Download This Article in PDF Format

Total Page:16

File Type:pdf, Size:1020Kb

Download This Article in PDF Format A&A 526, A141 (2011) Astronomy DOI: 10.1051/0004-6361/201016034 & c ESO 2011 Astrophysics The HARPS search for southern extra-solar planets, XXVI. Two giant planets around M0 dwarfs T. Forveille1, X. Bonfils1,2, G. Lo Curto3,X.Delfosse1,S.Udry2, F. Bouchy4,5,C.Lovis2, M. Mayor2, C. Moutou6, D. Naef2,3,F.Pepe2, C. Perrier1,D.Queloz2, and N. Santos7,8 1 Laboratoire d’Astrophysique de Grenoble, Observatoire de Grenoble, Université Joseph Fourier, CNRS, UMR 5571, BP 53, 38041 Grenoble Cedex 9, France e-mail: [email protected] 2 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Sauverny, Switzerland 3 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile 4 Institut d’Astrophysique de Paris, CNRS, Université Pierre et Marie Curie, 98bis Bd Arago, 75014 Paris, France 5 Observatoire de Haute-Provence, CNRS/OAMP, 04870 St Michel l’Observatoire, France 6 Laboratoire d’Astrophysique de Marseille, 38 rue Fréderic Joliot-Curie, 13388 Marseille Cedex 13, France 7 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 8 Departamento de Fìsica e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal Received 31 October 2010 / Accepted 1 December 2010 ABSTRACT Fewer giants planets are found around M dwarfs than around more massive stars, and this dependence of planetary characteristics on the mass of the central star is an important observational diagnostic of planetary formation theories. In part to improve on those statistics, we are monitoring the radial velocities of nearby M dwarfs with the HARPS spectrograph on the ESO 3.6 m telescope. We present here the detection of giant planets around two nearby M0 dwarfs: planets, with minimum masses of respectively 5 Jupiter masses and 1 Saturn mass, orbit around Gl 676A and HIP 12961. The latter is, by over a factor of two, the most massive planet found by radial velocity monitoring of an M dwarf, but its being found around an early M-dwarf is in approximate line with the upper envelope of the planetary vs stellar mass diagram. HIP 12961 ([Fe/H] = −0.07) is slightly more metal-rich than the average solar neighborhood ([Fe/H] = −0.17), and Gl 676A ([Fe/H] = 0.18) significantly so. The two stars together therefore reinforce the growing trend for giant planets being more frequent around more metal-rich M dwarfs, and the 5 Jupiter mass Gl 676Ab being found around a metal-rich star is consistent with the expectation that the most massive planets preferentially form in disks with large condensate masses. Key words. stars: individual: Gl 676A – stars: individual: HIP 12961 – planetary systems – stars: late-type – techniques: radial velocities – stars: low-mass 1. Introduction stars, while Neptune-mass planets should inversely be com- mon. Within the same paradigm, but assuming that the prop- Much recent theoretical work has gone into examining how erties of protoplanetary disks, contrary to observations, do not planet formation depends on stellar mass, because stellar mass change with stellar mass, Kornet et al. (2006) predict instead significantly changes the physical conditions which control the that Jupiter-mass planets become more frequent in inverse pro- formation of planets. A comparison, for instance, of the planet portion to the stellar mass. Finally, Boss (2006) examines how populations around Sun-like stars on one hand, and around M planet formation depends on stellar mass for planets formed by dwarfs on the other hand, probes the sensitivity of the plane- disk instability, and concludes that the frequency of Jupiter-mass tary formation process to several physical parameters: around planet is largely independent of stellar mass, as long as disks are lower mass stars gravity (hence disk rotation speed), tempera- massive enough to become unstable. One needs to note, though, ture (which regulates the position of the ice line) are both lower, that proto-planetary disks of a realistic mass are likely to be and, perhaps most importantly, disk mass scales approximately gravitationally stable out to at least 10 AU. Planets can thus linearly with stellar mass (e.g. Scholz et al. 2006). form through gravitational instability only beyond that distance, Within the “core accretion” paradigm, Laughlin et al. (2004), in a separation range only skimmed by radial velocity moni- Ida & Lin (2005), and Kennedy & Kenyon (2008) all predict toring and probed mostly by microlensing searches and direct that giant planet formation is inhibited around very-low-mass imaging. Massive planets formed by gravitational