Linux CPU Schedulers: CFS and Muqss Comparison
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Comprehensive Review for Central Processing Unit Scheduling Algorithm
IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013 ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814 www.IJCSI.org 353 A Comprehensive Review for Central Processing Unit Scheduling Algorithm Ryan Richard Guadaña1, Maria Rona Perez2 and Larry Rutaquio Jr.3 1 Computer Studies and System Department, University of the East Caloocan City, 1400, Philippines 2 Computer Studies and System Department, University of the East Caloocan City, 1400, Philippines 3 Computer Studies and System Department, University of the East Caloocan City, 1400, Philippines Abstract when an attempt is made to execute a program, its This paper describe how does CPU facilitates tasks given by a admission to the set of currently executing processes is user through a Scheduling Algorithm. CPU carries out each either authorized or delayed by the long-term scheduler. instruction of the program in sequence then performs the basic Second is the Mid-term Scheduler that temporarily arithmetical, logical, and input/output operations of the system removes processes from main memory and places them on while a scheduling algorithm is used by the CPU to handle every process. The authors also tackled different scheduling disciplines secondary memory (such as a disk drive) or vice versa. and examples were provided in each algorithm in order to know Last is the Short Term Scheduler that decides which of the which algorithm is appropriate for various CPU goals. ready, in-memory processes are to be executed. Keywords: Kernel, Process State, Schedulers, Scheduling Algorithm, Utilization. 2. CPU Utilization 1. Introduction In order for a computer to be able to handle multiple applications simultaneously there must be an effective way The central processing unit (CPU) is a component of a of using the CPU. -
Proceedings 2005
LAC2005 Proceedings 3rd International Linux Audio Conference April 21 – 24, 2005 ZKM | Zentrum fur¨ Kunst und Medientechnologie Karlsruhe, Germany Published by ZKM | Zentrum fur¨ Kunst und Medientechnologie Karlsruhe, Germany April, 2005 All copyright remains with the authors www.zkm.de/lac/2005 Content Preface ............................................ ............................5 Staff ............................................... ............................6 Thursday, April 21, 2005 – Lecture Hall 11:45 AM Peter Brinkmann MidiKinesis – MIDI controllers for (almost) any purpose . ....................9 01:30 PM Victor Lazzarini Extensions to the Csound Language: from User-Defined to Plugin Opcodes and Beyond ............................. .....................13 02:15 PM Albert Gr¨af Q: A Functional Programming Language for Multimedia Applications .........21 03:00 PM St´ephane Letz, Dominique Fober and Yann Orlarey jackdmp: Jack server for multi-processor machines . ......................29 03:45 PM John ffitch On The Design of Csound5 ............................... .....................37 04:30 PM Pau Arum´ıand Xavier Amatriain CLAM, an Object Oriented Framework for Audio and Music . .............43 Friday, April 22, 2005 – Lecture Hall 11:00 AM Ivica Ico Bukvic “Made in Linux” – The Next Step .......................... ..................51 11:45 AM Christoph Eckert Linux Audio Usability Issues .......................... ........................57 01:30 PM Marije Baalman Updates of the WONDER software interface for using Wave Field Synthesis . 69 02:15 PM Georg B¨onn Development of a Composer’s Sketchbook ................. ....................73 Saturday, April 23, 2005 – Lecture Hall 11:00 AM J¨urgen Reuter SoundPaint – Painting Music ........................... ......................79 11:45 AM Michael Sch¨uepp, Rene Widtmann, Rolf “Day” Koch and Klaus Buchheim System design for audio record and playback with a computer using FireWire . 87 01:30 PM John ffitch and Tom Natt Recording all Output from a Student Radio Station . -
The Different Unix Contexts
