Vegetation Mapping Inventory Project Haleakalā National Park

Total Page:16

File Type:pdf, Size:1020Kb

Vegetation Mapping Inventory Project Haleakalā National Park National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Vegetation Mapping Inventory Project Haleakalā National Park Natural Resource Report NPS/PACN/NRR—2015/986 ON THE COVER Haleakalā Crater at Haleakalā National Park. Photograph by: Kass Green Vegetation Mapping Inventory Report Haleakalā National Park Natural Resource Report NPS/PACN/NRR—2015/986 Kass Green1, Keith Schulz2, Chad Lopez3, Alison Ainsworth4, Meagan Selvig5, Kathryn Akamine5, Colin Meston6, J. Woody Mallinson6, Elizabeth Urbanski4, Steve Fugate1, Mark Hall2, and Greg Kudray4. 1Kass Green & Associates 1101 High Court Berkeley, CA 94708 2NatureServe 2108 55th Street, Suite 220 Boulder, CO 80301 3Quantum Spatial 10033 Martin Luther King Street, Suite 200 St. Petersburg, Florida 33716 4National Park Service Pacific Island Network – Inventory and Monitoring PO Box 52 Hawaii National Park, HI 96718 5Pacific Cooperative Studies Unit (PCSU) University of Hawaii at Hilo 200 W. Kawili St. Hilo, HI 96720 6National Park Service Haleakalā National Park – Resource Management PO Box 52 Hawaii National Park, HI 96718 July 2015 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. The series also provides a forum for presenting more lengthy results that may not be accepted by publications with page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. Data in this report were collected and analyzed using methods based on established, peer-reviewed protocols and were analyzed and interpreted within the guidelines of the protocols. Views, statements, findings, conclusions, recommendations, and data in this report do not necessarily reflect views and policies of the National Park Service, U.S. Department of the Interior. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the U.S. Government. This report is available in digital format from The Pacific Island Network website (http://science.nature.nps.gov/im/units/pacn/), and the Natural Resource Publications Management website (http://www.nature.nps.gov/publications/nrpm/). To receive this report in a format optimized for screen readers, please email [email protected]. Please cite this publication as: Green, K., K. Schulz, C. Lopez, A. Ainsworth, M. Selvig, K. Akamine, C. Meston, J. Mallinson, E. Urbanski, S. Fugate, M. Hall, and G. Kudray. 2015. Vegetation mapping inventory project: Haleakalā National Park. Natural Resource Report NPS/PACN/NRR—2015/986. National Park Service, Fort Collins, Colorado. NPS 162/128974, July 2015 ii Contents Page Figures.................................................................................................................................................. vii Tables .................................................................................................................................................... ix Appendices or Appendixes ................................................................................................................... xi Executive Summary ............................................................................................................................xiii Acknowledgments ................................................................................................................................ xv Introduction ............................................................................................................................................ 1 Vegetation Classification and Mapping, Haleakalā National Park ................................................ 1 National Park Service Inventory and Monitoring Program ............................................................ 2 Overview ................................................................................................................................... 2 NPS Guidance for Vegetation Inventories ................................................................................ 3 National Vegetation Classification Standard ............................................................................. 4 Project Partners’ Roles and Responsibilities .................................................................................. 6 Pacific Island Network, Inventory and Monitoring Program .................................................... 6 NatureServe ............................................................................................................................... 8 Kass Green & Associates .......................................................................................................... 8 Haleakalā National Park ................................................................................................................. 9 Location and Setting .................................................................................................................. 9 History ..................................................................................................................................... 14 Vegetation Studies at Haleakalā National Park ....................................................................... 15 Vegetation Classification and Mapping Methods ................................................................................ 17 Development of the Proposal and Study Plan (Steps 1-3)............................................................ 17 Classification Sampling Design and Data Collection (Step 4) ..................................................... 17 Introduction ............................................................................................................................. 17 Sampling Design ..................................................................................................................... 17 Field Data Collection ............................................................................................................... 18 iii Contents (continued) Page Quality Control ........................................................................................................................ 20 Development of Vegetation Classification, Vegetation Type Descriptions and Field Key (Step 5) .................................................................................................................................. 20 Introduction ............................................................................................................................. 20 Data Preparation and Screening .............................................................................................. 20 Multivariate Analysis .............................................................................................................. 21 Development of Vegetation Association Key and Descriptions ............................................. 24 Acquire and Prepare Imagery (Step 7) ......................................................................................... 25 Imagery Analysis / Classification (Step 8) / GIS Project Preparation (Step 9) ............................ 26 Introduction ............................................................................................................................. 26 Image Segmentation ................................................................................................................ 27 Collect and Process Ancillary Data ......................................................................................... 28 Calibration Trip ....................................................................................................................... 29 Creation of the Classification and Regression Tree (CART) Sample Database ..................... 30 CART Modeling ...................................................................................................................... 31 Editing ..................................................................................................................................... 32 Validation (Step 10) ..................................................................................................................... 33 Draft Map and Digital Database Production ........................................................................... 33 Formal Accuracy Assessment (Step 11) ....................................................................................... 36 Introduction ............................................................................................................................. 36 Sampling Design ....................................................................................................................
