The Impact of Stellar Rotation on the Detectability of Habitable Planets Around M Dwarfs

Total Page:16

File Type:pdf, Size:1020Kb

The Impact of Stellar Rotation on the Detectability of Habitable Planets Around M Dwarfs THE IMPACT OF STELLAR ROTATION ON THE DETECTABILITY OF HABITABLE PLANETS AROUND M DWARFS The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Newton, Elisabeth R. et al. “THE IMPACT OF STELLAR ROTATION ON THE DETECTABILITY OF HABITABLE PLANETS AROUND M DWARFS.” The Astrophysical Journal 821.1 (2016): L19. © 2016 The American Astronomical Society As Published http://dx.doi.org/10.3847/2041-8205/821/1/l19 Publisher IOP Publishing Version Final published version Citable link http://hdl.handle.net/1721.1/108367 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The Astrophysical Journal Letters, 821:L19 (6pp), 2016 April 10 doi:10.3847/2041-8205/821/1/L19 © 2016. The American Astronomical Society. All rights reserved. THE IMPACT OF STELLAR ROTATION ON THE DETECTABILITY OF HABITABLE PLANETS AROUND M DWARFS Elisabeth R. Newton1, Jonathan Irwin1, David Charbonneau1, Zachory K. Berta-Thompson2, and Jason A. Dittmann1 1 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 2 Kavli Institute for Astrophysics and Space Research and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Received 2016 February 8; accepted 2016 March 9; published 2016 April 11 ABSTRACT Stellar activity and rotation frustrate the detection of exoplanets through the radial velocity technique. This effect is particularly of concern for M dwarfs, which can remain magnetically active for billions of years. We compile rotation periods for late-type stars and for the M dwarf planet-host sample in order to investigate the rotation periods of older field stars across the main sequence. We show that for stars with masses between 0.25 and 0.5 M (M4V–M1V), the stellar rotation period typical of field stars coincides with the orbital periods of planets in the habitable zone. This will pose a fundamental challenge to the discovery and characterization of potentially habitable planets around early M dwarfs. Due to the longer rotation periods reached by midM dwarfs and the shorter orbital period at which the planetary habitable zone is found, stars with masses between 0.1 and 0.25 M (M6V–M4V) offer better opportunities for the detection of habitable planets via radial velocities. Key words: stars: low-mass – stars: rotation 1. INTRODUCTION Bonfils et al. (2013) identified a super-Earth around Gl 667C, with a second found by Anglada-Escudé et al. (2012b) Radial velocities are a powerful tool for the discovery and and Delfosse et al. (2013). Anglada-Escudé et al. (2013b) characterization of exoplanetary systems. However, stellar identified a total of six Keplerian signals at a range of periods. magnetic activity and rotation affect the measured radial Though long-period signals were seen by Delfosse et al. (2013) velocities, as surface inhomegeneities cross the stellar surface and by Makarov & Berghea (2014), they were postulated to be and change with time. Starspots diminish light received from ∼ the limbs of a rotating star, causing changes in thespectral line related to the 105 day stellar rotation period. Independent ( ) analyses by Feroz & Hobson (2013) and Robertson & centroid e.g., Saar & Donahue 1997 . Plages have a similar ( ) fi influence, but with the opposite sign (e.g., Meunier et al. 2010). Mahadevan 2014 did not nd evidence for planets exterior fi to Gl 667C b and c. Strong localized magnetic elds, typically associated with ( ) spots, modify convective flows and cause a net blueshift (e.g., Anglada-Escude et al. 2014 reported two planets with ) periods of 48 and 120 days around Gl 191. Robertson et al. Gray 2009; Meunier et al. 2010 . Disentangling these stellar ( ) activity signals from the planetary reflex motion is challenging, 2015b showed that the 48 day signal is correlated with stellar and typically requires modeling activity-induced changes to activity, and suggested a non-planetary origin. They also spectral line profiles (e.g., Queloz et al. 2009; Boisse express concern that the period of the outer planet is close to et al. 2011; Dumusque et al. 2011, 2012; Rajpaul the 143 day stellar rotation period. et al. 2015). This is particularly pertinent for M dwarf stars, These examples illustrate that stellar activity signals, which which retain high levels of magnetic