Photometric Transit Search for Planets Around Cool Stars from Thè Western Italian Alps: Thè APACHE Survey

Total Page:16

File Type:pdf, Size:1020Kb

Photometric Transit Search for Planets Around Cool Stars from Thè Western Italian Alps: Thè APACHE Survey UNIVERSITÀ' DEGLI STUDI DI TRIESTE XXV CICLO DEL DOTTORATO DI RICERCA IN FISICA Photometric transit search for planets around cool stars from thè Western Italian Alps: thè APACHE survey Ph.D. program Di.rector: Prof. Paolo Camerini The.sis Supervisori*: Ph. D. student: -fit-—' Prof. Mario G. Lattauzzi IU+*i. {. fat)tfto Paolo Giacobbe Prof .essa Francesea Matteucci Dr. Alessandro Bozzetti ANNO ACCADEMICO 2012/2013 UNIVERSITA' DEGLI STUDI DI TRIESTE XXV CICLO DEL DOTTORATO DI RICERCA IN FISICA Photometric transit search for planets around cool stars from the Western Italian Alps: the APACHE survey Ph.D. program Director: Prof. Paolo Camerini Ph.D. student: Thesis Supervisors: Paolo Giacobbe Prof. Mario G. Lattanzi Prof.essa Francesca Matteucci Dr. Alessandro Sozzetti ANNO ACCADEMICO 2012/2013 You find out that life is just a game of inches. Al Pacino's Inch By Inch speech in `Any Given Sunday' UNIVERSITY OF TRIESTE Abstract Photometric transit search for planets around cool stars from the Western Italian Alps: the APACHE survey by Paolo Giacobbe Small-size ground-based telescopes can effectively be used to look for transiting rocky planets around nearby low-mass M stars using the photometric transit method. Since 2008, a consortium of the Astrophysical Observatory of Torino (OATo-INAF) and the Astronomical Observatory of the Autonomous Region of Aosta Valley (OAVdA) have been preparing for the long-term photometric survey APACHE (A PAthway toward the Characterization of Habitable Earths), aimed at finding transiting small-size plan- ets around thousands of nearby early and mid-M dwarfs. APACHE uses an array of five dedicated and identical 40-cm Ritchey-Chretien telescopes and its routine science operations started at the beginning of summer 2012. Here I present the results of the `pilot study', a year-long photometric monitoring cam- paign of a sample of 23 nearby dM stars, and of the APACHE survey first year data. In these studies, I set out to (i) demonstrate the sensitivity to > 2R⊕ transiting plan- ets with periods of up to a few days around our programme stars, through a two-fold approach that combines a characterization of the statistical noise properties of our pho- tometry with the determination of transit detection probabilities via simulations; and (ii), where possible, improves our knowledge of some astrophysical properties (e.g. ac- tivity, rotation) of our targets by combining our differential photometric measurements with spectroscopic information from the long-term programme GAPS with the HARPS- N spectrograph on the Telescopio Nazionale Galileo. Furthermore, cool M dwarfs within a few tens of parsecs from the Sun are becoming the focus of dedicated observational programs in the realm of exoplanet astrophysics that will make use of astrometric measurements. I present numerical simulations to gauge the Gaia potential for precision astrometry of exoplanets orbiting a sample of known dM stars within ∼ 30 pc from the Sun. I then investigate some aspects of the synergy between the astrometric data expected from the Gaia mission on nearby M dwarfs and the APACHE program. Contents Abstract ii List of Figures vi List of Tablesx 1 Introduction1 1.1 A personal prospect..............................1 1.2 Scientific motivations..............................2 1.3 Chapter Summaries..............................6 2 Detection and characterization of extrasolar planets8 2.1 The radial velocity method..........................8 2.2 The transit method............................... 10 2.2.1 Exoplanet atmospheres........................ 11 2.2.1.1 Transmission spectroscopy................. 11 2.2.1.2 Infrared Emission...................... 12 2.2.2 The Rossiter-McLaughlin effect.................... 12 2.2.3 Transit Timing Variation (TTV)................... 13 2.3 The astrometric method............................ 13 2.4 The direct imaging method.......................... 15 2.5 The gravitational microlensing method.................... 16 3 The physical properties of extrasolar planets 18 3.1 Introduction................................... 18 3.2 A brief overview of observations........................ 19 3.2.1 Lessons from our Solar System.................... 19 3.2.2 Observed properties of exoplanets.................. 