The different Unix contexts • User-level • Kernel “top half” - System call, page fault handler, kernel-only process, etc. • Software interrupt • Device interrupt • Timer interrupt (hardclock) • Context switch code Transitions between contexts • User ! top half: syscall, page fault • User/top half ! device/timer interrupt: hardware • Top half ! user/context switch: return • Top half ! context switch: sleep • Context switch ! user/top half Top/bottom half synchronization • Top half kernel procedures can mask interrupts int x = splhigh (); /* ... */ splx (x); • splhigh disables all interrupts, but also splnet, splbio, splsoftnet, . • Masking interrupts in hardware can be expensive - Optimistic implementation – set mask flag on splhigh, check interrupted flag on splx Kernel Synchronization • Need to relinquish CPU when waiting for events - Disk read, network packet arrival, pipe write, signal, etc. • int tsleep(void *ident, int priority, ...); - Switches to another process - ident is arbitrary pointer—e.g., buffer address - priority is priority at which to run when woken up - PCATCH, if ORed into priority, means wake up on signal - Returns 0 if awakened, or ERESTART/EINTR on signal • int wakeup(void *ident); - Awakens all processes sleeping on ident - Restores SPL a time they went to sleep (so fine to sleep at splhigh) Process scheduling • Goal: High throughput - Minimize context switches to avoid wasting CPU, TLB misses, cache misses, even page faults. • Goal: Low latency - People typing at editors want fast response - Network services can be latency-bound, not CPU-bound • BSD time quantum: 1=10 sec (since ∼1980) - Empirically longest tolerable latency - Computers now faster, but job queues also shorter Scheduling algorithms • Round-robin • Priority scheduling • Shortest process next (if you can estimate it) • Fair-Share Schedule (try to be fair at level of users, not processes) Multilevel feeedback queues (BSD) • Every runnable proc. -
Embedded Systems
Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya Department of Electronics and Communication Engineering STUDY MATERIAL for III rd Year VI th Semester Subject Name: EMBEDDED SYSTEMS Prepared by Dr.P.Venkatesan, Associate Professor, ECE, SCSVMV University Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya Department of Electronics and Communication Engineering PRE-REQUISITE: Basic knowledge of Microprocessors, Microcontrollers & Digital System Design OBJECTIVES: The student should be made to – Learn the architecture and programming of ARM processor. Be familiar with the embedded computing platform design and analysis. Be exposed to the basic concepts and overview of real time Operating system. Learn the system design techniques and networks for embedded systems to industrial applications. Sri Chandrasekharendra Saraswathi Viswa Maha Vidyalaya Department of Electronics and Communication Engineering SYLLABUS UNIT – I INTRODUCTION TO EMBEDDED COMPUTING AND ARM PROCESSORS Complex systems and micro processors– Embedded system design process –Design example: Model train controller- Instruction sets preliminaries - ARM Processor – CPU: programming input and output- supervisor mode, exceptions and traps – Co- processors- Memory system mechanisms – CPU performance- CPU power consumption. UNIT – II EMBEDDED COMPUTING PLATFORM DESIGN The CPU Bus-Memory devices and systems–Designing with computing platforms – consumer electronics architecture – platform-level performance analysis - Components for embedded programs- Models of programs- -
1999 Nendo Supercompiler Te
NEDO-PR- 9 90 3 x-A°-=i wu ? '7-z / □ ixomgffi'g. NEDOBIS T93018 #f%4vl/4=- — 'I'Jff&'a fi ISEDQ mb'Sa 3a 0-7 rx-/<-n>/<^7-T^yovOIElS9f%l TR&1 2^3^ A 249H illK t>*^#itafc?iJI+WE$>i=t^<bLfc3>/U7S#r$u:|-^n S & - *%#$............. (3) (5) m #.......... (7) Abstract............ (9) m #?'Hb3>/W3## i 1.1 # i 1.2 g ##Wb3 7 ©&ffitib[p].................................................... 3 1.2.1 ............................................................................... 3 1.2.2 ^ y ........................................................................ 18 1.2.3 OpenMP 43,fctf OpenMP ©x-^fcKlfOttfcifeSi................. 26 1.2.4 #%3 >;W ly —^ 3 .............................................. 39 1.2.5 VLIW ^;i/3£#Hb.................................................................... 48 1.2.6 ........................ 62 1.2.7 3>;W7 <b)## p/i-f-zL —- > py—............... 