<<

06/10/2013 ING Seminar 1 What have I been doing on La Palma the past ~4 years? 1. NGTS prototyping work 2. NITES survey of M71 3. Developing DONUTS a/g algorithm

+ going to the beach, ng a family, running in the mountains etc …

06/10/2013 ING Seminar 2 1. NGTS

06/10/2013 ING Seminar 3 The Next Generaon Transit Survey

James McCormac www.ngtransits.org

06/10/2013 ING Seminar 4 Overview

• Movaon for NGTS • What is NGTS? • Prototype telescope - NGTS-P on La Palma • Results of NGTS-P & improvements for NGTS • NGTS facility design • Early results from NGTS-1 (Geneva) • Summary

www.ngtransits.org 06/10/2013 ING Seminar 5 Movaon Discover /super-Earth sized planets around bright in order to: • Characterise them (using VLT, E-ELT & JWST) to understand bulk and atmospheric composions • Understand planetary formaon, evoluon and migraon processes • Kepler has shown an abundance of Neptune-sized planets in their field Also, provide to the ESO community sub-millimag photometry of many stars for non-exoplanet science. www.ngtransits.org 06/10/2013 ING Seminar 6 Correlated vs Uncorrelated Noise

Uncorrelated (white): Correlated (systemac or red): • Random in nature • Noise correlates with part of • Gaussian distribuon the observaonal process e.g. Read noise from CCD • non-Gaussian distribuon Data may be binned to reduce Correlaons may occur with: the RMS • Time, temperature, posion on CCD, focus etc. Binning of data may NOT reduce RMS Proposed Soluon: • Simple experiment, keep as many parameters constant! • E.g. polar mounted telescope, no derotator or filter wheel • Fix stars in place on CCD, autoguding. • Fix focus etc

06/10/2013 ING Seminar 7 What is NGTS?

• Roboc wide-field photometric survey • Targets K and early M-type stars (V<13) • Neptune-sized or smaller transing planets • Emphasis on bright targets for easier spectroscopic follow-up • Builds on experience from SuperWASP Credit Philipp Eigmueller

www.ngtransits.org 06/10/2013 ING Seminar 8

NGTS Prototype – La Palma Goals: • Determine the noise characteriscs of an NGTS-like system • Prove the technical feasibility of NGTS • Perform mmag photometry on transit me scales

• 18cm f/2.8 telescopes • Deep depleted CCDs • Separate autoguider • Paramount ME (GEM) • Remotely operated • Sept 09 – Sept 10

www.ngtransits.org 06/10/2013 ING Seminar 9 NGTS-P Results Systemac noise analysis using SysRem (Tamuz et al. 2005)

Relavely free from systemac noise

≤ 1mmag RMS on transit mescale with room for improvement

www.ngtransits.org 06/10/2013 ING Seminar 10 NGTS-P Results Faint super-Earth detecon

GJ 1214: M star V=14.71 d=13 pc

GJ 1214b: P = 1.58 d

Rp = 2.79 REarth Depth = 16.7 mmag

www.ngtransits.org 06/10/2013 ING Seminar 11 NGTS-P vs SuperWASP GJ 436: M2.5, V=10.68, d=10.2 pc

GJ 436b:

P=2.64 d, R =1.41 RNeptune, Depth=9 mmag

NGTS-P stare mode clearly beer. SuperWASP now operates in stare mode.

Staring = Increased no. of points per transit = Confidence in single transit detecons = Earlier RV follow-up

www.ngtransits.org 06/10/2013 ING Seminar 12 Lessons learnt from NGTS-P

• Precise polar alignment – no field rotaon • Guide using science images – no mechanical flexure or driing • Baffling – reduce scaered light during flats and full Effects of scaered light during flat fields. Black points = with flat fielding Grey points = without flat fielding

www.ngtransits.org 06/10/2013 ING Seminar 13 NGTS Facility Design • 12 x 20cm f/2.8 Newtonian + baffle • Red sensive CCDs • 8 deg2 x 12 (4.96’’/pix) • 12 x OMI Equatorial Forks • 600-900nm filter • Autoguiding with DONUTS (McCormac et al. 2013)

• Located at ESO Paranal www.ngtransits.org 06/10/2013 ING Seminar 14

Tests of NGTS-1 Geneva 2012/13

• First system installed at Geneva Observatory • Tested during late 2012 and 2013 • Custom firmware for autoguiding • Tracking, guiding and focus tests • Early photometric results are promising - even from Geneva ;) Photo: Richard West www.ngtransits.org 06/10/2013 ING Seminar 15 10

