Espostoa Br.& R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Caryophyllales 2018 Instituto De Biología, UNAM September 17-23
Caryophyllales 2018 Instituto de Biología, UNAM September 17-23 LOCAL ORGANIZERS Hilda Flores-Olvera, Salvador Arias and Helga Ochoterena, IBUNAM ORGANIZING COMMITTEE Walter G. Berendsohn and Sabine von Mering, BGBM, Berlin, Germany Patricia Hernández-Ledesma, INECOL-Unidad Pátzcuaro, México Gilberto Ocampo, Universidad Autónoma de Aguascalientes, México Ivonne Sánchez del Pino, CICY, Centro de Investigación Científica de Yucatán, Mérida, Yucatán, México SCIENTIFIC COMMITTEE Thomas Borsch, BGBM, Germany Fernando O. Zuloaga, Instituto de Botánica Darwinion, Argentina Victor Sánchez Cordero, IBUNAM, México Cornelia Klak, Bolus Herbarium, Department of Biological Sciences, University of Cape Town, South Africa Hossein Akhani, Department of Plant Sciences, School of Biology, College of Science, University of Tehran, Iran Alexander P. Sukhorukov, Moscow State University, Russia Michael J. Moore, Oberlin College, USA Compilation: Helga Ochoterena / Graphic Design: Julio C. Montero, Diana Martínez GENERAL PROGRAM . 4 MONDAY Monday’s Program . 7 Monday’s Abstracts . 9 TUESDAY Tuesday ‘s Program . 16 Tuesday’s Abstracts . 19 WEDNESDAY Wednesday’s Program . 32 Wednesday’s Abstracs . 35 POSTERS Posters’ Abstracts . 47 WORKSHOPS Workshop 1 . 61 Workshop 2 . 62 PARTICIPANTS . 63 GENERAL INFORMATION . 66 4 Caryophyllales 2018 Caryophyllales General program Monday 17 Tuesday 18 Wednesday 19 Thursday 20 Friday 21 Saturday 22 Sunday 23 Workshop 1 Workshop 2 9:00-10:00 Key note talks Walter G. Michael J. Moore, Berendsohn, Sabine Ya Yang, Diego F. Registration -
Pilosocereus Robinii) Using New Genetic Tools Tonya D
Volume 31: Number 2 > 2014 The Quarterly Journal of the Florida Native Plant Society Palmetto Fern Conservation in a Biodiversity Hotspot ● Saving the Endangered Florida Key Tree Cactus Saving the Endangered Florida Key Tree Cactus (Pilosocereus robinii) Using New Genetic Tools Tonya D. Fotinos, Dr. Joyce Maschinski & Dr. Eric von Wettberg Biological systems around the globe are being threatened by human-induced landscape changes, habitat degradation and climate change (Barnosky et al. 2011; Lindenmayer & Fischer 2006; Thomas et al. 2004; Tilman et al. 1994). Although there is a considerable threat across the globe, numerically the threat is highest in the biodiversity hotspots of the world. Of those hotspots, South Florida and the Caribbean are considered in the top five areas for conservation action because of the high level of endemism and threat (Myers et al. 2000). South Florida contains roughly 125 endemic species and is the northernmost limit of the distribution of many tropical species (Abrahamson 1984; Gann et al. 2002). The threat to these species comes predominantly from sea level rise, which could be >1 m by the end of the century (Maschinski et al. 2011). Above: Pilosocereus robinii stand in the Florida Keys. Photo: Jennifer Possley, Center for Tropical Conservation/Fairchild Tropical Botanic Garden. Above: Pilosocereus robinii in bloom at the Center for Tropical Conservation. Photo: Devon Powell, Center for Tropical Conservation/Fairchild Tropical Botanic Garden. 12 ● The Palmetto Volume 31:2 ● 2014 Restoration of imperiled populations is a priority for mitigating the looming species extinctions (Barnosky et al. 2011). Populating new or previously occupied areas or supple- menting a local population of existing individuals are strategies that improve the odds that a population or species will survive. -
University of Florida Thesis Or Dissertation Formatting