72 1.2.8 3 >;w 3©##E#m©##mm.............................................. 82 1.2.9 3°3-tr y +1 © lb fp] : Stanford Hydra Chip Multiprocessor 95 1.2.10 s^^Eibrniiis : hpca -6 .............................. 134 1.3 # b#^Hb3>/W7^#m%................. 144 1.3.1 m # 144 1.3.2 145 1.3.3 m 152 1.3.4 152 2$ j£M^>E3 >hajL-T-^ 155 2.1 M E......................................................................................................................... 155 2.2 j£M5>i(3 > b° j-—x 4“ >^"©&Hlib[p] ........................................................... 157 2.2.. 1 j[£WtS(3>h0a.-:r^ >^'©51^............................................................ 157 2.2.2 : Grid Forum99, U.C.B., JavaGrande Portals Group Meeting iZjotf & ti^jSbfp] — 165 2.2.3 : Supercomputing99 iZlotf & ££l/tribip].................... 182 2.2.4 Grid##43Z^^m^m^^7"A Globus ^©^tn1 G: Hit* £ tiWSbfp] ---- 200 (1) 2.3 ><y(D mmtmrn...... -
Comparing Systems Using Sample Data
Operating System and Process Monitoring Tools Arik Brooks, [email protected] Abstract: Monitoring the performance of operating systems and processes is essential to debug processes and systems, effectively manage system resources, making system decisions, and evaluating and examining systems. These tools are primarily divided into two main categories: real time and log-based. Real time monitoring tools are concerned with measuring the current system state and provide up to date information about the system performance. Log-based monitoring tools record system performance information for post-processing and analysis and to find trends in the system performance. This paper presents a survey of the most commonly used tools for monitoring operating system and process performance in Windows- and Unix-based systems and describes the unique challenges of real time and log-based performance monitoring. See Also: Table of Contents: 1. Introduction 2. Real Time Performance Monitoring Tools 2.1 Windows-Based Tools 2.1.1 Task Manager (taskmgr) 2.1.2 Performance Monitor (perfmon) 2.1.3 Process Monitor (pmon) 2.1.4 Process Explode (pview) 2.1.5 Process Viewer (pviewer) 2.2 Unix-Based Tools 2.2.1 Process Status (ps) 2.2.2 Top 2.2.3 Xosview 2.2.4 Treeps 2.3 Summary of Real Time Monitoring Tools 3. Log-Based Performance Monitoring Tools 3.1 Windows-Based Tools 3.1.1 Event Log Service and Event Viewer 3.1.2 Performance Logs and Alerts 3.1.3 Performance Data Log Service 3.2 Unix-Based Tools 3.2.1 System Activity Reporter (sar) 3.2.2 Cpustat 3.3 Summary of Log-Based Monitoring Tools 4. -
A Simple Chargeback System for SAS® Applications Running on UNIX and Linux Servers
SAS Global Forum 2007 Systems Architecture Paper: 194-2007 A Simple Chargeback System For SAS® Applications Running on UNIX and Linux Servers Michael A. Raithel, Westat, Rockville, MD Abstract Organizations that run SAS on UNIX and Linux servers often have a need to measure overall SAS usage and to charge the projects and users who utilize the servers. This allows an organization to pay for the hardware, software, and labor necessary to maintain and run these types of shared servers. However, performance management and accounting software is normally expensive. Purchasing such software, configuring it, and managing it may be prohibitive in terms of cost and in terms of having staff with the right skill sets to do so. Consequently, many organizations with UNIX or Linux servers do not have a reliable way to measure the overall use of SAS software and to charge individuals and projects for its use. This paper presents a simple methodology for creating a chargeback system on UNIX and Linux servers. It uses basic accounting programs found in the UNIX and Linux operating systems, and exploits them using SAS software. The paper presents an overview of the UNIX/Linux “sa” command and the basic accounting system. Then, it provides a SAS program that utilizes this command to capture and store monthly SAS usage statistics. The paper presents a second SAS program that reads the monthly SAS usage SAS data set and creates both a chargeback report and a general usage report. After reading this paper, you should be able to easily adapt the sample SAS programs to run on servers in your own environment. -