instability and found well within 5 AU must thus then have migrated inward. Based on observations made with the HARPS instrument on the How giant planets migrating in the massive disks needed for ESO 3.6-m telescope at La Silla Observatory under program ID 072.C- gravitational instability can escape accreting enough mass to be- 0488 come a brown dwarf (>13 M ) is unclear (e.g. Stamatellos & Jup Tables 3 and 4 are also available in electronic form at the CDS via Whitworth 2009; Kratter et al. 2010). anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/cgi-bin/qcat?J/A+A/526/A141 Article published by EDP Sciences A141, page 1 of 7 A&A 526, A141 (2011) Observationally, just a dozen of the close to 400 planetary Table 1. Observed and inferred stellar parameters for Gl 676A and systems currently known from radial velocity monitoring, are HIP 12961. 1 centered around M dwarfs (M < 0.6 M) . This no doubt re- flects in part a selection bias, since many more of the intrisically Parameter Gl 676A HIP 12961 Notes brighter solar-type stars than of the fainter M dwarfs have been Spectral Type M0V M0V a searched for planets, but there is increasing statistical evidence V 9.585 ± 0.006 10.31 ± 0.04 b (e.g. Bonfils et al. 2006; Endl et al. 2006; Johnson et al. 2007, J 6.711 ± 0.020 7.558 ± 0.021 c c 2010) that M dwarfs also genuinely have fewer massive plan- Ks 5.825 ± 0.029 6.736 ± 0.018 ∼ d ets ( MJup) than the more massive solar-type stars. They may, BCKs 2.73 2.61 on the other hand, and though no rigorous statistical analysis π [mas] 60.79 ± 1.62 43.45 ± 1.72 e has yet been performed for that planet population, have a larger Distance [pc] 16.45 ± 0.44 23.01 ± 0.91 ± ± prevalence of the harder to detect Neptune-mass and super-Earth MV 8.50 0.06 8.50 0.09 M 4.74 ± 0.06 4.93 ± 0.09 planets: a quarter of the ∼30 planets with M sin(i) < 0.1 M Ks Jup M 7.47 7.54 known to date orbit an M dwarf, when solar-type stars outnum- bol L [L] 0.082 0.076 ber M dwarfs by an order of magnitude in planet-search samples. v sin i [km s−1]1.6± 1.0 1.5 ± 1.0 Conversely, the highest mass planets known around M dwarfs [Fe/H] 0.18 −0.07 f = g are the M sin(i) 2 MJup Gl 876b (Delfosse et al. 1998; Marcy M [ M] 0.71 0.67 et al. 1998) and HIP79431b (Apps et al. 2010), and at a larger (a) orbital separation of ∼3AUstheM =≈ 3.5 MJup OGLE-2005- Notes. Hawley et al. (1996) for Gl 676A, and Luyten (1980)for BLG-071Lb microlensing planet (Dong et al. 2009), when over HIP 12961; (b) Koen et al. (2002) for Gl 676A, and computed from the (c) two dozen planets with masses over 10 MJup are known around TYCHO (BT ,VT ) photometry for HIP 12961; Skrutskie et al. (2006); (d) − − solar type stars. The statistical significance of that difference computed from J Ks with the Leggett et al. (2001)BCKs vs. J Ks (e) ( f ) − relation; van Leeuwen (2007); computed from MKs and V Ks however remains modest, since the M dwarfs searched for plan- (g) ets only number in the few hundreds, when the apparent fraction using the Schlaufman & Laughlin (2010) calibration; computed from MKs using the Delfosse et al. (2000) calibration; both masses are at of these very massive planets is under 1% around solar type stars. the upper edge of the validity range of that calibration, and they might We present here the detection of two giant planets around therefore have somewhat larger errors than its 10% dispersion. M0 dwarfs, a M sin(i) = 0.354 MJup planet around HIP 12961, and a M sin(i) = 4.87 MJup planet around Gl 676A. 2.2. Gl 676A The Gl 676 system (also CCDM J17302-5138) has been rec- 2. Stellar characteristics ognized as a member of the immediate solar neighborhood for much longer, figuring in the original Gliese (1969) catalog of Table 1 summarizes the properties of the two host stars, which the 20 pc volume. It consequently has 15 references listed in we briefly discuss below. SIMBAD, though none of those dedicates more than a few sen- tences to Gl 676. The system comprises Gl 676A (also CD –51 10924, HIP 85647, CPD-51 10396) and Gl 676B, with re- 2.1. HIP 12961 spective spectral types of M0V and M3V (Hawley et al. 1996) and separated by ∼50" on the sky. At the distance of the system HIP 12961 (also CD-23deg1056, LTT 1349, NLTT 8966, ∼ SAO 168043) was not identified as a member of the 25 pc vol- this angular distance translates into an 800 AU projected sepa- ume until the publication of the Perryman & ESA (1997) cat- ration, which is probably far enough that Gl 676B didn’t strongly alog, and has attracted very little attention: it is mentioned in influence the formation of the planetary system of Gl 676A.