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Urera Kaalae
    Plants Opuhe Urera kaalae SPECIES STATUS: Federally Listed as Endangered Genetic Safety Net Species J.K.Obata©Smithsonian Inst., 2005 IUCN Red List Ranking – Critically Endangered (CR D) Hawai‘i Natural Heritage Ranking ‐ Critically Imperiled (G1) Endemism – O‘ahu Critical Habitat ‐ Designated SPECIES INFORMATION: Urera kaalae, a long‐lived perennial member of the nettle family (Urticaceae), is a small tree or shrub 3 to 7 m (10 to 23 ft) tall. This species can be distinguished from the other Hawaiian species of the genus by its heart‐shaped leaves. DISTRIBUTION: Found in the central to southern parts of the Wai‘anae Mountains on O‘ahu. ABUNDANCE: The nine remaining subpopulations comprise approximately 40 plants. LOCATION AND CONDITION OF KEY HABITAT: Urera kaalae typically grows on slopes and in gulches in diverse mesic forest at elevations of 439 to 1,074 m (1,440 to 3,523 ft). The last 12 known occurrences are found on both state and privately owned land. Associated native species include Alyxia oliviformis, Antidesma platyphyllum, Asplenium kaulfusii, Athyrium sp., Canavalia sp., Charpentiera sp., Chamaesyce sp., Claoxylon sandwicense, Diospyros hillebrandii, Doryopteris sp., Freycinetia arborea, Hedyotis acuminata, Hibiscus sp., Nestegis sandwicensis, Pipturus albidus, Pleomele sp., Pouteria sandwicensis, Psychotria sp., Senna gaudichaudii (kolomona), Streblus pendulinus, Urera glabra, and Xylosma hawaiiense. THREATS: Habitat degradation by feral pigs; Competition from alien plant species; Stochastic extinction; Reduced reproductive vigor due to the small number of remaining individuals. CONSERVATION ACTIONS: The goals of conservation actions are not only to protect current populations, but also to establish new populations to reduce the risk of extinction.
