The Evolution of Rotation and Magnetism in Small Stars Near the Sun

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Rotation and Magnetism in Small Stars Near the Sun The Evolution of Rotation and Magnetism in Small Stars Near the Sun The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Newton, Elisabeth R. 2016. The Evolution of Rotation and Magnetism in Small Stars Near the Sun. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493355 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA c 2016 — Elisabeth R. Newton All rights reserved. Dissertation Advisor: Professor David Charbonneau Elisabeth R. Newton The Evolution of Rotation and Magnetism in Small Stars Near the Sun Abstract Despite the prevalence of M dwarfs, the smallest and most common type of main sequence star, their sizes, compositions, and ages are not well-constrained. Empirical determination of these properties is important for gaining insight into their stellar structure, magnetic field generation, and angular momentum evolution. I obtained low-resolution (R = 2000) near-infrared spectra of 447 nearby mid-to-late M dwarfs. I measured their absolute radial velocities with an accuracy of 4.4 km/s by exploiting telluric lines to establish an absolute wavelength calibration. I estimated their metallicities from the equivalent width of the sodium absorption feature at 2.2 µm to a precision of 0.12 dex, and from 2MASS colors to a precision of 0.15 dex. Using stars with radii measured from interferometry, I showed that the equivalent widths of aluminum and magnesium absorption features can be used to infer K and M dwarf temperatures to a precision of 69 K, and radii to 0.027 R . I applied these relations to planet-hosting stars from Kepler, showing that the typical planet is 15% larger than inferred when adopting stellar parameters from other recent catalogs. Using photometry from the MEarth-North Observatory, I measured rotation periods from 0.1 to 140 days for 387 M dwarfs. I found a prevalence of stable spot patterns, and no correlation between period and amplitude for fully-convective stars. Using galactic kinematics as a proxy for age, I found that rapid rotators (P < 10 days) are < 2 Gyr, iii and that the slowest are on average 5 3 Gyr old. I then showed that for early M ± dwarfs the typical stellar rotation period at 5 Gyr coincides with the orbital period at which habitable planets are found, and I suggest that mid-to-late M dwarfs are optimal targets around which to search for habitable-zone planets. I obtained optical spectra of 247 nearby M dwarfs, and measured the strength of the chromospheric Ha emission line. I identified a well-defined boundary in the mass–period plane that separates active and inactive M dwarfs. Ha activity is therefore a simple, accessible diagnostic for stellar rotation period, and I present a mass–period relation for inactive 4 M dwarfs. I found a significant (p value < 10− ) positive correlation between Ha emission strength and photometric variability amplitude, which implies that stars with stronger magnetic fields have both higher levels of chromospheric activity and larger or more abundant spots. I suggest that fully convective stars maintain rapid rotation rates and saturated magnetic activity for about 2 Gyr. They then undergo rapid angular momentum evolution upon reaching some critical threshold. Only upon reaching long rotation periods (around 70 days for a 0.2 M star) do their magnetic activity levels drop below what is required for Ha to be seen in emission. The stars I have observed in pursuit of this work are the nearest low-mass stars. As such they are the best targets around which to search for habitable, rocky worlds, and my work provides the means to constrain the sizes, temperatures, and ages of those planets. iv Contents Abstract iii Acknowledgments x 1 Introduction 1 1.1 Observations of M Dwarf Stars . 2 1.2 The Structure of Cool Stars . 5 1.3 The Physics of Cool Stars . 10 1.4 M Dwarfs as Exoplanet Hosts . 18 1.5 New Observations of Mid-to-late M Dwarfs in the Solar Neighborhood 21 1.5.1 Chapter 2 — Fundamental Stellar Parameters: A Spectroscopic Survey in the NIR . 21 1.5.2 Chapter 3 — The Properties of Exoplanet Hosts: Determining the Sizes of Cool Stars . 24 1.5.3 Chapter 4 — Angular Momentum Evolution: Stellar Rotation at the Bottom of the Main Sequence . 27 1.5.4 Chapter 5 — The Hunt for Habitable Planets: The Impact of Stellar Rotation on Radial Velocity Surveys . 29 1.5.5 Chapter 6 — The Origin of Magnetism: Magnetic Activity in Nearby M Dwarfs . 