Recommended publications
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • IAU Division C Working Group on Star Names 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ ​ WGSN Email: [email protected] ​ The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. ​ ​ ​ WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the ​ internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]
  • Analytic Stability Maps of Unknown Exoplanet Companions for Imaging Prioritization
    Bachelor's degree thesis ANALYTIC STABILITY MAPS OF UNKNOWN EXOPLANET COMPANIONS FOR IMAGING PRIORITIZATION Carlos Gasc´on Alvarez´ Advised by Dmitry Savransky (Cornell University) Miquel Sureda (UPC) In partial fulfillment of the requirements for the Bachelor's Degree in Mathematics Bachelor's Degree in Aerospace Technology Engineering July 2019 ABSTRACT Identifying which systems are more likely to host an imageable planet can play an important role in the construction of an optimized target list for future direct imaging missions, such as the planned technology demonstration for the Wide Field Infrared Survey Telescope (WFIRST). For single-planet systems, the presence of an already detected exoplanet can severely restrict the target's stable region and should therefore be considered when searching for unknown companions. To do so, we first analyze the performance and robustness of several two-planet stability criteria by comparing them with long-term numerical simulations. We then derive the necessary formulation for the computation of (a, R) analytic stability maps, which can be used in conjunction with depth- of-search grids in order to define the stable-imageable region of a system. The dynamically stable completeness (i.e., the expected number of imageable and stable planets) can then be calculated via convolution with the selected occurrence grid, obtaining a metric that can be directly compared for imaging prioritization. Applying this procedure to all the currently known single-planet systems within a distance of 50 pc, we construct a ranked target list based on the WFIRST CGI's predicted performance and SAG13 occurrence rates. Keywords| numerical simulations - analytic stability maps - dynamical evolution and stability - direct imaging - exoplanets 1 CONTENTS 1 Introduction 3 2 Analytic Stability Criteria for Two-Planet Systems 4 2.1 Criteria Based on the Outer Pericenter to Inner Apocenter Ratio .
    [Show full text]
  • Article (Published Version)
    Article Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program. II. Activity an radial velocity GOMES DA SILVA, J., et al. Reference GOMES DA SILVA, J., et al. Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program. II. Activity an radial velocity. Astronomy and Astrophysics, 2012, vol. 541, p. A9 DOI : 10.1051/0004-6361/201118598 Available at: http://archive-ouverte.unige.ch/unige:33880 Disclaimer: layout of this document may differ from the published version. 1 / 1 A&A 541, A9 (2012) Astronomy DOI: 10.1051/0004-6361/201118598 & c ESO 2012 Astrophysics Long-term magnetic activity of a sample of M-dwarf stars from the HARPS program II. Activity and radial velocity,, J. Gomes da Silva1,2,N.C.Santos1,2, X. Bonfils3, X. Delfosse3, T. Forveille3,S.Udry4, X. Dumusque1,4, and C. Lovis4 1 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal 3 UJF-Grenoble 1 / CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, 38041 Grenoble, France 4 Observatoire de Genève, Université de Genève, 51 Ch. des Maillettes, 1290 Versoix, Switzerland Received 6 December 2011 / Accepted 7 February 2012 ABSTRACT Owing to their low mass and luminosity, M dwarfs are ideal targets if one hopes to find low-mass planets similar to Earth using the radial velocity (RV) method. However, stellar magnetic cycles could add noise or even mimic the RV signal of a long-period companion.