    [Show full text]
  • MSRP Appendix E
    Appendix E. Exotic Plant Species Reported from the South Florida Ecosystem. Community types are indicated where known Species High Pine Scrub Scrubby high pine Beach dune/ Coastal strand Maritime hammock Mesic temperate hammock Tropical hardwood Pine rocklands Scrubby flatwoods Mesic pine flatwoods Hydric pine flatwoods Dry prairie Cutthroat grass Wet prairie Freshwater marsh Seepage swamp Flowing water swamp Pond swamp Mangrove Salt marsh Abelmoschus esculentus Abrus precatorius X X X X X X X X X X X X Abutilon hirtum Abutilon theophrasti Acacia auriculiformis X X X X X X X X X Acacia retinoides Acacia sphaerocephala Acalypha alopecuroidea Acalypha amentacea ssp. wilkesiana Acanthospermum australe Acanthospermum hispidum Achyranthes aspera var. X aspera Achyranthes aspera var. pubescens Acmella pilosa Page E-1 Species High Pine Scrub Scrubby high pine Beach dune/ Coastal strand Maritime hammock Mesic temperate hammock Tropical hardwood Pine rocklands Scrubby flatwoods Mesic pine flatwoods Hydric pine flatwoods Dry prairie Cutthroat grass Wet prairie Freshwater marsh Seepage swamp Flowing water swamp Pond swamp Mangrove Salt marsh Acrocomia aculeata X Adenanthera pavonina X X Adiantum anceps X Adiantum caudatum Adiantum trapeziforme X Agave americana Agave angustifolia cv. X marginata Agave desmettiana Agave sisalana X X X X X X Agdestis clematidea X Ageratum conyzoides Ageratum houstonianum Aglaonema commutatum var. maculatum Ailanthus altissima Albizia julibrissin Albizia lebbeck X X X X X X X Albizia lebbeckoides Albizia procera Page
    [Show full text]
  • Grass Genera in Townsville
    Grass Genera in Townsville Nanette B. Hooker Photographs by Chris Gardiner SCHOOL OF MARINE and TROPICAL BIOLOGY JAMES COOK UNIVERSITY TOWNSVILLE QUEENSLAND James Cook University 2012 GRASSES OF THE TOWNSVILLE AREA Welcome to the grasses of the Townsville area. The genera covered in this treatment are those found in the lowland areas around Townsville as far north as Bluewater, south to Alligator Creek and west to the base of Hervey’s Range. Most of these genera will also be found in neighbouring areas although some genera not included may occur in specific habitats. The aim of this book is to provide a description of the grass genera as well as a list of species. The grasses belong to a very widespread and large family called the Poaceae. The original family name Gramineae is used in some publications, in Australia the preferred family name is Poaceae. It is one of the largest flowering plant families of the world, comprising more than 700 genera, and more than 10,000 species. In Australia there are over 1300 species including non-native grasses. In the Townsville area there are more than 220 grass species. The grasses have highly modified flowers arranged in a variety of ways. Because they are highly modified and specialized, there are also many new terms used to describe the various features. Hence there is a lot of terminology that chiefly applies to grasses, but some terms are used also in the sedge family. The basic unit of the grass inflorescence (The flowering part) is the spikelet. The spikelet consists of 1-2 basal glumes (bracts at the base) that subtend 1-many florets or flowers.
    [Show full text]
  • Aspects of House Finch Breeding Biology in Hawaii
    ASPECTS OF HOUSE FINCH BREEDING BIOLOGY IN HAWAII CHARLES VAN RIPER III Bent (1968) summarized information avail- Puu Laau, is the last remaining major mamane-naio able on the breeding biology of the House forest in Hawaii. Finch ( Curpodacus mexicanus). Although The stippled areas of figure 1 represent a broad spectrum of the forest types on the island of Hawaii; this species has been studied quite extensively included are native, introduced, and mixed stands of in its North American home range, little atten- vegetation. Areas 2, 3, and 5 are dry forest regions tion has been paid to it in Hawaii. Grinnell with annual rainfall of 76 cm or less; Puu Laau (2) (1911) reported on different color patterns of has mean annual rainfall of 50 cm, Puu Waawaa (3) 64 cm, and Puu Lehua (5) has 76 cm. The Kohala the House Finch in Hawaii, and Richardson Mountain complex ( 1) has a mean annual rainfall of and Bowles (1964) mentioned that on 23 June 229 cm, Puu 00 (4) has 483 cm, and the Kulani- 1960 they found a nestling that had fallen from Mauna Loa complex (6) has 317 cm. its nest on Kauai. On Mauna Kea, Berger Birds were mist-netted, color-banded, and released (1972) found House Finch nests with eggs from 1971 through 1973. Nest and tree heights were taken with a clinometer when it was impractical to as early as 6 April (1968) and as late as 17 use a tape measure. Nests and eggs were measured July (1967). Eleven nests were built on hori- with calipers and weighed on a sensitive spring bal- zontal branches of mamane (Sophora chryso- ance.