20 3.3 Planet formation................................ 21 3.3.1 Core-accretion model.......................... 21 3.3.2 Gravitational instability........................ 23 3.3.3 Core-accretion versus gravitational instability............ 24 3.4 Interior structure properties.......................... 24 3.4.1 Earth-like to super-Earth planets (< 10M⊕)............. 25 3.4.2 Neptune-like to super-Jupiter planets (> 10M⊕).......... 25 3.5 Atmospheric properties............................ 26 3.5.1 Biosignatures.............................. 26 iii Contents iv 3.6 Star-planet interaction. Tidal effects...................... 27 4 The path to the APACHE survey 29 4.1 The M-dwarfs opportunity........................... 30 4.2 The site characterization study........................ 33 4.3 Pilot study................................... 34 4.3.1 Instrumentation and methodology.................. 36 4.3.2 Stellar sample.............................. 39 4.3.3 Results................................. 39 4.3.3.1 Photometric precision.................... 39 4.3.3.2 Global analysis........................ 41 4.3.3.3 Correlated (red) noise analysis............... 44 4.3.3.4 On the choice of the comparison stars........... 46 4.3.4 Photometric variability: periodicity analysis............. 50 4.3.4.1 Characterizing stellar rotation............... 50 4.3.5 Photometric variability: starspots analysis.............. 56 4.3.6 Photometric variability: flares analysis................ 58 4.3.7 Limits to transiting companions................... 59 4.3.8 Summary and conclusions....................... 70 5 The APACHE survey architecture 72 5.1 Instrumentation and methodology: hardware setup............. 72 5.2 Instrumentation and methodology: software interface for the hardware setup....................................... 73 5.2.1 Weather Monitoring.......................... 76 5.2.2 Operations' monitoring........................ 76 5.2.3 Observational strategy......................... 76 5.3 Instrumentation and methodology: data reduction............. 78 5.3.1 Image calibration............................ 78 5.3.2 Image aperture photometry...................... 80 5.3.3 Differential photometry........................ 81 5.4 Input catalogue................................. 82 5.4.1 Mass and radius estimation...................... 85 6 Results from the first year of APACHE survey 88 6.1 Summary of observations........................... 89 6.2 Photometric precision............................. 90 6.2.1 Global analysis............................. 90 6.2.2 Correlated (red) noise analysis.................... 92 6.3 Photometric variability: periodicity analysis................. 94 6.3.1 Searching for transit-like events.................... 95 6.3.2 Characterizing stellar rotation.................... 96 6.3.3 Photometric variability: flares analysis................ 99 6.4 Limits to transiting companions........................ 103 6.4.1 APACHE's Ensemble Sensitivity................... 103 6.4.2 Transit Probabilities = ηtra;i(R; P ).................. 103 6.4.3 Transit Detection Efficiencies = ηdet;i(R; P )............. 104 Contents v 6.4.3.1 Transit Detection Efficiencies from the raw light curves. 106 6.4.4 APACHE's Ensemble Sensitivity: results............... 107 6.5 Summary and Conclusion........................... 109 7 Astrometric detection of giant planets around nearby M dwarfs: the Gaia potential 111 7.1 Introduction................................... 111 7.2 Simulation Scheme............................... 113 7.3 Statistical and Numerical Analysis Tools................... 115 7.4 Results...................................... 116 7.4.1 Detection Probabilities......................... 116 7.4.2 Orbit Determination.......................... 118 7.4.3 Expected Planet Yield......................... 122 7.4.4 Measuring Transiting Systems Configurations............ 124 7.4.5 Predicting Giant Planets' Location and Brightness......... 127 7.5 Summary and Conclusions........................... 130 8 On the synergies between GAIA and transits survey 134 8.1 Simulation Scheme............................... 134 8.2 Statistical and Numerical Analysis Tools................... 136 8.3 Predicting the transit epochs......................... 136 8.4 Summary and Conclusions........................... 142 9 Summary and future steps 143 9.1 The APACHE survey............................. 144 9.2 Astrometric detection of giant planets around nearby M dwarfs: the Gaia potential..................................... 