    [Show full text]
  • IAU WGSN 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ WGSN Email: [email protected] The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]
  • Solar System Analogues Among Exoplanetary Systems
    Solar System analogues among exoplanetary systems Maria Lomaeva Lund Observatory Lund University ´´ 2016-EXA105 Degree project of 15 higher education credits June 2016 Supervisor: Piero Ranalli Lund Observatory Box 43 SE-221 00 Lund Sweden Populärvetenskaplig sammanfattning Människans intresse för rymden har alltid varit stort. Man har antagit att andra plan- etsystem, om de existerar, ser ut som vårt: med mindre stenplaneter i banor närmast stjärnan och gas- samt isjättar i de yttre banorna. Idag känner man till drygt 2 000 exoplaneter, d.v.s., planeter som kretsar kring andra stjärnor än solen. Man vet även att vissa av dem saknar motsvarighet i solsystemet, t. ex., heta jupitrar (gasjättar som har migrerat inåt och kretsar väldigt nära stjärnan) och superjordar (stenplaneter större än jorden). Därför blir frågan om hur unikt solsystemet är ännu mer intressant, vilket vi försöker ta reda på i det här projektet. Det finns olika sätt att detektera exoplaneter på men två av dem har gett flest resultat: transitmetoden och dopplerspektroskopin. Med transitmetoden mäter man minsknin- gen av en stjärnas ljus när en planet passerar framför den. Den metoden passar bäst för stora planeter med små omloppsbanor. Dopplerspektroskopin använder sig av Doppler effekten som innebär att ljuset utsänt från en stjärna verkar blåare respektive rödare när en stjärna förflyttar sig fram och tillbaka från observatören. Denna rörelse avslöjar att det finns en planet som kretsar kring stjärnan och påverkar den med sin gravita- tion. Dopplerspektroskopin är lämpligast för massiva planeter med små omloppsbanor. Under projektets gång har vi inte bara letat efter solsystemets motsvarigheter utan även studerat planetsystem som är annorlunda.
    [Show full text]
  • Survival of Exomoons Around Exoplanets 2
    Survival of exomoons around exoplanets V. Dobos1,2,3, S. Charnoz4,A.Pal´ 2, A. Roque-Bernard4 and Gy. M. Szabo´ 3,5 1 Kapteyn Astronomical Institute, University of Groningen, 9747 AD, Landleven 12, Groningen, The Netherlands 2 Konkoly Thege Mikl´os Astronomical Institute, Research Centre for Astronomy and Earth Sciences, E¨otv¨os Lor´and Research Network (ELKH), 1121, Konkoly Thege Mikl´os ´ut 15-17, Budapest, Hungary 3 MTA-ELTE Exoplanet Research Group, 9700, Szent Imre h. u. 112, Szombathely, Hungary 4 Universit´ede Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France 5 ELTE E¨otv¨os Lor´and University, Gothard Astrophysical Observatory, Szombathely, Szent Imre h. u. 112, Hungary E-mail: [email protected] January 2020 Abstract. Despite numerous attempts, no exomoon has firmly been confirmed to date. New missions like CHEOPS aim to characterize previously detected exoplanets, and potentially to discover exomoons. In order to optimize search strategies, we need to determine those planets which are the most likely to host moons. We investigate the tidal evolution of hypothetical moon orbits in systems consisting of a star, one planet and one test moon. We study a few specific cases with ten billion years integration time where the evolution of moon orbits follows one of these three scenarios: (1) “locking”, in which the moon has a stable orbit on a long time scale (& 109 years); (2) “escape scenario” where the moon leaves the planet’s gravitational domain; and (3) “disruption scenario”, in which the moon migrates inwards until it reaches the Roche lobe and becomes disrupted by strong tidal forces.