activity for longer than appear at the stellar rotation period and its harmonics, can mimic the effect of a planet at or near these orbital periods. The Sun-like stars. Studies of exoplanets around the nearby M fi dwarfs Gl 581, Gl 667C, and Gl 191 (Kapteynʼs star) have typical rotation periods of eld-age dwarf stars varies by almost an order of magnitude across the lower main sequence, recently highlighted this concern. ( ) Gl 581 is an M3V (Henry et al. 1997)3 star. Bonfils et al. increasing from about 25 days for early G stars Barnes 2007 , ( (2005) first discovered the hot Neptune Gl 581 b orbiting this to greater than 100 days for mid-to-late M dwarfs Newton ) star, while Udry et al. (2007) identified a second short-period et al. 2016 . Over the same stellar mass range, the orbital period planet, Gl 581 c. The number of additional planets that orbit corresponding to a habitable planet decreases from approxi- this star has been a matter of recent debate. Udry et al. (2007) mately 365 days to 10 days. There thus exists a range of stellar further identified planet d, and Mayor et al. (2009) planet e. masses where the stellar rotation and planetary habitable-zone ʼ Vogt et al. (2010) found evidence for a long-period planet f, periods overlap. This came to our team s attention in pursuit of and a potentially habitable planet g. Analyses by other groups follow-up observations of K2-3, an early M dwarf with three fi ( fi ) quickly cast doubt on planets f (Forveille et al. 2011; Tuomi con rmed transiting super-Earths Cross eld et al. 2015 :we ∼ 2011) and g (Gregory 2011; Baluev 2012; Hatzes 2013). noted that the stellar rotation period of 40 days is very close Baluev (2012) also raised concerns about planet d. Robertson to the 44 day orbital period of K2-3 d, which is near the inner et al. (2014) looked at the Hα line, a magnetic activity edge of the planetary habitable zone. indicator. They found support for the existence of the three There are several current and near-future radial velocity fi innermost planets (b, c, and e), but indications that the outer surveys committed to nding planets around M dwarf stars, ( ) planets (d, g, and f) are the result of stellar activity and rotation. including CARMENES Quirrenbach et al. 2014 , HPF (Mahadevan et al. 2012), and SPIRou (Artigau et al. 2014). 3 Included in the RECONS compilation: http://www.recons.org/TOP100. It is therefore critical that we understand how stellar rotation posted.htm. may impact the discovery of the potentially habitable planets 1 The Astrophysical Journal Letters, 821:L19 (6pp), 2016 April 10 Newton et al. around these stars. In this Letter, we leverage new rotation Figure 1 includes stars of a range of ages. As single stars age, periods of mid-to-late M dwarfs in the solar neighborhood from they lose angular momentum and their rotation periods our recent work in Newton et al. (2016) to investigate this increase. Angular momentum loss is massdependent, with problem for stars across the M spectral class. lower-mass stars taking longer to spin down, but eventually reaching longer rotation periods. The long-period envelope of the rotation period distribution is thought to represent an old 2. STELLAR ROTATION PERIODS AND MASSES field population,and the fast rotators at a given mass will ACROSS THE MAIN SEQUENCE eventually evolve toward these long periods.4 The envelope To assess stellar rotation across the main sequence, we comprises stars of similar age to the Sun and older, which was compile literature measurements for the rotation periods of field established by Skumanich (1972) and Barnes (2003) for Sun- stars, using data from Baliunas et al. (1996), Kiraga & Stepien like stars. We quantified this for M dwarfs by using galactic (2007), Hartman et al. (2011), Suárez Mascareño et al. (2015), kinematics to estimate that mid M dwarfs with rotation periods and Newton et al. (2016). The latter supplies most of the around 100 days are on average 5 Gyr old (Newton et al. 2016). rotation period measurements for midand lateM dwarfs, and results from our analysis of photometry from the MEarth-North transit survey (Berta et al. 2012; Irwin et al. 2015). The rotation 3. STELLAR ROTATION AND THE HABITABLE ZONE periods from Hartman et al. (2011) and Kiraga & Stepien ( ) When radial velocity variations induced by stellar rotation 2007 also come from broadband optical or red-optical and activity coincide with