    [Show full text]
  • Department of the Interior Fish and Wildlife Service
    Thursday, February 27, 2003 Part II Department of the Interior Fish and Wildlife Service 50 CFR Part 17 Endangered and Threatened Wildlife and Plants; Final Designation or Nondesignation of Critical Habitat for 95 Plant Species From the Islands of Kauai and Niihau, HI; Final Rule VerDate Jan<31>2003 13:12 Feb 26, 2003 Jkt 200001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\27FER2.SGM 27FER2 9116 Federal Register / Vol. 68, No. 39 / Thursday, February 27, 2003 / Rules and Regulations DEPARTMENT OF THE INTERIOR units designated for the 83 species. This FOR FURTHER INFORMATION CONTACT: Paul critical habitat designation requires the Henson, Field Supervisor, Pacific Fish and Wildlife Service Service to consult under section 7 of the Islands Office at the above address Act with regard to actions carried out, (telephone 808/541–3441; facsimile 50 CFR Part 17 funded, or authorized by a Federal 808/541–3470). agency. Section 4 of the Act requires us SUPPLEMENTARY INFORMATION: RIN 1018–AG71 to consider economic and other relevant impacts when specifying any particular Background Endangered and Threatened Wildlife area as critical habitat. This rule also and Plants; Final Designation or In the Lists of Endangered and determines that designating critical Nondesignation of Critical Habitat for Threatened Plants (50 CFR 17.12), there habitat would not be prudent for seven 95 Plant Species From the Islands of are 95 plant species that, at the time of species. We solicited data and Kauai and Niihau, HI listing, were reported from the islands comments from the public on all aspects of Kauai and/or Niihau (Table 1).
    [Show full text]
  • Downloadable Data Collection
    Smetzer et al. Movement Ecology (2021) 9:36 https://doi.org/10.1186/s40462-021-00275-5 RESEARCH Open Access Individual and seasonal variation in the movement behavior of two tropical nectarivorous birds Jennifer R. Smetzer1* , Kristina L. Paxton1 and Eben H. Paxton2 Abstract Background: Movement of animals directly affects individual fitness, yet fine spatial and temporal resolution movement behavior has been studied in relatively few small species, particularly in the tropics. Nectarivorous Hawaiian honeycreepers are believed to be highly mobile throughout the year, but their fine-scale movement patterns remain unknown. The movement behavior of these crucial pollinators has important implications for forest ecology, and for mortality from avian malaria (Plasmodium relictum), an introduced disease that does not occur in high-elevation forests where Hawaiian honeycreepers primarily breed. Methods: We used an automated radio telemetry network to track the movement of two Hawaiian honeycreeper species, the ʻapapane (Himatione sanguinea) and ʻiʻiwi (Drepanis coccinea). We collected high temporal and spatial resolution data across the annual cycle. We identified movement strategies using a multivariate analysis of movement metrics and assessed seasonal changes in movement behavior. Results: Both species exhibited multiple movement strategies including sedentary, central place foraging, commuting, and nomadism , and these movement strategies occurred simultaneously across the population. We observed a high degree of intraspecific variability at the individual and population level. The timing of the movement strategies corresponded well with regional bloom patterns of ‘ōhi‘a(Metrosideros polymorpha) the primary nectar source for the focal species. Birds made long-distance flights, including multi-day forays outside the tracking array, but exhibited a high degree of fidelity to a core use area, even in the non-breeding period.
    [Show full text]
  • Keauhou Bird Conservation Center
    KEAUHOU BIRD CONSERVATION CENTER Discovery Forest Restoration Project PO Box 2037 Kamuela, HI 96743 Tel +1 808 776 9900 Fax +1 808 776 9901 Responsible Forester: Nicholas Koch [email protected] +1 808 319 2372 (direct) Table of Contents 1. CLIENT AND PROPERTY INFORMATION .................................................................... 4 1.1. Client ................................................................................................................................................ 4 1.2. Consultant ....................................................................................................................................... 4 2. Executive Summary .................................................................................................. 5 3. Introduction ............................................................................................................. 6 3.1. Site description ............................................................................................................................... 6 3.1.1. Parcel and location .................................................................................................................. 6 3.1.2. Site History ................................................................................................................................ 6 3.2. Plant ecosystems ............................................................................................................................ 6 3.2.1. Hydrology ................................................................................................................................