30 1.6 Looking Back, Looking Forward: Insight into the Structure and Physics of M Dwarf Stars . 32 v CONTENTS 2 Near-infrared Metallicities, Radial Velocities and Spectral Types for 447 Nearby M Dwarfs 37 2.1 Introduction . 37 2.2 Sample . 44 2.2.1 MEarth M dwarfs . 49 2.2.2 Spectroscopy targets . 49 2.3 Observations . 51 2.4 Estimation of uncertainty . 54 2.5 NIR spectral types . 56 2.5.1 Spectral typing routine . 59 2.5.2 IRTF spectral standards . 65 2.5.3 Comparing measures of spectral type . 66 2.5.4 Spectroscopic distances . 67 2.6 Metallicity calibration . 69 2.6.1 Metallicities of the primary stars . 71 2.6.2 Identification of calibrators . 73 2.6.3 Empirical metallicity calibration . 76 2.6.4 Influence of effective temperature and surface gravity on the metallicity calibration . 89 2.6.5 Tests of our metallicity relation . 97 2.6.6 Inclusion of previous metallicity estimates . 99 2.7 Photometric metallicity calibrations . 100 2.8 Radial velocities from NIR spectroscopy . 104 2.8.1 Radial velocity method . 107 2.8.2 Using precise RVs to investigate errors and systematics . 110 2.8.3 Validating the use of SpeX for radial velocities . 114 2.9 Conclusions . 116 vi CONTENTS 3 An Empirical Calibration to Estimate Cool Dwarf Fundamental Parameters from H-band Spectra 119 3.1 Introduction . 119 3.2 Observations and measurements . 124 3.2.1 Stars with interferometric measurements . 125 3.2.2 MEarth M dwarfs . 129 3.2.3 Cool KOIs . 130 3.3 Inferring stellar parameters . 131 3.3.1 Behavior of H-band spectral features as a function of effective temperature . 133 3.3.2 Empirical calibrations for stellar parameters using spectral fea- tures . 135 3.3.3 Systematic uncertainties in the calibrations . 141 3.4 Application to M dwarfs from MEarth . 142 3.4.1 Using luminosities to revisit the metallicities of the MEarth sample 147 3.4.2 Comparison to the Mann et al. temperature and radius calibrations 152 3.4.3 Trends between absolute MK and inferred stellar parameters . 154 3.4.4 Identifying over-luminous objects . 156 3.5 Applications to Kepler Objects of Interest . 158 3.5.1 Comparison to previous work . 163 3.5.2 Updated stellar and planetary parameters . 165 3.5.3 Comments on individual systems . 169 3.6 Summary . 172 4 The Rotation and Galactic Kinematics of Mid M dwarfs in the Solar Neigh- borhood 178 4.1 Introduction . 178 4.2 Photometry from MEarth . 183 vii CONTENTS 4.3 Determining rotation periods . 188 4.3.1 Period detection . 188 4.3.2 Identifying multiples . 193 4.3.3 Defining a statistical sample . 197 4.4 Comparison to previous period measurements . 198 4.4.1 Comparison to ground-based photometry . 201 4.4.2 Comparison to Kepler ......................... 202 4.4.3 Comparison with vsini measurements . 205 4.5 Spot characteristics . 215 4.5.1 Amplitude of variability . 217 4.5.2 Spot patterns and stability . 220 4.5.3 Recovery fractions . 221 4.6 Kinematics and metallicities of the rotators . 224 4.6.1 De-biasing the kinematics . 225 4.6.2 General kinematic properties of the sample . 226 4.6.3 Disk membership . 228 4.6.4 Metallicities of the rotators . 229 4.7 The age-rotation relation . 231 4.8 The mass-period relation . 240 4.9 Summary . 244 4.10 Conclusions . 247 5 The Impact of Stellar Rotation on the Detectability of Habitable Planets Around M Dwarfs 251 5.1 Introduction . 251 5.2 Stellar rotation periods and masses across the main sequence . 254 5.3 Stellar rotation and the habitable zone . 257 viii CONTENTS 5.4 M dwarfs with photometric monitoring as targets for radial velocity surveys...................................... 263 5.5 Discussion . 265 6Ha Emission in Nearby M dwarfs and its Relation to Stellar Rotation 270 6.1 Introduction . 270 6.2 Data . 273 6.2.1 Our nearby M dwarf sample . 273 6.2.2 Literature compilation . 277 6.2.3 New optical spectra from FAST . 282 6.3 Analysis . 283 6.3.1 Radial velocities . 283 6.3.2 Ha EWs ................................. 285 6.3.3 Ha luminosity and c .......................... 287 6.4 Results . 289 6.4.1 Activity versus rotation period . 289 6.4.2 The active/inactive boundary . 294 6.4.3 Stars with unusual activity levels . 298 6.4.4 Activity versus photometric amplitude . 299 6.5 Discussion . 302 References 307 ix Acknowledgments Though not quite comparable to the challenge of finishing my Ph.D., I found it very difficult to write these acknowledgements. The road here has been a long one, and on the way I am fortunate to have had more supportive and caring individuals in my life than I could possibly.