SYSTEMATICS OF TRIBE TRICHOCEREEAE AND POPULATION GENETICS OF Haageocereus (CACTACEAE) By MÓNICA ARAKAKI MAKISHI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2008 1 © 2008 Mónica Arakaki Makishi 2 To my parents, Bunzo and Cristina, and to my sisters and brother. 3 ACKNOWLEDGMENTS I want to express my deepest appreciation to my advisors, Douglas Soltis and Pamela Soltis, for their consistent support, encouragement and generosity of time. I would also like to thank Norris Williams and Michael Miyamoto, members of my committee, for their guidance, good disposition and positive feedback. Special thanks go to Carlos Ostolaza and Fátima Cáceres, for sharing their knowledge on Peruvian Cactaceae, and for providing essential plant material, confirmation of identifications, and their detailed observations of cacti in the field. I am indebted to the many individuals that have directly or indirectly supported me during the fieldwork: Carlos Ostolaza, Fátima Cáceres, Asunción Cano, Blanca León, José Roque, María La Torre, Richard Aguilar, Nestor Cieza, Olivier Klopfenstein, Martha Vargas, Natalia Calderón, Freddy Peláez, Yammil Ramírez, Eric Rodríguez, Percy Sandoval, and Kenneth Young (Peru); Stephan Beck, Noemí Quispe, Lorena Rey, Rosa Meneses, Alejandro Apaza, Esther Valenzuela, Mónica Zeballos, Freddy Centeno, Alfredo Fuentes, and Ramiro Lopez (Bolivia); María E. Ramírez, Mélica Muñoz, and Raquel Pinto (Chile). I thank the curators and staff of the herbaria B, F, FLAS, LPB, MO, USM, U, TEX, UNSA and ZSS, who kindly loaned specimens or made information available through electronic means. Thanks to Carlos Ostolaza for providing seeds of Haageocereus tenuis, to Graham Charles for seeds of Blossfeldia sucrensis and Acanthocalycium spiniflorum, to Donald Henne for specimens of Haageocereus lanugispinus; and to Bernard Hauser and Kent Vliet for aid with microscopy. -
Pollen Morphology of Five Species of Cactoideae Subfamily (Fam: Cactaceae), from the Lima Province (Perú)
ISSN Versión Impresa 1816-0719 ISSN Versión en linea 1994-9073 ISSN Versión CD ROM 1994-9081 The Biologist (Lima) ORIGINAL ARTICLE /ARTÍCULO ORIGINAL POLLEN MORPHOLOGY OF FIVE SPECIES OF CACTOIDEAE SUBFAMILY (FAM: CACTACEAE), FROM THE LIMA PROVINCE (PERÚ) MORFOLOGÍA POLÍNICA DE CINCO ESPECIES DE LA SUBFAMILIA CACTOIDEAE (FAM: CACTACEAE), DEL DEPARTAMENTO DE LIMA (PERÚ) Luis De La Cruz V.1, Luis Chirinos S., Willy Aquino T., Pamela Puchuri O., Erika Pajuelo P., Roberto Ubidia & Karen Ventura Z.2 Laboratorio de Ecofisiologia Vegetal, Facultad de Ciencias Naturales y Matemática, Universidad Nacional Federico Villarreal Jr. Rio Chepen s/n cuadra Nº 1 Hospital Hipólito Unánue, El Agustino Laboratorio de Palinología y Paleobotánica de la Universidad Peruana Cayetano Heredia – LPP. Herbario Magdalena Pavlich de la Universidad Peruana Cayetano Heredia – HUPCH. LID. Área de Ciencias Ambientales- LID. Av. Honorio Delgado 430, Urb. Ingeniería, S.M.P. Lima - Perú. 1e-mail: [email protected], [email protected] The Biologist (Lima), 2013, 11(1), jan-jun: 1-7. ABSTRACT The morphological characteristics of five species of pollen from the subfamily Cactoideae, family Cactaceae, were described: Three species, Echinopsis chalaensis (Rauh & Backeb.) Friedrich & G.D.Rowley, Haageocereus decumbens (Vaupel) Backeb. and Pygmaeocereus sp. Johnson & Backeb., (Trichocereeae tribe); Corryocactus brevistylus (K. Schum. ex Vaupel) Britton & Rose (Pachycereeae tribe) and Neoraimondia arequipensis (Meyen) Backeb., (Browningieae tribe). All pollen grains observed under a light microscope appeared in monades, shape varying from spheroidal to spheroidal oblate; all colpate, with the exception of C. brevistylus, with spinules < 1 µm to 2 µm; exine thickness varied 2 - 3 µm; tectum without perceptible differences, always was pierced. -
South American Cacti in Time and Space: Studies on the Diversification of the Tribe Cereeae, with Particular Focus on Subtribe Trichocereinae (Cactaceae)