RMS (mmag) 1

1 10 100 1000 Binned Exposure Time (s)

Credit: Simon Walker & Richard West

www.ngtransits.org 06/10/2013 ING Seminar 16 Summary • NGTS new wide field transing exoplanet survey • Targets bright stars V<13 for easier follow-up • Project is technically feasible • Promising results from NGTS-P and NGTS-1 • All hardware purchased and undergoing tests • Site preparaon at Paranal underway • First light at Paranal expected in 2014 • Phased commissioning of groups of telescopes

www.ngtransits.org 06/10/2013 ING Seminar 17 2. NITES + M71

06/10/2013 ING Seminar 18 Overview

• The NITES telescope • M71 – target for exoplanet survey • Survey outline + data reducon • Planet detecon simulaons + results • Variable stars in M71 • Future work in M71 • Future of NITES telescope

06/10/2013 ING Seminar 19 Near Infra-red Transing (NITES) Telescope • 16’’ Meade LX200-GPS • FLI Proline 1k x 1k DD-CCD camera • 11’x11’ FOV, 0.66’’/pix • No filter (UBVRI + Ha planned upgrade) • Science frame autoguiding • Remotely operated • Located beside SuperWASP

06/10/2013 ING Seminar 20 M71 (NGC 6838)

• 19:53:46 +18:46:45 (l=57, b=-5) • Metal-rich (Fe/H= -0.7), low stellar density globular cluster • Disk-like orbit in the Milky Way • Tidal radius = 9 arcmin • Several photometric surveys in 1990s and early 2000s. • No transing planets found from many cluster surveys at me of study • 23 variable stars known beforehand Approx. 4000 stars surveyed with NITES

06/10/2013 ING Seminar 21 Survey Outline

• June 17 to Aug 27 2011 • 74 d baseline, 47 nights on target • 228 hrs = 28,340 images (30s typical expme) • All observaons done remotely from sea level • One 11’x11’ field centered on M71

06/10/2013 ING Seminar 22 Data Reducon

• Data reduced using standard IRAF rounes • Light curves extracted using difference imaging with DIAPL2* • 1 week on cluster at QUB • DIAPL2 is based on the Opmal Image Subtracon (Alard & Lupton 1998) • Top-right shows 1 quadrant of M71 from NITES image • Boom-right shows the same quadrant aer subtracon with DIAPL2

*Wojtek Pych 2011 Private Communicaon 06/10/2013 ING Seminar 23 Planet Simulaons & Results

• 35 Simulated 3500 light 30

curves of transing 25 planets with real noise 20 profiles from NITES data 15 10 % Recovered (SDE > 6) • Approx. 10 % chance of 5

0 detecng 1 planet on 17.5 18 18.5 19 V (mag) MS (MSTO V=17.5) of On the limit of detectability for the M71 MS of M71. • None were found Meibom et al 2013 recently found the first 2 transing planets in a cluster (NGC 6811 - Kepler 66b & 67b)

06/10/2013 ING Seminar 24 Variable stars

• Discovered 17 new variable 12

stars v31

– 2 Eclipsing binaries v28 v25 v36 14 v27 – 9 Long period (P > 10d) v40 S4 v35 v39 v37 – QUSge 11 Low amplitude (ΔM < 0.1 v10 v34 mag) v21 16 v33 v26 v38 v32 – 4 Mul-frequency v20 v22 v23 v2

V v16 v5

• Confirm variability of 13 v4 v1 v13 v15 v9 18 v24 v29 previously known objects v12 v30 v14 v8 – Refine/determine periods for 7 v19

v17 v3

• Confirm M71 is devoid of RR v18 20 v11 Lyrae stars • Esmated spectral types from 22 BV WFC data 0 0.5 1 1.5 2 (B-V)

06/10/2013 ING Seminar 25 Variable stars

QU Sge S4 v1 v26 v27 v28 -0.20 -0.10 -0.02 -0.01 -0.005 -0.10 -0.01 -0.005 0.00 0.00 0.00 0 0 0 0.20 0.10 0.10 0.01 0.005 0.20 0.40 0.02 0.01 0.005 0.20 0.30 0.03 0.015 0.60 0.40 0.04 0.02 0.01 0.30 0.80 0.50 Differential 0.05 0.025 Differential Magnitude 0.60 1.00 0.40 0.06 0.03 0.015 -0.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5 -0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5

v2 v3 v4 v29 v30 v31 -0.10 -0.05 -0.02 -0.02 -0.02 -0.02 0.00 -0.01 0 0.00 0.00 0 0.02 0 0.02 0.02 0.10 0.05 0.04 0.01 0.04 0.04 0.20 0.10 0.06 0.02 0.06 0.06 0.08 0.03 0.08 0.30 0.15