the planetary orbital period, it can be photometry. On the other hand, Baliunas et al. (1996) and fi ( ) dif cult to identify the planetary signal. This stellar signal can Suárez Mascareño et al. 2015 measure periodicities in appear not just at the rotation period itself, but at higher-order chromospheric activity features. ( ) ( ) harmonics as well. Boisse et al. 2011 tested cases where the We use stellar mass M* as the independent parameter for photosphere is dominated by one or two spotsand found that this study. For G and early K dwarfs, we use B−V colors to ( ) power appears primarily at one-half and one-third the stellar estimate effective temperature Teff , and then use isochrones to ( ) B−V rotation period see also Aigrain et al.
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Download This Article in PDF Format
    A&A 526, A141 (2011) Astronomy DOI: 10.1051/0004-6361/201016034 & c ESO 2011 Astrophysics The HARPS search for southern extra-solar planets, XXVI. Two giant planets around M0 dwarfs T. Forveille1, X. Bonfils1,2, G. Lo Curto3,X.Delfosse1,S.Udry2, F. Bouchy4,5,C.Lovis2, M. Mayor2, C. Moutou6, D. Naef2,3,F.Pepe2, C. Perrier1,D.Queloz2, and N. Santos7,8 1 Laboratoire d’Astrophysique de Grenoble, Observatoire de Grenoble, Université Joseph Fourier, CNRS, UMR 5571, BP 53, 38041 Grenoble Cedex 9, France e-mail: [email protected] 2 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Sauverny, Switzerland 3 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile 4 Institut d’Astrophysique de Paris, CNRS, Université Pierre et Marie Curie, 98bis Bd Arago, 75014 Paris, France 5 Observatoire de Haute-Provence, CNRS/OAMP, 04870 St Michel l’Observatoire, France 6 Laboratoire d’Astrophysique de Marseille, 38 rue Fréderic Joliot-Curie, 13388 Marseille Cedex 13, France 7 Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 8 Departamento de Fìsica e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal Received 31 October 2010 / Accepted 1 December 2010 ABSTRACT Fewer giants planets are found around M dwarfs than around more massive stars, and this dependence of planetary characteristics on the mass of the central star is an important observational diagnostic of planetary formation theories. In part to improve on those statistics, we are monitoring the radial velocities of nearby M dwarfs with the HARPS spectrograph on the ESO 3.6 m telescope.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]
  • Introduction
    Cambridge University Press 978-1-108-41977-2 — The Exoplanet Handbook Michael Perryman Excerpt More Information 1 Introduction 1.1 The challenge lensing provided evidence for a low-mass planet orbit- ing a star near the centre of the Galaxy nearly 30 000 HEREAREHUNDREDSOFBILLIONS of galaxies in the light-years away, with the first confirmed microlensing observable Universe, with each galaxy such as our T planet reported in 2004. In the photometric search for own containing some hundred billion stars. Surrounded transiting exoplanets, the first transit of a previously- by this seemingly limitless ocean of stars, mankind has detected exoplanet was reported in 1999, the first discov- long speculated about the existence of planetary sys- ery by transit photometry in 2003, the first of the wide- tems other than our own, and the possibility of life ex- field bright star survey discoveries in 2004, and the first isting elsewhere in the Universe. discovery from space observations in 2008. Only recently has evidence become available to be- While these manifestations of the existence of exo- gin to distinguish the extremes of thinking that has per- planets are also extremely subtle, advances in Doppler vaded for more than 2000 years, with opinions ranging measurements, photometry, microlensing, timing, from ‘There are infinite worlds both like and unlike this imaging, and astrometry, have since provided the tools world of ours’ (Epicurus, 341–270 BCE) to ‘There cannot for their detection in relatively large numbers. Now, al- be more worlds than one’ (Aristotle, 384–322 BCE). most 25 years after the first observational confirmation, Shining by reflected starlight, exoplanets compa- exoplanet detection and characterisation, and advances rable to solar system planets will be billions of times in the theoretical understanding of their formation and fainter than their host stars and, depending on their dis- evolution, are moving rapidly on many fronts.