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 South American Cacti in time and space: studies on the diversification of the tribe Cereeae, with particular focus on subtribe Trichocereinae (Cactaceae) Lendel, Anita Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-93287 Dissertation Published Version Originally published at: Lendel, Anita. South American Cacti in time and space: studies on the diversification of the tribe Cereeae, with particular focus on subtribe Trichocereinae (Cactaceae). 2013, University of Zurich, Faculty of Science. South American Cacti in Time and Space: Studies on the Diversification of the Tribe Cereeae, with Particular Focus on Subtribe Trichocereinae (Cactaceae) _________________________________________________________________________________ Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr.sc.nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Anita Lendel aus Kroatien Promotionskomitee: Prof. Dr. H. Peter Linder (Vorsitz) PD. Dr. Reto Nyffeler Prof. Dr. Elena Conti Zürich, 2013 Table of Contents Acknowledgments 1 Introduction 3 Chapter 1. Phylogenetics and taxonomy of the tribe Cereeae s.l., with particular focus 15 on the subtribe Trichocereinae (Cactaceae – Cactoideae) Chapter 2. Floral evolution in the South American tribe Cereeae s.l. (Cactaceae: 53 Cactoideae): Pollination syndromes in a comparative phylogenetic context Chapter 3. Contemporaneous and recent radiations of the world’s major succulent 86 plant lineages Chapter 4. Tackling the molecular dating paradox: underestimated pitfalls and best 121 strategies when fossils are scarce Outlook and Future Research 207 Curriculum Vitae 209 Summary 211 Zusammenfassung 213 Acknowledgments I really believe that no one can go through the process of doing a PhD and come out without being changed at a very profound level. -
The Wonderful World of Cacti. July 7, 2020
OHIO STATE UNIVERSITY EXTENSION Succulents part 1: The wonderful world of cacti. July 7, 2020 Betzy Rivera. Master Gardener Volunteer OSU Extension – Franklin County OHIO STATE UNIVERSITY EXTENSION Succulent plants Are plants with parts that are thickened and fleshy, capacity that helps to retain water in arid climates. Over 25 families have species of succulents. The most representative families are: Crassulaceae, Agavaceae, Aizoaceae, Euphorbiacea and Cactaceae. 2 OHIO STATE UNIVERSITY EXTENSION The Cactaceae family is endemic to America and the distribution extends throughout the continent from Canada to Argentina, in addition to the Galapagos Islands and Antilles Most important centers of diversification (Bravo-Hollis & Sánchez-Mejorada, 1978; Hernández & Godínez, 1994; Arias-Montes, 1993; Anderson, 2001; Guzmán et al., 2003; Ortega- Baes & Godínez-Alvarez, 2006 3 OHIO STATE UNIVERSITY EXTENSION There is an exception — one of the 1,800 species occurs naturally in Africa, Sri Lanka, and Madagascar Rhipsalis baccifera 4 OHIO STATE UNIVERSITY EXTENSION The Cactaceae family includes between ~ 1,800 and 2,000 species whose life forms include climbing, epiphytic, shrubby, upright, creeping or decumbent plants, globose, cylindrical or columnar in shape (Bravo-Hollis & Sánchez-Mejorada, 1978; Hernández & Godínez, 1994; Guzmán et al., 2003). 5 OHIO STATE UNIVERSITY EXTENSION Cacti are found in a wide variety of environments, however the greatest diversity of forms is found in arid and semi-arid areas, where they play an important role in maintaining the stability of ecosystems (Bravo-Hollis & Sánchez-Mejorada, 1978; Hernández & Godínez, 1994; Guzmán et al., 2003). 6 OHIO STATE UNIVERSITY EXTENSION The Cactaceae family are dicotyledonous plants 2 cotyledons Astrophytum myriostigma (common names: Bishop´s cap cactus, bishop’s hat or miter cactus) 7 OHIO STATE UNIVERSITY EXTENSION General Anatomy of a Cactus Cactus spines are produced from specialized structures called areoles, a kind of highly reduced branch. -