Differential Magnitude 0.08

Differential Magnitude 0.10 0.04 0.1 0.40 0.20 0.12 0.1 0.05 0.12 -0.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5 -0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5

v5 v10 v16 v32 v33 v34 -0.10 -0.02 -0.02 -0.05 -0.05 -0.01 0.00 0.00 0.00 0 0 0 0.02 0.01 0.10 0.04 0.02 0.05 0.05 0.02 0.06 0.20 0.04 0.1 0.1 0.08 0.03 0.30 0.06 0.15 0.15 Differential Magnitude 0.10 Differential Magnitude 0.04

0.40 0.12 0.08 0.2 0.2 0.05 -0.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5 -0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5 v19 v20 v21 v35 v36 v37 -0.10 -0.10 -0.10 -0.06 -0.06 -0.02 0.00 0.00 -0.04 0.00 -0.04 0 0.10 0.10 -0.02 -0.02 0.20 0.02 0.20 0.10 0 0.30 0 0.30 0.02 0.04 0.40 0.20 0.02 0.04 0.40 0.06 0.50 0.04 0.30 0.06

Differential Magnitude 0.50

0.60 Differential Magnitude 0.08 0.08 0.06 0.70 0.60 0.40 -0.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5 0.1 0.08 0.1 -0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5 v23 v24 v25 v38 v39 v40 -0.20 -0.20 -0.01 -0.02 -0.1 0.00 -0.04 0.00 0.00 0 0.20 -0.05 -0.02 0.20 0.40 0.01 0.02 0 0 0.60 0.40 0.02 0.04 0.02 0.80 0.05 0.60 0.03 0.06 Differential Magnitude 1.00 Differential Magnitude 0.04 0.80 1.20 0.04 0.08 0.1 -0.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5 -0.5 0.0 0.5 1.0 1.5 -0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5 Phase Phase Phase Phase Phase Phase 06/10/2013 ING Seminar 26 Some Interesng Objects

0.10 5.00 0.00 (a) (a) (b) 4.00 -0.10 0 -0.20 3.00 -0.30 2.00 -0.40 1.00 Mag (mag)

-0.50 -1 0.00 -0.60 (c) 4.00 3.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 -2 2.00 HJD-d n 1.00 2.00 ) (b) 0.00 -2 (d) 4.00 1.00 Mag (mag) -3 v26 3.00 0.00 2.00

) (c) 1.00 2 1.00 -4 0.00 p (10 p (10 (e) 4.00 0.00 (d) 3.00 -5 2.00 1.00 1.00 0.00 0.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 0.45 0.50 0.55 0.60 0.65 0.70 25 30 35 40 45 50 HJD-d Frequency (c/d) n QU Sge Frequency (c/d)

0.05 0.00 (a) -0.04 -0.05 -0.02 -0.10 0.00 -0.15 -0.20 0.02 0.04 Mag (mag) -0.25 Mag (mag)

-0.30 0.06 -0.35 0.08 (a) -0.40 0.10 0.0 1.0 2.0 3.0 4.0 5.0 0.0 10.0 20.0 30.0 40.0 50.0 60.0 HJD-d n HJD-2455739 1.00 0.75 (b) 15.00 (b) 0.50 v28 10.00 0.25 v31 0.00 5.00 1.00 (c) 0.75 0.00

) 0.50 3 ) (c)

0.25 3 0.00 10.00 1.00 (d) 5.00 0.75 p (10 0.50 0.25 0.00 0.00 (d) 1.00 (e)

p (10 10.00 0.75 0.50 0.25 5.00 0.00 0.00 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Frequency (c/d) Frequency (c/d)

06/10/2013 ING Seminar 27 Future Work on M71

• Spectroscopic characterisaon of variable stars (ongoing with IDS) • Recently acquired UBVRI data with WFC. Cluster characterisaon analysis also ongoing, with ING summer student Patrick Sandquist

06/10/2013 ING Seminar 28 Future of NITES telescope

• Telescope will be moved to SQT plaorm • Plan to add colour filter wheel • Exoplanet follow-up alongside SQT • Possible student projects

06/10/2013 ING Seminar 29 3. DONUTS

06/10/2013 ING Seminar 30

DONUTS: A science frame autoguiding algorithm with sub-pixel precision, capable of guiding on defocused stars.