    [Show full text]
  • Kuiper Belt Analogues in Nearby M-Type Planet- Host Systems
    Original citation: Kennedy, Grant M., Bryden, G., Ardila, D., Eiroa, C., Lestrade, J.-F., Marshall, P., Matthews, B. C., Moro-Martin, A. and Wyatt, M. C. (2018) Kuiper belt analogues in nearby M-type planet- host systems. Monthly Notices of the Royal Astronomical Society, 476 (4). pp. 4584- 4591. doi:10.1093/mnras/sty492 Permanent WRAP URL: http://wrap.warwick.ac.uk/99195 Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available. Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. Publisher’s statement: This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. A note on versions: The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher’s version.
    [Show full text]
  • IAU Division C Working Group on Star Names 2019 Annual Report
    IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ ​ WGSN Email: [email protected] ​ The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. ​ ​ ​ WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the ​ internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.
    [Show full text]
  • Mètodes De Detecció I Anàlisi D'exoplanetes
    MÈTODES DE DETECCIÓ I ANÀLISI D’EXOPLANETES Rubén Soussé Villa 2n de Batxillerat Tutora: Dolors Romero IES XXV Olimpíada 13/1/2011 Mètodes de detecció i anàlisi d’exoplanetes . Índex - Introducció ............................................................................................. 5 [ Marc Teòric ] 1. L’Univers ............................................................................................... 6 1.1 Les estrelles .................................................................................. 6 1.1.1 Vida de les estrelles .............................................................. 7 1.1.2 Classes espectrals .................................................................9 1.1.3 Magnitud ........................................................................... 9 1.2 Sistemes planetaris: El Sistema Solar .............................................. 10 1.2.1 Formació ......................................................................... 11 1.2.2 Planetes .......................................................................... 13 2. Planetes extrasolars ............................................................................ 19 2.1 Denominació .............................................................................. 19 2.2 Història dels exoplanetes .............................................................. 20 2.3 Mètodes per detectar-los i saber-ne les característiques ..................... 26 2.3.1 Oscil·lació Doppler ........................................................... 27 2.3.2 Trànsits
    [Show full text]
  • Estimation of the XUV Radiation Onto Close Planets and Their Evaporation⋆
    A&A 532, A6 (2011) Astronomy DOI: 10.1051/0004-6361/201116594 & c ESO 2011 Astrophysics Estimation of the XUV radiation onto close planets and their evaporation J. Sanz-Forcada1, G. Micela2,I.Ribas3,A.M.T.Pollock4, C. Eiroa5, A. Velasco1,6,E.Solano1,6, and D. García-Álvarez7,8 1 Departamento de Astrofísica, Centro de Astrobiología (CSIC-INTA), ESAC Campus, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain e-mail: [email protected] 2 INAF – Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento, 1, 90134, Palermo, Italy 3 Institut de Ciènces de l’Espai (CSIC-IEEC), Campus UAB, Fac. de Ciències, Torre C5-parell-2a planta, 08193 Bellaterra, Spain 4 XMM-Newton SOC, European Space Agency, ESAC, Apartado 78, 28691 Villanueva de la Cañada, Madrid, Spain 5 Dpto. de Física Teórica, C-XI, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain 6 Spanish Virtual Observatory, Centro de Astrobiología (CSIC-INTA), ESAC Campus, Madrid, Spain 7 Instituto de Astrofísica de Canarias, 38205 La Laguna, Spain 8 Grantecan CALP, 38712 Breña Baja, La Palma, Spain Received 27 January 2011 / Accepted 1 May 2011 ABSTRACT Context. The current distribution of planet mass vs. incident stellar X-ray flux supports the idea that photoevaporation of the atmo- sphere may take place in close-in planets. Integrated effects have to be accounted for. A proper calculation of the mass loss rate through photoevaporation requires the estimation of the total irradiation from the whole XUV (X-rays and extreme ultraviolet, EUV) range. Aims. The purpose of this paper is to extend the analysis of the photoevaporation in planetary atmospheres from the accessible X-rays to the mostly unobserved EUV range by using the coronal models of stars to calculate the EUV contribution to the stellar spectra.