Recommended publications
  • Arxiv:2104.03323V2 [Astro-Ph.SR] 9 Apr 2021 Pending on the Metallicity and Modeling Assumptions (E.G., Lar- Son & Starrfield 1971; Oey & Clarke 2005)
    Astronomy & Astrophysics manuscript no. main ©ESO 2021 April 12, 2021 The Tarantula Massive Binary Monitoring V. R 144 – a wind-eclipsing binary with a total mass & 140 M * T. Shenar1, H. Sana1, P. Marchant1, B. Pablo2, N. Richardson3, A. F. J. Moffat4, T. Van Reeth1, R. H. Barbá5, D. M. Bowman1, P. Broos6, P. A. Crowther7, J. S. Clark8†, A. de Koter9, S. E. de Mink10; 9; 11, K. Dsilva1, G. Gräfener12, I. D. Howarth13, N. Langer12, L. Mahy1; 14, J. Maíz Apellániz15, A. M. T. Pollock7, F. R. N. Schneider16; 17, L. Townsley6, and J. S. Vink18 (Affiliations can be found after the references) Received March 02, 2021; accepted April 06, 2021 ABSTRACT Context. The evolution of the most massive stars and their upper-mass limit remain insufficiently constrained. Very massive stars are characterized by powerful winds and spectroscopically appear as hydrogen-rich Wolf-Rayet (WR) stars on the main sequence. R 144 is the visually brightest WR star in the Large Magellanic Cloud (LMC). R 144 was reported to be a binary, making it potentially the most massive binary thus observed. However, the orbit and properties of R 144 are yet to be established. Aims. Our aim is to derive the physical, atmospheric, and orbital parameters of R 144 and interpret its evolutionary status. Methods. We perform a comprehensive spectral, photometric, orbital, and polarimetric analysis of R 144. Radial velocities are measured via cross- correlation. Spectral disentangling is performed using the shift-and-add technique. We use the Potsdam Wolf-Rayet (PoWR) code for the spectral analysis. We further present X-ray and optical light-curves of R 144, and analyse the latter using a hybrid model combining wind eclipses and colliding winds to constrain the orbital inclination i.
    [Show full text]
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Arxiv:2012.09981V1 [Astro-Ph.SR] 17 Dec 2020 2 O
    Contrib. Astron. Obs. Skalnat´ePleso XX, 1 { 20, (2020) DOI: to be assigned later Flare stars in nearby Galactic open clusters based on TESS data Olga Maryeva1;2, Kamil Bicz3, Caiyun Xia4, Martina Baratella5, Patrik Cechvalaˇ 6 and Krisztian Vida7 1 Astronomical Institute of the Czech Academy of Sciences 251 65 Ondˇrejov,The Czech Republic(E-mail: [email protected]) 2 Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky pr. 13, 119234, Moscow, Russia 3 Astronomical Institute, University of Wroc law, Kopernika 11, 51-622 Wroc law, Poland 4 Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotl´aˇrsk´a2, 611 37 Brno, Czech Republic 5 Dipartimento di Fisica e Astronomia Galileo Galilei, Vicolo Osservatorio 3, 35122, Padova, Italy, (E-mail: [email protected]) 6 Department of Astronomy, Physics of the Earth and Meteorology, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynsk´adolina F-2, 842 48 Bratislava, Slovakia 7 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, H-1121 Budapest, Konkoly Thege Mikl´os´ut15-17, Hungary Received: September ??, 2020; Accepted: ????????? ??, 2020 Abstract. The study is devoted to search for flare stars among confirmed members of Galactic open clusters using high-cadence photometry from TESS mission. We analyzed 957 high-cadence light curves of members from 136 open clusters. As a result, 56 flare stars were found, among them 8 hot B-A type ob- jects. Of all flares, 63 % were detected in sample of cool stars (Teff < 5000 K), and 29 % { in stars of spectral type G, while 23 % in K-type stars and ap- proximately 34% of all detected flares are in M-type stars.
