UMap : Enabling Application-driven Optimizations for Page Management Ivy B. Peng Marty McFadden Eric Green
[email protected] [email protected] [email protected] Lawrence Livermore National Lawrence Livermore National Lawrence Livermore National Laboratory Laboratory Laboratory Livermore, USA Livermore, USA Livermore, USA Keita Iwabuchi Kai Wu Dong Li
[email protected] [email protected] [email protected] Lawrence Livermore National University of California, Merced University of California, Merced Laboratory Merced, USA Merced, USA Livermore, USA Roger Pearce Maya Gokhale
[email protected] [email protected] Lawrence Livermore National Lawrence Livermore National Laboratory Laboratory Livermore, USA Livermore, USA ABSTRACT KEYWORDS Leadership supercomputers feature a diversity of storage, memory mapping, memmap, page fault, user-space paging, from node-local persistent memory and NVMe SSDs to userfaultfd, page management network-interconnected ash memory and HDD. Memory Reference Format: mapping les on dierent tiers of storage provides a uniform Ivy B. Peng, Marty McFadden, Eric Green, Keita Iwabuchi, Kai Wu, interface in applications. However, system-wide services like Dong Li, Roger Pearce, and Maya Gokhale. 2019. UMap : Enabling mmap are optimized for generality and lack exibility for Application-driven Optimizations for Page Management. enabling application-specic optimizations. In this work, we present UMap to enable user-space page management that 1 INTRODUCTION can be easily adapted to access patterns in applications and Recently, leadership supercomputers provide enormous stor- storage characteristics. UMap uses the userfaultfd mecha- age resources to cope with expanding data sets in applica- nism to handle page faults in multi-threaded applications tions. The storage resources come in a hybrid format for eciently.