    [Show full text]
  • Direct Imaging of Radial Velocity Exoplanets WFIRST-AFTA Coronagraph Study
    Direct Imaging of Radial Velocity Exoplanets WFIRST-AFTA Coronagraph Study 12/18/2014 Aastha Acharya, aa533 Advisor: Dmitry Savransky, ds264 Contents Abstract .................................................................................................................................................. 2 Introduction ............................................................................................................................................ 3 Literature Review .................................................................................................................................... 4 Exoplanet Background ......................................................................................................................... 4 Detection Methods .............................................................................................................................. 4 Radial Velocity Detection Method ....................................................................................................... 7 Orbital Mechanics.............................................................................................................................. 10 Coronagraph Specification ................................................................................................................. 11 Methodology ......................................................................................................................................... 13 Results and Discussion ..........................................................................................................................
    [Show full text]
  • Carnegie Institution Carnegie
    C68099_CVR.qxd:CVR 3/29/11 7:58 Page 1 2009-2010 CARNEGIE INSTITUTION FOR 2009-2010 SCIENCE YEAR BOOK 1530 P Street, N.W. Washington DC 20005 Phone: 202.387.6400 Carnegie Institution Fax: 202.387.8092 www.CarnegieScience.edu FOR SCIENCE CARNEGIE INSTITUTION FOR SCIENCE INSTITUTION FOR CARNEGIE YEAR BOOK The paper used in the manufacturing this year book contains 30% post-consumer recycled fiber. By using recycled fiber in place of virgin fiber, the Carnegie Institution preserved 41 trees, saved 126 pounds of waterborne waste, saved 18,504 gallons of water and prevented 4031 pounds of greenhouse gasses. The energy used to print the report was produced by wind power. Designed by Tina Taylor, T2 Design Printed by Monroe Litho ISSN 0069-066X C68099_CVR.qxd:CVR 3/29/11 7:58 Page 2 Department of Embryology 3520 San Martin Dr. / Baltimore, MD 21218 410.246.3001 Geophysical Laboratory 5251 Broad Branch Rd., N.W. / Washington, DC 20015-1305 202.478.8900 Department of Global Ecology 260 Panama St. / Stanford, CA 94305-4101 650.462.1047 The Carnegie Observatories 813 Santa Barbara St. / Pasadena, CA 91101-1292 626.577.1122 Las Campanas Observatory Casilla 601 / La Serena, Chile Department of Plant Biology 260 Panama St. / Stanford, CA 94305-4101 650.325.1521 Department of Terrestrial Magnetism 5241 Broad Branch Rd., N.W. / Washington, DC 20015-1305 202.478.8820 Office of Administration 1530 P St., N.W. / Washington, DC 20005-1910 202.387.6400 www.CarnegieScience.edu 2 009-2010 YEAR BOOK The President’s Report July 1, 2009 - June 30, 2010 CARNEGIE INSTITUTION FOR SCIENCE Former Presidents Former Trustees Daniel C.
    [Show full text]