    [Show full text]
  • Download This Article in PDF Format
    A&A 526, A141 (2011) Astronomy DOI: 10.1051/0004-6361/201016034 & c ESO 2011 Astrophysics The HARPS search for southern extra-solar planets, XXVI. Two giant planets around M0 dwarfs T. Forveille1, X. Bonfils1,2, G. Lo Curto3,X.Delfosse1,S.Udry2, F. Bouchy4,5,C.Lovis2, M. Mayor2, C. Moutou6, D. Naef2,3,F.Pepe2, C. Perrier1,D.Queloz2, and N. Santos7,8 1 Laboratoire d’Astrophysique de Grenoble, Observatoire de Grenoble, Université Joseph Fourier, CNRS, UMR 5571, BP 53, 38041 Grenoble Cedex 9, France e-mail: [email protected] 2 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Sauverny, Switzerland 3 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile 4 Institut d’Astrophysique de Paris, CNRS, Université Pierre et Marie Curie, 98bis Bd Arago, 75014 Paris, France 5 Observatoire de Haute-Provence, CNRS/OAMP, 04870 St Michel l’Observatoire, France 6 Laboratoire d’Astrophysique de Marseille, 38 rue Fréderic Joliot-Curie, 13388 Marseille Cedex 13, France 7 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 8 Departamento de Fìsica e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal Received 31 October 2010 / Accepted 1 December 2010 ABSTRACT Fewer giants planets are found around M dwarfs than around more massive stars, and this dependence of planetary characteristics on the mass of the central star is an important observational diagnostic of planetary formation theories. In part to improve on those statistics, we are monitoring the radial velocities of nearby M dwarfs with the HARPS spectrograph on the ESO 3.6 m telescope.
    [Show full text]
  • Lennon Reunion, Page 6 “There Will Be a Huge Transformation of the Page 2 July 4, 2013 TORRANCE TRIBUNE Calendar People FRIDAY, JULY 5 Torrance Blvd
    The Weekly Newspaper of Torrance Herald Publications - Torrance, El Segundo, Manhattan Beach, Hawthorne, Lawndale, & Inglewood Community Newspapers Since 1911 - (310) 322-1830 - Vol. 3, No. 26 - July 4, 2013 Torrance Salutes Independence Inside Day Sans Fireworks Show This Issue Business & Professional ......................10 Calendar...............................2 Classifieds ...........................9 Crossword/Sudoku ............9 Police Reports ....................3 Politically Speaking ...........4 Real Estate. .......................12 The fourth of July, the most American of holidays, was again marked without parades or city-sponsored fireworks due to budget cuts but it did not stop residents from celebrating. Seen here is a skydiver with the American flag at the Torrance Centennial Celebration. Photo by TerriAnn Ferren. Sports ...................................5 City Council Previews Del Amo TerriAnn in Torrance .........6 Fashion Center Renovations By Dylan Little mall. The mall will not look anywhere near and going to other places in Southern California On Tuesday, the Torrance City Council heard how it looks today,” said Scotto. “When 2015 to shop, they’re going to stop in Torrance at a presentation from Simon Property Group on comes around, I think people will be extremely our Del Amo Mall. Come Thanksgiving this planned upgrades to the Del Amo Fashion pleased with the results we’re going to have year, we’ll get the first taste of that with the Center. Chuck Davis with Simon Property Group with this mall. Instead of driving by our mall See City Council, page 2 made a PowerPoint presentation that showed a nearly unrecognizable mall. One of the major Weekend changes was to divide the mall into the “Fashion Center” (focusing on clothes and high-end retail) TerriAnn: A Lennon and “Market Square” (focusing on home goods Forecast and furniture).