Connoisseurs' Cacti
ThCe actus Explorer The first free on-line Journal for Cactus and Succulent Enthusiasts 1 Siccobaccatus 2 Morangaya pensilis Number 17 3 Espostoa in Tenerife ISSN 2048-0482 4 Barranco Rambla de Ruiz December 2016 5 Juab and Utah County The Cactus Explorer ISSN 2048-0482 Number 17 December2016 IN THIS EDITION Regular Features Articles Introduction 3 A naturalised population of News and Events 4 Espostoa melanostele on Tenerife 21 In the Glasshouse 9 Travel with the cactus expert (16) 25 Journal Roundup 14 Where lizards dare: an excursion to Barranco On-line Journals 15 Rambla de Ruiz (Tenerife) 29 The Love of Books 18 Juab and Utah County, Utah, throughout the Society Pages 51 year 2015 36 Plants and Seeds for Sale 55 A Happy Medium? Morangaya pensilis . 41 Books for Sale 62 Cover Picture: Siccobaccatus dolichospermaticus See page 9 The No.1 source for on-line information about cacti and succulents is http://www.cactus-mall.com The best on-line library of succulent literature can be found at: https://www.cactuspro.com/biblio/en:accueil Invitation to Contributors Please consider the Cactus Explorer as the place to publish your articles. We welcome contributions for any of the regular features or a longer article with pictures on any aspect of cacti and succulents. The editorial team is happy to help you with preparing your work. Please send your submissions as plain text in a ‘Word’ document together with jpeg or tiff images with the maximum resolution available. A major advantage of this on-line format is the possibility of publishing contributions quickly and any issue is never full! We aim to publish your article quickly and the copy deadline is just a few days before the publication date. -
Cactus Explorers Journal
Bradleya 34/2016 pages 100–124 What is a cephalium? Root Gorelick Department of Biology and School of Mathematics & Statistics and Institute of Interdisciplinary Studies, Carleton University, 1125 Raven Road, Ottawa, Ontario K1S 5B6 Canada (e-mail: [email protected]) Photographs by the author unless otherwise stated. Summary : There are problems with previous at - gibt meist einen abgrenzbaren Übergang vom tempts to define ‘cephalium’, such as via produc - photosynthetisch aktiven Gewebe zum nicht pho - tion of more hairs and spines, confluence of tosynthetisch aktiven und blütentragenden areoles, or periderm development at or under - Cephalium, die beide vom gleichen Triebspitzen - neath each areole after flowering. I propose using meristem abstammen. Cephalien haben eine an - the term ‘cephalium’ only for a combination of dere Phyllotaxis als die vegetativen these criteria, i.e. flowering parts of cacti that Sprossabschnitte und sitzen der vorhandenen have confluent hairy or spiny areoles exterior to a vegetativen Phyllotaxis auf. Wenn blühende Ab - thick periderm, where these hairs, spines, and schnitte nur einen Teil der oben genannten Merk - periderms arise almost immediately below the male aufweisen, schlage ich vor, diese Strukturen shoot apical meristem, and with more hairs and als „Pseudocephalien“ zu bezeichnen. spines on reproductive parts than on photosyn - thetic parts of the shoot. Periderm development Introduction and confluent areoles preclude photosynthesis of Most cacti (Cactaceae) are peculiar plants, cephalia, which therefore lack or mostly lack even for angiosperms, with highly succulent stomata. There is almost always a discrete tran - stems, numerous highly lignified leaves aka sition from photosynthetic vegetative tissues to a spines, lack of functional photosynthetic leaves, non-photosynthetic flower-bearing cephalium, CAM photosynthesis, huge sunken shoot apical both of which arise from the same shoot apical meristems, and fantastic stem architectures meristem. -