Inside the Linux 2.6 Completely Fair Scheduler
Inside the Linux 2.6 Completely Fair Scheduler http://www.ibm.com/developerworks/library/l-completely-fair-scheduler/ developerWorks Technical topics Linux Technical library Inside the Linux 2.6 Completely Fair Scheduler Providing fair access to CPUs since 2.6.23 The task scheduler is a key part of any operating system, and Linux® continues to evolve and innovate in this area. In kernel 2.6.23, the Completely Fair Scheduler (CFS) was introduced. This scheduler, instead of relying on run queues, uses a red-black tree implementation for task management. Explore the ideas behind CFS, its implementation, and advantages over the prior O(1) scheduler. M. Tim Jones is an embedded firmware architect and the author of Artificial Intelligence: A Systems Approach, GNU/Linux Application Programming (now in its second edition), AI Application Programming (in its second edition), and BSD Sockets Programming from a Multilanguage Perspective. His engineering background ranges from the development of kernels for geosynchronous spacecraft to embedded systems architecture and networking protocols development. Tim is a Consultant Engineer for Emulex Corp. in Longmont, Colorado. 15 December 2009 Also available in Japanese The Linux scheduler is an interesting study in competing pressures. On one side are the use models in which Linux is applied. Although Linux was originally developed as a desktop operating system experiment, you'll now find it on servers, tiny embedded devices, mainframes, and supercomputers. Not surprisingly, the scheduling loads for these domains differ. On the other side are the technological advances made in the platform, including architectures (multiprocessing, symmetric multithreading, non-uniform memory access [NUMA]) and virtualization. -
CS414 SP 2007 Assignment 1
CS414 SP 2007 Assignment 1 Due Feb. 07 at 11:59pm Submit your assignment using CMS 1. Which of the following should NOT be allowed in user mode? Briefly explain. a) Disable all interrupts. b) Read the time-of-day clock c) Set the time-of-day clock d) Perform a trap e) TSL (test-and-set instruction used for synchronization) Answer: (a), (c) should not be allowed. Which of the following components of a program state are shared across threads in a multi-threaded process ? Briefly explain. a) Register Values b) Heap memory c) Global variables d) Stack memory Answer: (b) and (c) are shared 2. After an interrupt occurs, hardware needs to save its current state (content of registers etc.) before starting the interrupt service routine. One issue is where to save this information. Here are two options: a) Put them in some special purpose internal registers which are exclusively used by interrupt service routine. b) Put them on the stack of the interrupted process. Briefly discuss the problems with above two options. Answer: (a) The problem is that second interrupt might occur while OS is in the middle of handling the first one. OS must prevent the second interrupt from overwriting the internal registers. This strategy leads to long dead times when interrupts are disabled and possibly lost interrupts and lost data. (b) The stack of the interrupted process might be a user stack. The stack pointer may not be legal which would cause a fatal error when the hardware tried to write some word at it. -
Cgroups Py: Using Linux Control Groups and Systemd to Manage CPU Time and Memory
cgroups py: Using Linux Control Groups and Systemd to Manage CPU Time and Memory Curtis Maves Jason St. John Research Computing Research Computing Purdue University Purdue University West Lafayette, Indiana, USA West Lafayette, Indiana, USA [email protected] [email protected] Abstract—cgroups provide a mechanism to limit user and individual resource. 