(McCormac J., Pollacco D., Skillen I., Faedi F., Todd I., Watson C. A. 2013, PASP, 125, 548)

06/10/2013 ING Seminar 31 Overview

• Thoughts that led up to DONUTS • How it works • PSFs tested • Off sky results • On sky results • Facilies deployed

06/10/2013 ING Seminar 32 Thoughts behind DONUTS

Movaon: Reduce systemac noise in high- cadence me-series photometry (e.g. exoplanet transits) Method: Fix stars in place on CCD over long periods of me (nightly & night-to-night) Requirements: Eliminate mechanical flexure, guide on variety of PSFs, fast calculaons. Result: Science frame guiding (on donuts if needed)

06/10/2013 ING Seminar 33 How it works • Collapse 2D images into Example Spectra from DONUTS 1D projecons (X & Y) 2.4e+06 Yref Ycomp • Using master image 2.2e+06 projecons, cross 2e+06 correlate subsequent 1D 1.8e+06 image projecons to Counts 1.6e+06 determine guide 1.4e+06 correcons (X & Y) 1.2e+06 1e+06 • Apply shis to telescope 0 200 400 600 800 1000 Pixels & repeat • Uses all stars in FOV

06/10/2013 ING Seminar 34 Off Sky Results • Manually applied shis to hundreds 20000 20000 120 120 of images with 4 different PSFs

100 15000 100 15000 • Shis recovered using DONUTS 80 80 • 10000 10000 Average residual errors < 0.3 pixels 60 60 regardless of PSF

Projected Flux 40 40 5000 5000 20 20 Cross Correlation Intensity

0 0 0 0 • Tested liming case of single low 120 50000 120 20000 SNR guide star 100 100 40000 15000 80 80 • Find liming SNR = 9 30000 60 60 10000 • Quote conservave limit of SNR = 15 20000

Projected Flux 40 40 5000 10000 20 20

Cross Correlation Intensity 22

0 0 0 0 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 21

Pixels Pixels 20

19 20 19 18 • Simulated 10,000 defocused projecons 18 • Only 7 predicted shi incorrect by 1 pixel 17 17 16 Limiting V Magnitude (SNR=15) 16 15 0 5 10 15 20 25 30 15 0 100 200 300 400 500 600 T exp (s)

06/10/2013 ING Seminar 35 PSFs Tested Heavily defocused Defocused INT – WFC NGTS-P

14000 70000 12000 60000 ) ) - - 10000 50000 8000 40000 Flux (e Flux (e 6000 70 30000 70 4000 60 20000 60 50 50 2000 10000 0 40 0 40 10 10 30 20 30 Y (pixels) 20 Y (pixels) 30 20 30 20 40 40 10 50 10 X (pixels) 50 X (pixels) 60 60 0 70 0 70

50000 40000 )

40000 - )

- 30000 30000 20000 Flux (e

Flux (e 20000 70 70 10000 60 10000 60 50 50 0 0 0 40 0 40 10 30 10 30 20 Y (pixels) 20 Y (pixels) 30 20 30 20 40 40 50 10 50 10 X (pixels) 60 X (pixels) 60 70 0 70 0

Asymmetrical PSF Under-sampled WHT – AG2 NGTS-1

06/10/2013 ING Seminar 36 On Sky Results SWASP EBLM (NITES) WASP 76b (NITES) HAT-P-12b (NITES)

HAT-P-12b 20110224 -0.03

-0.02

-0.01

0

0.01

0.02

0.03 Differential Magnitude

0.04

0.05 -2 -1 0 1 2 Hours Since Mid-Transit

DONUTS On/Off (NITES) DONUTS On/Off mul-night (NGTS-1)

20 10 10 5 0 0 -5 -10 -10 -4 -2 0 2 4

-20

Pixels (RA) -30

-40

-50

-60 -20 0 20 40 60 80 100 120 140 160 Pixels (DEC) 06/10/2013 ING Seminar 37 Facilies Deployed

DONUTS was designed for our own needs at: • NGTS • SQT • NITES Although it can be used in any applicaon of high-cadence me-series photometry where flexure and/or inability to defocus are a problem.

06/10/2013 ING Seminar 38 Finally…Other Acvies

• INT studentship programme • SQT 1m telescope • SuperWASP • Collaborang on various science projects with Warwick University

06/10/2013 ING Seminar 39 Thank you!

06/10/2013 ING Seminar 40