    [Show full text]
  • Dr JL Birch School of Biosciences the University of Melbourne Parkville, VIC 3010 E-Mail
    Dr J.L. Birch School of BioSciences The University of Melbourne Parkville, VIC 3010 e-mail: [email protected] Phone: +613-8344-5040 EMPLOYMENT Herbarium Curator and Lecturer The University of Melbourne Herbarium (MELU) June 2016-current School of Biosciences Post-Doctoral Fellow Royal Botanic Gardens Victoria. November 2011-May 2016 Supervisor: Dr Daniel J. Murphy Project Title: Systematics of Australian tussock grasses (Poaceae tribe Poeae) EDUCATION Ph.D. Botany Department and Ecology, Evolution, and Conservation Biology, University of Hawaii at Manoa (UHM). August 2011 Advisor: Dr Clifford W. Morden Dissertation title: The systematics and historical biogeography of the Asteliaceae (Asparagales) Master's Plant Biology, University of Texas at Austin (UTA). August 2004 Advisor: Dr Beryl B. Simpson Thesis title: The Gideon Lincecum Herbarium: A Floristic and Ethnobotanic Analysis B.S. Plant Biology, University of Texas at Austin. August 2001 B.S. Botany, Victoria University of Wellington. December 1990 RESEARCH Research Grants (selected): (TOTAL: $514,000 AUD) 2016 Hermon Slade Foundation ($81,000 AUD) 2016 Australian Biological Resources Study Post-doctoral Fellowship Grant ($270,000 AUD) 2015 Australian Biological Resources Study Applied Taxonomy Grant ($88,000 AUD) 2013 Cuatrecasas Travel Fellowship, Smithsonian Institution ($700 AUD/$500 USD) 2011 Association of Plant Taxonomists, IBC Graduate Student Travel Award ($2800 AUD/$2,000 USD) 2011 Graduate Student Organization (UHM), Graduate Student Travel Grant (($2800 AUD/$2,000 USD) 2010 Graduate Division (UHM), RCUH Dissertation Completion Award ($12600 AUD/$9,000 USD) 2009 National Science Foundation, Doctoral Dissertation Improvement Grant ($7500 AUD/$5,350 USD) 2009 Evolution, Ecology, and Conservation Biology Program (UHM), Watson T.
    [Show full text]
  • Maranta Leuconeura • Usually Grows About 30Cm Tall • Easy to Grow Plant • Grown for Foliage • Selectively Prune Off Larger Leaves to Promote Air Flow
    Living Walls Indoor Plant List List of recommended plants for use on indoor living walls to assist designers and other specialists with plant choice T: +353 (0)1 627 5177 W: www.sapgroup.com E: [email protected] Indoor Plant List Achimenes Erecta • Trailing plant which grows 45cm long • Bright indirect light • Will flower during the summer months • Normal moisture Adiantum Raddianum • Maidenhair fern • Light shade or dappled sunlight • Moist soil • Grown for foliage Agapanthus • Use dwarf varieties such as Snowball or Baby Pete • Evergreen • Summer flowering • Flowering height 30cm Aglaonema • Thrives in poor light areas • Grown for its foliage • Slow growing • Popular varieties include ‘Silver Queen’ and ‘Silver King’ +353 (0)1 627 5177 www.sapgroup.com [email protected] 1 Indoor Plant List Alocasia Reginula • Bright indirect light • Will rot from base if over wet • Will grow 30cm • May suffer from mealybug and aphids • Toxic if eaten Alocasia Sanderiana • Bright indirect light • Leaves will grow 40cm long • Grown for foliage • May suffer from mealybug and aphids • Toxic if eaten Anthurium Clarinervium • Grown for foliage which can grow 60cm (prune larger leaves) • Bright light but not direct for best growth • Keep soil moist • Neutral PH Anthurium Scherzerianum • Bright spot but no direct sunlight • Flowering from Spring to late summer • Grows 40cm tall • Keep compost moist +353 (0)1 627 5177 www.sapgroup.com [email protected] 2 Indoor Plant List Asparagus Fern • Asparagus Fern is the most popular variety • Grown for foliage • Bright