Bradleya 31/2013 Pages 142-149
Bradleya 31/2013 pages 142-149 Coleocephalocereus purpureus has a cephalium; Micrantho - cereus streckeri has a pseudocephalium (Cereeae, Cactoideae, Cactaceae) Root Gorelick Department of Biology, School of Mathematics & Statistics, and Institute of Interdisciplinary Studies Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6 Canada. (email: [email protected]). Photographs by the author Summary : The putatively closely related cactus Introduction genera of Coleocephalocereus , Micranthocereus , Cactaceae (cacti) in the tribe Cactoideae have Cereus , Monvillea , and Stetsonia have a wide a wide range of reproductive anatomies ranging range in specialization of reproductive portions of from cephalia to pseudocephalia to forms where the shoot, from cephalium to pseudocephalium to reproductive and vegetative structures are indis - no specialization. After briefly summarizing the tinguishable (Buxbaum, 1964, 1975; Mauseth, shifting uses of the terms ‘cephalium’ and ‘pseudo - 2006). cephalium’, I provide gross morphological evi - For instance, Melocactus Link & Otto, Disco - dence that Coleocephalocereus purpureus has a cactus Pfeiffer, and Espostoa Britton & Rose have true cephalium that is formed of a continuous true cephalia in which the flowering parts are not swath of bristles and hairs, with its underlying photosynthetic because every epidermal cell con - thick cortex of parenchyma replaced by a narrow tains a modified leaf that is a hair, bristle, or layer of cork. By contrast, Micranthocereus streck - spine, with no stomata amongst the epidermal eri has a pseudocephalium composed of nothing cells (Mauseth, 2006). Furthermore, there are more than larger hairier areoles in which the un - changes to the internal anatomy of cephalia, derlying epidermis is still photosynthetic and the where the underlying cortex is not a wide swath of underlying cortex is still a thick layer of highly succulent parenchyma, but instead a thin parenchyma without any noticeable cork. -
Chapters 13-14
13. ROCKERY IX This feature runs in a North-South direction from near the Western end of Rockery VIII. It is a small feature, 21 meter long and about 11 meters wide at the middle. On this feature are grown plants belonging to the collection of the late SHRI O. P. BANSAL, who was a keen plant grower. For several years he was associated with the Rose Society of India. In his later years he took to growing cacti. He expired in 1994, when be was actively involved in the activities of the National Cactus and Succulent Society of India, Chandigarh. After his sudden death in 1994 the family expressed the desire to donate the plants to this Garden. So after building Rockery VIII for MR. G. C. JAIN, this rockery came into being. MR BANSAL had a small collection, but quite a large number were big 175 specimen plants. Most remarkable were three mature plants of Melocactus maxonii with large cephalium, big groups of Coryphantha elephantidens, and several large Ferocactus herrerae. Out of the three big Melocacti, one still survives near the Northern end. The others did not survive long. Now several younger plants have been planted alongside this specimen. Starting from the Northern end there is an Agave americana variegated plant. In the background of this rockery there are several large Ritterocereus pruinosis, Yucca aloefolia, Kalanchoe behariensis, Aloe arborescens and some Agaves. There are three Opuntia mamillata fa. monstrose plants on this feature. A large Espostoa lanata is near the Northern end. There is a larger plant of Napolea cochenillifera. -
Rethinking Phylogenetics Using Caryophyllales (Angiosperms), Matk Gene and Trnk Intron As Experimental Platform
