ford Bainton, Pradipta Ghosh, and Samuel research associates, and visiting scientists. Her work was C. Silverstein largely supported by uninterrupted funding from the National Institutes of Health (NIH). She was listed as one of the ten most cited women authors by Citation Index from 1981 to 1989. She served as President of the American Society of Cell Biology (1981-1982) and received the society’s prestigious E. B. Wilson Award for her many contributions to basic cell biology in 1987, the Distinguished Scientist Medal of the Electron Microscopy Society of America (1987), the Homer Smith Award of the American Society of Nephrology (1988), the Histochemical Society’s Gomori award (1999), FASEB’s Excel- lence in Science Award (2006), and the Rous-Whipple (1991) and Gold Headed Cane (2020) awards of the American Society for Investigative Pathology. -
Download Full Book
Vegas at Odds Kraft, James P. Published by Johns Hopkins University Press Kraft, James P. Vegas at Odds: Labor Conflict in a Leisure Economy, 1960–1985. Johns Hopkins University Press, 2010. Project MUSE. doi:10.1353/book.3451. https://muse.jhu.edu/. For additional information about this book https://muse.jhu.edu/book/3451 [ Access provided at 25 Sep 2021 14:41 GMT with no institutional affiliation ] This work is licensed under a Creative Commons Attribution 4.0 International License. Vegas at Odds studies in industry and society Philip B. Scranton, Series Editor Published with the assistance of the Hagley Museum and Library Vegas at Odds Labor Confl ict in a Leisure Economy, 1960– 1985 JAMES P. KRAFT The Johns Hopkins University Press Baltimore © 2010 The Johns Hopkins University Press All rights reserved. Published 2010 Printed in the United States of America on acid- free paper 2 4 6 8 9 7 5 3 1 The Johns Hopkins University Press 2715 North Charles Street Baltimore, Mary land 21218- 4363 www .press .jhu .edu Library of Congress Cataloging- in- Publication Data Kraft, James P. Vegas at odds : labor confl ict in a leisure economy, 1960– 1985 / James P. Kraft. p. cm.—(Studies in industry and society) Includes bibliographical references and index. ISBN- 13: 978- 0- 8018- 9357- 5 (hardcover : alk. paper) ISBN- 10: 0- 8018- 9357- 7 (hardcover : alk. paper) 1. Labor movement— Nevada—Las Vegas— History—20th century. 2. Labor— Nevada—Las Vegas— History—20th century. 3. Las Vegas (Nev.)— Economic conditions— 20th century. I. Title. HD8085.L373K73 2009 331.7'6179509793135—dc22 2009007043 A cata log record for this book is available from the British Library. -
Hhmi Bulletin 3 4 Hhmi Club
HHMI BULLETIN 4000 Jones Bridge Road • Chevy Chase, Maryland 20815-6789 Howard Hughes Medical Institute www.hhmi.org One Lump or Two? in this issue Once again, those fast-growing yeast find a way to turn a The Silicon Marvel long-held theory on its head. This time, it’s about prions, • Prions for Good which aren’t as universally nasty as once suspected. Some may actually help organisms evolve. The yeast colony shown here www.hhmi.org A Kaleidoscopic View contains a protein in its prion form. Because the prion, known as PSI+, is self-replicating and forms fibrous amyloids, the yeast look lumpy and bumpy—strikingly different from normally smooth yeast. Susan Lindquist’s group has found 19 yeast proteins that can switch back and forth between a normal and a prion version. The prions are thought to help the yeast adapt to changing conditions (see “A Silver Lining,” page 22). LIGHT MOVES v ol. 23 Heather True / Lindquist lab /no. 02 O b s e r v a t i O n s 16 Secret Agent MAn Skin cells do more than just cover our bodies. As a neurology resident, Stanley Prusiner saw Creutzfeldt–Jakob agent began to emerge. These data established, for the first time, that Keratinocytes, for example, anchor immune cells disease kill a patient in a matter of months. Researchers knew the rare a particular macromolecule was required for infectivity and that this within the epidermis, move and proliferate during neurodegenerative disease and scrapie, a similar disease in sheep, macromolecule was a protein …. wound healing, and even secrete inhibitory molecules were infectious but not as a result of a typical virus. -
Division of Extramural Activities Annual Report 2002
Division of Extramural Activities Annual Report 2002 National Institutes of Health National Cancer Institute Molecular Diagnosis of Cancer Gene expression profiling using DNA microarrays is a technology that arose as a consequence of the Human Genome Project. With DNA microarrays, it is possible to determine the activity (“expression”) of tens of thousands of genes in parallel on microarray plates. The expression of genes influences the biological behavior of a cell because it dictates which proteins the cell can make and gives cells their unique characteristics. In the DNA microarray images shown at the bottom of the cover illustration, each spot represents a different human gene. Red, yellow, and green spots indicate that a gene is expressed at high, intermediate, and low levels, respectively. The pattern of expression of all of the genes in a cell constitutes its gene expression “profile.” Using DNA microarrays, different types of normal and malignant cells can be distinguished from one another because they have distinct gene expression profiles. Shown at the top of the cover illustration are photomicrographs of lymph node biopsies from two patients with diffuse large B cell lymphoma. The tumor at the right belongs to the germinal center B cell-like subgroup of diffuse large B cell lymphoma. Patients with this lymphoma type have a relatively favorable 5-year survival rate of 59% following multi-agent chemotherapy. The tumor at the left belongs to the activated B cell-like subgroup of diffuse large B cell lymphoma. Patients with this lymphoma type have a less favorable 5-year survival rate of 31%. Although the tumors from these patients were indistinguishable histologically, they had striking differences in their gene expression profiles, as exemplified by the microarray images shown below each lymphoma subgroup. -
NIH Conflict of Interest Regs Revised
OCTOBEROCTOBER 2005 www.asbmb.org Constituent Society of FASEB AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY NIH Conflict of Interest Regs Revised SEE PAGE 30 FOR NEW CLARA BENSON TRAVEL FELLOWSHIP AWARD Held in conjunction with EB2006 Custom Antibodies Your Way! Choose the protocol that is right for you! QwikScreen ™: 65 day, 2 rabbit protocol - 4 immunizations, 3 bleeds/rabbit (~100ml serum), customer supplied peptide/protein - Options: Peptide synthesis, immunograde Conjugation to carrier u ELISA u u Animal extensionsMS analysis $685 Standard: 80 day, 2 rabbit protocol - 5 immunizations, 5 bleeds/rabbit (~ 200ml ser Options: um), ELISA, customer supplied peptide/pr Peptide synthesis MS Check™ peptide sequence confirmation u HPLC purified peptide Affinity purification otein - Pinnacle: $975 u HPLC and MS analysis u Complete Affinity Purified Protocol- Animal extensions 2 rabbit pr 5 bleeds/rabbitotocol, (~ 200mlepitope serum), design, peptide PhD technical synthesis support, (up to 20mer),5 immunizations, HPLC purified to ~85%, 5+mg peptide to customer, ELISA, evaluation period, affinity purification, and morMS Check™ peptide sequence confirmationNo Hidden Charges! e… - Discounts for Multiple Protocols$1795 , Includes peptide sequencing by CID MS/MS– u Guaranteed Peptide Let our enthusiasm for scienceExpert workTechnical for SupportFidelity! P: 508.303.8222 www.21stcenturybio.com Toll-free: 877.217.8238 F: 508.303.8333 you! E: [email protected] www.asbmb.org AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY OCTOBER