    [Show full text]
  • The Impact of Stellar Rotation on the Detectability of Habitable Planets Around M Dwarfs
    THE IMPACT OF STELLAR ROTATION ON THE DETECTABILITY OF HABITABLE PLANETS AROUND M DWARFS The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Newton, Elisabeth R. et al. “THE IMPACT OF STELLAR ROTATION ON THE DETECTABILITY OF HABITABLE PLANETS AROUND M DWARFS.” The Astrophysical Journal 821.1 (2016): L19. © 2016 The American Astronomical Society As Published http://dx.doi.org/10.3847/2041-8205/821/1/l19 Publisher IOP Publishing Version Final published version Citable link http://hdl.handle.net/1721.1/108367 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal Letters, 821:L19 (6pp), 2016 April 10 doi:10.3847/2041-8205/821/1/L19 © 2016. The American Astronomical Society. All rights reserved. THE IMPACT OF STELLAR ROTATION ON THE DETECTABILITY OF HABITABLE PLANETS AROUND M DWARFS Elisabeth R. Newton1, Jonathan Irwin1, David Charbonneau1, Zachory K. Berta-Thompson2, and Jason A. Dittmann1 1 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 2 Kavli Institute for Astrophysics and Space Research and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Received 2016 February 8; accepted 2016 March 9; published 2016 April 11 ABSTRACT Stellar activity and rotation frustrate the detection of exoplanets through the radial velocity technique. This effect is particularly of concern for M dwarfs, which can remain magnetically active for billions of years.
    [Show full text]
  • Astrometric Search for Extrasolar Planets in Stellar Multiple Systems
    Astrometric search for extrasolar planets in stellar multiple systems Dissertation submitted in partial fulfillment of the requirements for the degree of doctor rerum naturalium (Dr. rer. nat.) submitted to the faculty council for physics and astronomy of the Friedrich-Schiller-University Jena by graduate physicist Tristan Alexander Röll, born at 30.01.1981 in Friedrichroda. Referees: 1. Prof. Dr. Ralph Neuhäuser (FSU Jena, Germany) 2. Prof. Dr. Thomas Preibisch (LMU München, Germany) 3. Dr. Guillermo Torres (CfA Harvard, Boston, USA) Day of disputation: 17 May 2011 In Memoriam Siegmund Meisch ? 15.11.1951 † 01.08.2009 “Gehe nicht, wohin der Weg führen mag, sondern dorthin, wo kein Weg ist, und hinterlasse eine Spur ... ” Jean Paul Contents 1. Introduction1 1.1. Motivation........................1 1.2. Aims of this work....................4 1.3. Astrometry - a short review...............6 1.4. Search for extrasolar planets..............9 1.5. Extrasolar planets in stellar multiple systems..... 13 2. Observational challenges 29 2.1. Astrometric method................... 30 2.2. Stellar effects...................... 33 2.2.1. Differential parallaxe.............. 33 2.2.2. Stellar activity.................. 35 2.3. Atmospheric effects................... 36 2.3.1. Atmospheric turbulences............ 36 2.3.2. Differential atmospheric refraction....... 40 2.4. Relativistic effects.................... 45 2.4.1. Differential stellar aberration.......... 45 2.4.2. Differential gravitational light deflection.... 49 2.5. Target and instrument selection............ 51 2.5.1. Instrument requirements............ 51 2.5.2. Target requirements............... 53 3. Data analysis 57 3.1. Object detection..................... 57 3.2. Statistical analysis.................... 58 3.3. Check for an astrometric signal............. 59 3.4. Speckle interferometry.................
    [Show full text]
  • Disertaciones Astronómicas Boletín Número 63 De Efemérides Astronómicas 10 De Febrero De 2021
    Disertaciones astronómicas Boletín Número 63 de efemérides astronómicas 10 de febrero de 2021 Realiza Luis Fernando Ocampo O. ([email protected]). Noticias de la semana. La conquista de Marte en 2021. Imagen 1: Imagen de Marte por la nave Tianwen-1 la semana pasada Crédito: Administración Nacional del Espacio de China, vía Reuters. Ha llegado el primero de un desfile de tres nuevos visitantes a Marte. Las tres misiones se lanzaron en julio pasado para aprovechar una alineación favorable entre la Tierra y Marte que se produce cada 26 meses Ayer martes, febrero 9, los Emiratos Árabes Unidos se convirtieron en la quinta nación en enviar con éxito una nave espacial a Marte cuando su sonda robótica, llamada Hope, comenzó a orbitar el planeta rojo. Es la primera misión interplanetaria emprendida por un país árabe. En los últimos días, varios edificios y monumentos prominentes en el rico país petrolero, se iluminaron por la noche en rojo en honor a Marte. “Desde la perspectiva del gobierno de U.E.A., básicamente el 90 por ciento de esta misión se ha logrado con éxito ”, dijo Omran Sharaf, gerente de proyecto de Hope en una entrevista antes de la llegada de la nave espacial. La primera sonda robótica que llegó a Marte este año fue Hope, un orbitador de la agencia espacial emergente de los Emiratos Árabes Unidos. Llegó el martes y se embarcará en un estudio de la atmósfera del planeta rojo, ayudando a los científicos planetarios a comprender la dinámica meteorológica de Marte. Para el 10 por ciento restante, había poco que hacer más que observar y esperar mientras la nave espacial ejecutaba las instrucciones ya cargadas en su computadora.