Rethinking phylogenetics using Caryophyllales (angiosperms), matK gene and trnK intron as experimental platform Sunny Sheliese Crawley Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Biological Sciences Khidir W. Hilu Eric P. Beers Carla V. Finkielstein Jill C. Sible December 2, 2011 Blacksburg, Virginia Keywords: (phylogeny, missing data, caryophyllids, trnK intron, matK, RNA editing, gnetophytes) Copyright 2011, Sunny Sheliese Crawley Rethinking phylogenetics using Caryophyllales (angiosperms), matK gene and trnK intron as experimental platform Sunny Sheliese Crawley ABSTRACT The recent call to reconstruct a detailed picture of the tree of life for all organisms has forever changed the field of molecular phylogenetics. Sequencing technology has improved to the point that scientists can now routinely sequence complete plastid/mitochondrial genomes and thus, vast amounts of data can be used to reconstruct phylogenies. These data are accumulating in DNA sequence repositories, such as GenBank, where everyone can benefit from the vast growth of information. The trend of generating genomic-region rich datasets has far outpaced the expasion of datasets by sampling a broader array of taxa. We show here that expanding a dataset both by increasing genomic regions and species sampled using GenBank data, despite the inherent missing DNA that comes with GenBank data, can provide a robust phylogeny for the plant order Caryophyllales (angiosperms). We also investigate the utility of trnK intron in phylogeny reconstruction at relativley deep evolutionary history (the caryophyllid order) by comparing it with rapidly evolving matK. We show that trnK intron is comparable to matK in terms of the proportion of variable sites, parsimony informative sites, the distribution of those sites among rate classes, and phylogenetic informativness across the history of the order. -
Cactology II
Edited & published by Alessandro Guiggi Viale Lombardia 59, 21053 Castellanza (VA), Italy International Cactaceae Research Center (ICRC) [email protected] The texts have been written by Alessandro Guiggi Roy Mottram revised the English text The texts in Spanish have been translated by M. Patricia Palacios R. The texts in French have been translated by Gérard Delanoy Illustrations by the author & individual contributors All right reserved No parts of this issue may be reproduced in any form, without permission from the Publisher © Copyright ICRC ISSN 1971-3010 Cover illustration Adult plant of Melocactus intortus subsp. broadwayi with its cephalium from Micoud, Saint Lucia, Lesser Antilles. Photo by J. Senior. Back cover illustration Crested plant of Pilosocereus lanuginosus subsp. colombianus cult. hort. Jardin Exotique of Monaco. Photo by A. Guiggi. Nomenclatural novelties proposed in this issue Melocactus caesius subsp. lobelii (Suringar) Guiggi comb. nov. Melocactus macracanthos subsp. stramineus (Suringar) Guiggi comb. et stat nov. Melocactus mazelianus subsp. andinus Guiggi comb. et stat. nov. Melocactus mazelianus subsp. schatzlii (Till et R. Gruber) Guiggi comb. et stat. nov. Melocactus mazelianus subsp. schatzlii forma guanensis (Xhonneux et Fernandez- Alonso) Guiggi comb. et stat. nov. Pilosocereus lanuginosus subsp. colombianus (Rose) Guiggi comb. et stat. nov. Pilosocereus lanuginosus subsp. moritzianus (Otto ex Pfeiffer) Guiggi comb. et stat. nov. Pilosocereus lanuginosus subsp. tillianus (Gruber et Schatzl) Guiggi comb. et stat. nov. Praepilosocereus Guiggi gen. nov. Praepilosocereus mortensenii (Croizat) Guiggi comb. nov. Subpilocereus fricii (Backeberg) Guiggi comb. nov. Subpilocereus fricii subsp. horrispinus (Backeberg) Guiggi comb. et stat. nov. Corrigendum Cactology I Pag. 23: The geographical distribution of Consolea spinosissima subsp.