    [Show full text]
  • Catalog of Nearby Exoplanets
    Catalog of Nearby Exoplanets1 R. P. Butler2, J. T. Wright3, G. W. Marcy3,4, D. A Fischer3,4, S. S. Vogt5, C. G. Tinney6, H. R. A. Jones7, B. D. Carter8, J. A. Johnson3, C. McCarthy2,4, A. J. Penny9,10 ABSTRACT We present a catalog of nearby exoplanets. It contains the 172 known low- mass companions with orbits established through radial velocity and transit mea- surements around stars within 200 pc. We include 5 previously unpublished exo- planets orbiting the stars HD 11964, HD 66428, HD 99109, HD 107148, and HD 164922. We update orbits for 90 additional exoplanets including many whose orbits have not been revised since their announcement, and include radial ve- locity time series from the Lick, Keck, and Anglo-Australian Observatory planet searches. Both these new and previously published velocities are more precise here due to improvements in our data reduction pipeline, which we applied to archival spectra. We present a brief summary of the global properties of the known exoplanets, including their distributions of orbital semimajor axis, mini- mum mass, and orbital eccentricity. Subject headings: catalogs — stars: exoplanets — techniques: radial velocities 1Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the Uni- versity of California and the California Institute of Technology. The Keck Observatory was made possible by the generous financial support of the W. M. Keck Foundation. arXiv:astro-ph/0607493v1 21 Jul 2006 2Department of Terrestrial Magnetism, Carnegie Institute of Washington, 5241 Broad Branch Road NW, Washington, DC 20015-1305 3Department of Astronomy, 601 Campbell Hall, University of California, Berkeley, CA 94720-3411 4Department of Physics and Astronomy, San Francisco State University, San Francisco, CA 94132 5UCO/Lick Observatory, University of California, Santa Cruz, CA 95064 6Anglo-Australian Observatory, PO Box 296, Epping.
    [Show full text]
  • The [Y/Mg] Clock Works for Evolved Solar Metallicity Stars ? D
    Astronomy & Astrophysics manuscript no. clusters_le c ESO 2017 July 28, 2017 The [Y/Mg] clock works for evolved solar metallicity stars ? D. Slumstrup1, F. Grundahl1, K. Brogaard1; 2, A. O. Thygesen3, P. E. Nissen1, J. Jessen-Hansen1, V. Van Eylen4, and M. G. Pedersen5 1 Stellar Astrophysics Centre (SAC). Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus, Denmark e-mail: [email protected] 2 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 3 California Institute of Technology, 1200 E. California Blvd, MC 249-17, Pasadena, CA 91125, USA 4 Leiden Observatory, Leiden University, 2333CA Leiden, The Netherlands 5 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium Received 3 July 2017 / Accepted 20 July2017 ABSTRACT Aims. Previously [Y/Mg] has been proven to be an age indicator for solar twins. Here, we investigate if this relation also holds for helium-core-burning stars of solar metallicity. Methods. High resolution and high signal-to-noise ratio (S/N) spectroscopic data of stars in the helium-core-burning phase have been obtained with the FIES spectrograph on the NOT 2:56 m telescope and the HIRES spectrograph on the Keck I 10 m telescope. They have been analyzed to determine the chemical abundances of four open clusters with close to solar metallicity; NGC 6811, NGC 6819, M67 and NGC 188. The abundances are derived from equivalent widths of spectral lines using ATLAS9 model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Results from asteroseismology and binary studies were used as priors on the atmospheric parameters, where especially the log g is determined to much higher precision than what is possible with spectroscopy.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Can There Be Additional Rocky Planets in the Habitable Zone of Tight Binary
    Mon. Not. R. Astron. Soc. 000, 1–10 () Printed 24 September 2018 (MN LATEX style file v2.2) Can there be additional rocky planets in the Habitable Zone of tight binary stars with a known gas giant? B. Funk1⋆, E. Pilat-Lohinger1 and S. Eggl2 1Institute for Astronomy, University of Vienna, Vienna, Austria 2IMCCE, Observatoire de Paris, Paris, France ABSTRACT Locating planets in Habitable Zones (HZs) around other stars is a growing field in contem- porary astronomy. Since a large percentage of all G-M stars in the solar neighborhood are expected to be part of binary or multiple stellar systems, investigations of whether habitable planets are likely to be discovered in such environments are of prime interest to the scientific community. As current exoplanet statistics predicts that the chances are higher to find new worlds in systems that are already known to have planets, we examine four known extrasolar planetary systems in tight binaries in order to determine their capacity to host additional hab- itable terrestrial planets. Those systems are Gliese 86, γ Cephei, HD 41004 and HD 196885. In the case of γ Cephei, our results suggest that only the M dwarf companion could host ad- ditional potentially habitable worlds. Neither could we identify stable, potentially habitable regions around HD 196885A. HD 196885 B can be considered a slightly more promising tar- get in the search forEarth-twins.Gliese 86 A turned out to be a very good candidate, assuming that the system’s history has not been excessively violent. For HD 41004 we have identified admissible stable orbits for habitable planets, but those strongly depend on the parameters of the system.