1 Each directory in a cgroupsfs hierarchy process resource consumption on Linux systems. This paper represents a cgroup. Subdirectories of a directory represent discusses cgroups py, a Python script that runs as a systemd child cgroups of a parent cgroup. Within each directory of service that dynamically throttles users on shared resource systems, such as HPC cluster front-ends. This is done using the the cgroups tree, various files are exposed that allow for cgroups kernel API and systemd. the control of the cgroup from userspace via writes, and the Index Terms—throttling, cgroups, systemd obtainment of statistics about the cgroup via reads [1]. B. Systemd and cgroups I. INTRODUCTION systemd A frequent problem on any shared resource with many users Systemd uses a named cgroup tree (called )—that is that a few users may over consume memory and CPU time. does not impose any resource limits—to manage processes When these resources are exhausted, other users have degraded because it provides a convenient way to organize processes in access to the system. A mechanism is needed to prevent this. a hierarchical structure. At the top of the hierarchy, systemd creates three cgroups By placing throttles on physical memory consumption and [2]: CPU time for each individual user, cgroups py prevents re- source exhaustion on a shared system and ensures continued • system.slice: This contains every non-user systemd access for other users. -
Thread Scheduling in Multi-Core Operating Systems Redha Gouicem
Thread Scheduling in Multi-core Operating Systems Redha Gouicem To cite this version: Redha Gouicem. Thread Scheduling in Multi-core Operating Systems. Computer Science [cs]. Sor- bonne Université, 2020. English. tel-02977242 HAL Id: tel-02977242 https://hal.archives-ouvertes.fr/tel-02977242 Submitted on 24 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Ph.D thesis in Computer Science Thread Scheduling in Multi-core Operating Systems How to Understand, Improve and Fix your Scheduler Redha GOUICEM Sorbonne Université Laboratoire d’Informatique de Paris 6 Inria Whisper Team PH.D.DEFENSE: 23 October 2020, Paris, France JURYMEMBERS: Mr. Pascal Felber, Full Professor, Université de Neuchâtel Reviewer Mr. Vivien Quéma, Full Professor, Grenoble INP (ENSIMAG) Reviewer Mr. Rachid Guerraoui, Full Professor, École Polytechnique Fédérale de Lausanne Examiner Ms. Karine Heydemann, Associate Professor, Sorbonne Université Examiner Mr. Etienne Rivière, Full Professor, University of Louvain Examiner Mr. Gilles Muller, Senior Research Scientist, Inria Advisor Mr. Julien Sopena, Associate Professor, Sorbonne Université Advisor ABSTRACT In this thesis, we address the problem of schedulers for multi-core architectures from several perspectives: design (simplicity and correct- ness), performance improvement and the development of application- specific schedulers. -
Package Manager: the Core of a GNU/Linux Distribution
Package Manager: The Core of a GNU/Linux Distribution by Andrey Falko A Thesis submitted to the Faculty in partial fulfillment of the requirements for the BACHELOR OF ARTS Accepted Paul Shields, Thesis Adviser Allen Altman, Second Reader Christopher K. Callanan, Third Reader Mary B. Marcy, Provost and Vice President Simon’s Rock College Great Barrington, Massachusetts 2007 Abstract Package Manager: The Core of a GNU/Linux Distribution by Andrey Falko As GNU/Linux operating systems have been growing in popularity, their size has also been growing. To deal with this growth people created special programs to organize the software available for GNU/Linux users. These programs are called package managers. There exists a very wide variety of package managers, all offering their own benefits and deficiencies. This thesis explores all of the major aspects of package management in the GNU/Linux world. It covers what it is like to work without package managers, primitive package man- agement techniques, and modern package management schemes. The thesis presents the creation of a package manager called Vestigium. The creation of Vestigium is an attempt to automate the handling of file collisions between packages, provide a seamless interface for installing both binary packages and packages built from source, and to allow per package optimization capabilities. Some of the features Vestigium is built to have are lacking in current package managers. No current package manager contains all the features which Vestigium is built to have. Additionally, the thesis explains the problems that developers face in maintaining their respective package managers. i Acknowledgments I thank my thesis committee members, Paul Shields, Chris Callanan, and Allen Altman for being patient with my error-ridden drafts.