    [Show full text]
  • Black Holes, Chaos in Universe, Processes in Space, Stars, Galaxies, Ordered Universe
    International Journal of Astronomy 2020, 9(1): 12-26 DOI: 10.5923/j.astronomy.20200901.03 Black Hole & There is no Chaos in the Universe Weitter Duckss Independent Researcher, Zadar, Croatia Abstract This year's Nobel's Prize in physics has turned into another degradation of science. The first part of the article (3.) deals with chaos that includes very different star systems. Inside a system there are objects with a lot of satellites and those with none. Some planets in distant orbits and brown dwarfs are warmer than some stars. The objects and stars of the same mass have completely different temperatures and are often classified into almost all star types. There is light inside an atmosphere or on the surface of an object without an atmosphere, but it disappears just outside the atmosphere or the surface of the object without the atmosphere. There are galaxies with the blueshift and redshift; although the Universe expands faster and faster, there are 200 000 galaxies and clusters of galaxies that merge or collide. There are enormous differences in the quantity of redshift at the same distances for galaxies and larger objects, i.e., there are different distances – with the differences measured in billions of light-years – for the same quantities of redshift. The other part of the article (4.) removes chaos and returns order in the Universe by implementing identical principles in the whole of the volume and for all objects. Keywords Black holes, Chaos in universe, Processes in space, Stars, Galaxies, Ordered universe universality and removing any paradox that might negate the 1.
    [Show full text]
  • Universidade Federal Do Rio De Janeiro Centro De Ciências
    Universidade Federal do Rio de Janeiro Centro de Ciˆencias Matem´aticas e da Natureza Observat´orio do Valongo Propriedades estat´ısticas de sistemas planet´arios Aluno: Jo˜ao Antˆonio S. do Amarante Orientador: Dr. Helio Jaques Rocha-Pinto Disserta¸c˜ao para a obten¸c˜ao do t´ıtulo de Mestre em Astronomia Rio de Janeiro Julho/2012 ”Estes mundos no espa¸co s˜ao incont´aveis assim como todos os gr˜aos de areia de todas as praias da Terra. Cada um desses mundos s˜ao t˜ao reais quanto o nosso e cada um deles ´e uma sucess˜ao de incidentes, eventos, ocorrˆencias que influencia o seu futuro. Incont´aveis mundos, inumer´aveis momentos, uma imensid˜ao de espa¸co e tempo. E nosso pequeno planeta neste momento, aqui n´os enfrentamos um ponto cr´ıtico na hist´oria: o que n´os fazemos com nosso mundo, agora mesmo, ir´apropagar-se atrav´es dos s´eculos e afetar poderosamente o destino de nossos descendentes. Est´asob nosso comando o poder de destruir nossa civiliza¸c˜ao e talvez nossas esp´ecies tamb´em.” (Carl Sagan) Dedico aos meus pais e ao meu professor e orientador Helio Jaques. i Agradecimentos Agrade¸co primeiramente aos meus pais, Jo˜ao e Regina, e minha irm˜a, Joana, por todo apoio, carinho e amor que me deram durante minha vida; Agrade¸co a todos meus amigos e colegas por todos os bons e maus momentos passados durante esta fase do Mestrado. Um agradecimento em especial aos meus amigos de sala e companheiros no cafezinho Carlos Molina e Edgar, e a Ihani, Loloano, Lygia, Stefano e Victor que sempre me alegram; Agrade¸co a todos meus familiares que me apoiaram e as minhas fam´ılias cariocas ‘emprestadas’: os Ribeiro e os Almeida; Agrade¸co a Virg´ınia Valiate Gonzalez por todo carinho e amor; al´em de seu brilho no olhar que me apaixona e incentiva meus estudos.
    [Show full text]