    [Show full text]
  • Biosignatures Search in Habitable Planets
    galaxies Review Biosignatures Search in Habitable Planets Riccardo Claudi 1,* and Eleonora Alei 1,2 1 INAF-Astronomical Observatory of Padova, Vicolo Osservatorio, 5, 35122 Padova, Italy 2 Physics and Astronomy Department, Padova University, 35131 Padova, Italy * Correspondence: [email protected] Received: 2 August 2019; Accepted: 25 September 2019; Published: 29 September 2019 Abstract: The search for life has had a new enthusiastic restart in the last two decades thanks to the large number of new worlds discovered. The about 4100 exoplanets found so far, show a large diversity of planets, from hot giants to rocky planets orbiting small and cold stars. Most of them are very different from those of the Solar System and one of the striking case is that of the super-Earths, rocky planets with masses ranging between 1 and 10 M⊕ with dimensions up to twice those of Earth. In the right environment, these planets could be the cradle of alien life that could modify the chemical composition of their atmospheres. So, the search for life signatures requires as the first step the knowledge of planet atmospheres, the main objective of future exoplanetary space explorations. Indeed, the quest for the determination of the chemical composition of those planetary atmospheres rises also more general interest than that given by the mere directory of the atmospheric compounds. It opens out to the more general speculation on what such detection might tell us about the presence of life on those planets. As, for now, we have only one example of life in the universe, we are bound to study terrestrial organisms to assess possibilities of life on other planets and guide our search for possible extinct or extant life on other planetary bodies.
    [Show full text]
  • Introduction
    Cambridge University Press 978-1-108-41977-2 — The Exoplanet Handbook Michael Perryman Excerpt More Information 1 Introduction 1.1 The challenge lensing provided evidence for a low-mass planet orbit- ing a star near the centre of the Galaxy nearly 30 000 HEREAREHUNDREDSOFBILLIONS of galaxies in the light-years away, with the first confirmed microlensing observable Universe, with each galaxy such as our T planet reported in 2004. In the photometric search for own containing some hundred billion stars. Surrounded transiting exoplanets, the first transit of a previously- by this seemingly limitless ocean of stars, mankind has detected exoplanet was reported in 1999, the first discov- long speculated about the existence of planetary sys- ery by transit photometry in 2003, the first of the wide- tems other than our own, and the possibility of life ex- field bright star survey discoveries in 2004, and the first isting elsewhere in the Universe. discovery from space observations in 2008. Only recently has evidence become available to be- While these manifestations of the existence of exo- gin to distinguish the extremes of thinking that has per- planets are also extremely subtle, advances in Doppler vaded for more than 2000 years, with opinions ranging measurements, photometry, microlensing, timing, from ‘There are infinite worlds both like and unlike this imaging, and astrometry, have since provided the tools world of ours’ (Epicurus, 341–270 BCE) to ‘There cannot for their detection in relatively large numbers. Now, al- be more worlds than one’ (Aristotle, 384–322 BCE). most 25 years after the first observational confirmation, Shining by reflected starlight, exoplanets compa- exoplanet detection and characterisation, and advances rable to solar system planets will be billions of times in the theoretical understanding of their formation and fainter than their host stars and, depending on their dis- evolution, are moving rapidly on many fronts.
    [Show full text]
  • V·M·I University Microfilms International a Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor, M148106-1346 USA 313/761-4700 800/521-0600
    The dynamics of satellite galaxies. Item Type text; Dissertation-Reproduction (electronic) Authors Zaritsky, Dennis Fabian. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 09:44:33 Link to Item http://hdl.handle.net/10150/185639 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy.
    [Show full text]