    [Show full text]
  • Additional Experimental Crosses in Hawaiian Bidens (Asteraceae)1
    Additional Experimental Crosses in Hawaiian Bidens (Asteraceae) 1 GEORGE W. GILLETT2 FOR THE PAST 35 YEARS the phenomenon of coast and 2.5 miles (4.0 km) east of Black Sand natural hybridization has been linked with Beach. Associated plants include Metrosideros, Hawaiian Bidens, mostly through the energetic Scaevola taccada, and Polypodium. Elev. 12 m. and discerning fieldwork of Otto Degener. Sev- Bidens menziesii var. filiformis (Gray) Sherif. eral natural hybrids were reported by Sherif Gillett 1756. Hawaii. Erect shrub 2-4 m high (1937), based on the collections of Degener growing on the south slopes of Mauna Kea in and others. The list of putative natural hybrids dry land shrub vegetation including Dodonaea,' was extended to 16 by Gillett and Lim (1970). Osteomeles, Dubautia, and mixed grasses. Elev. The latter paper reported some 23 different ex- 1,800 m. perimental F1 hybrids, indicating weak to non- Bidens mauiensis var. cuneatoides (Gray) existent genetic barriers between species and Sherff. Gillett 1873. West Maui. Decumbent giving a general confirmation to the field and herb growing on the sand hills near Waihee, herbarium studies of hybridization. The purpose with Lipochaeta, Scaevola coriacea, Nama, Fim­ of this paper is to record additional experi- bristylis, and associated dune vegetation. About mental hybrids in Hawaiian Bidens, some of 500 m from the sea, elev. 20 m. these involving two species (B. fulvescens and Bidens mauiensis var. mauiensis (Gray) B. skottsbergii) which gave poor indications of Sherff. Gillett 1872. East Maui. Decumbent interspecific hybridizations in the earlier cross- herb growing on the south slope of Mt.
    [Show full text]
  • A Landscape-Based Assessment of Climate Change Vulnerability for All Native Hawaiian Plants
    Technical Report HCSU-044 A LANDscape-bASED ASSESSMENT OF CLIMatE CHANGE VULNEraBILITY FOR ALL NatIVE HAWAIIAN PLANts Lucas Fortini1,2, Jonathan Price3, James Jacobi2, Adam Vorsino4, Jeff Burgett1,4, Kevin Brinck5, Fred Amidon4, Steve Miller4, Sam `Ohukani`ohi`a Gon III6, Gregory Koob7, and Eben Paxton2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaii National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawai‘i at Hilo, Hilo, HI 96720 4 U.S. Fish & Wildlife Service —Ecological Services, Division of Climate Change and Strategic Habitat Management, Honolulu, HI 96850 5 Hawai‘i Cooperative Studies Unit, Pacific Island Ecosystems Research Center, Hawai‘i National Park, HI 96718 6 The Nature Conservancy, Hawai‘i Chapter, Honolulu, HI 96817 7 USDA Natural Resources Conservation Service, Hawaii/Pacific Islands Area State Office, Honolulu, HI 96850 Hawai‘i Cooperative Studies Unit University of Hawai‘i at Hilo 200 W. Kawili St. Hilo, HI 96720 (808) 933-0706 November 2013 This product was prepared under Cooperative Agreement CAG09AC00070 for the Pacific Island Ecosystems Research Center of the U.S. Geological Survey. Technical Report HCSU-044 A LANDSCAPE-BASED ASSESSMENT OF CLIMATE CHANGE VULNERABILITY FOR ALL NATIVE HAWAIIAN PLANTS LUCAS FORTINI1,2, JONATHAN PRICE3, JAMES JACOBI2, ADAM VORSINO4, JEFF BURGETT1,4, KEVIN BRINCK5, FRED AMIDON4, STEVE MILLER4, SAM ʽOHUKANIʽOHIʽA GON III 6, GREGORY KOOB7, AND EBEN PAXTON2 1 Pacific Islands Climate Change Cooperative, Honolulu, HI 96813 2 U.S. Geological Survey, Pacific Island Ecosystems Research Center, Hawaiʽi National Park, HI 96718 3 Department of Geography & Environmental Studies, University of Hawaiʽi at Hilo, Hilo, HI 96720 4 U.
    [Show full text]