146 Bibliography 149 List of Figures 3.1 Mass VS Year of discovery diagram...................... 19 3.2 Mass of known extra-solar planets (in Mearth) as a function of orbital distance (in AU)................................ 21 3.3 Mass-radius diagram for transiting planets.................. 22 4.1 The distribution of seeing measurements over the whole period of obser- vation. The small black stars show 7864 individual data points (many of them overlapping due to the seeing values having been approximated to the first significant digit), each corresponding to an average seeing value over a 1 min interval, rounded to 0:1. The large filled circles indicate the median seeing value for each night...................... 34 4.2 Photometric errors (RMS) VS instrumental mean magnitude
Recommended publications
  • The Agb Newsletter
    THE AGB NEWSLETTER An electronic publication dedicated to Asymptotic Giant Branch stars and related phenomena Official publication of the IAU Working Group on Red Giants and Supergiants No. 276 — 1 July 2020 https://www.astro.keele.ac.uk/AGBnews Editors: Jacco van Loon, Ambra Nanni and Albert Zijlstra Editorial Board (Working Group Organising Committee): Marcelo Miguel Miller Bertolami, Carolyn Doherty, JJ Eldridge, Anibal Garc´ıa-Hern´andez, Josef Hron, Biwei Jiang, Tomasz Kami´nski, John Lattanzio, Emily Levesque, Maria Lugaro, Keiichi Ohnaka, Gioia Rau, Jacco van Loon (Chair) Figure 1: The Cat’s Eye Planetary Nebula imaged by Mark Hanson at Stan Watson Observatory with a 24′′ f6.7 teelescope. It includes 23 hours worth of [O iii]. The best known part, the “eye” is just the small object in the middle, while the messy halo extends much further. Notice also the bowshock on the right. (Suggestion by Sakib Rasool.) 1 Editorial Dear Colleagues, It is a pleasure to present you the 276th issue of the AGB Newsletter. Note that IAU Symposium 366 (”The Origin of Outflows in Evolved Stars”) has been postponed until November next year, while in June 2021 there will be a 4-week programme of workshops on stellar astrophysics in the Gaia era, in Munich (Germany). See the announcements for both meetings at the end of the newsletter. Unfortunately our proposal for a Focus Meeting at next year’s IAU General Assembly was not successful. One of the reasons given was: ”Some evaluators commented that Most of the topics in this proposal could have been made 10 or 20 years ago.
    [Show full text]
  • Winter Constellations
    Winter Constellations *Orion *Canis Major *Monoceros *Canis Minor *Gemini *Auriga *Taurus *Eradinus *Lepus *Monoceros *Cancer *Lynx *Ursa Major *Ursa Minor *Draco *Camelopardalis *Cassiopeia *Cepheus *Andromeda *Perseus *Lacerta *Pegasus *Triangulum *Aries *Pisces *Cetus *Leo (rising) *Hydra (rising) *Canes Venatici (rising) Orion--Myth: Orion, the great ​ ​ hunter. In one myth, Orion boasted he would kill all the wild animals on the earth. But, the earth goddess Gaia, who was the protector of all animals, produced a gigantic scorpion, whose body was so heavily encased that Orion was unable to pierce through the armour, and was himself stung to death. His companion Artemis was greatly saddened and arranged for Orion to be immortalised among the stars. Scorpius, the scorpion, was placed on the opposite side of the sky so that Orion would never be hurt by it again. To this day, Orion is never seen in the sky at the same time as Scorpius. DSO’s ● ***M42 “Orion Nebula” (Neb) with Trapezium A stellar ​ ​ ​ nursery where new stars are being born, perhaps a thousand stars. These are immense clouds of interstellar gas and dust collapse inward to form stars, mainly of ionized hydrogen which gives off the red glow so dominant, and also ionized greenish oxygen gas. The youngest stars may be less than 300,000 years old, even as young as 10,000 years old (compared to the Sun, 4.6 billion years old). 1300 ly. ​ ​ 1 ● *M43--(Neb) “De Marin’s Nebula” The star-forming ​ “comma-shaped” region connected to the Orion Nebula. ● *M78--(Neb) Hard to see. A star-forming region connected to the ​ Orion Nebula.
    [Show full text]
  • Wynyard Planetarium & Observatory a Autumn Observing Notes
    Wynyard Planetarium & Observatory A Autumn Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn Tour of the Sky with the Naked Eye CASSIOPEIA Look for the ‘W’ 4 shape 3 Polaris URSA MINOR Notice how the constellations swing around Polaris during the night Pherkad Kochab Is Kochab orange compared 2 to Polaris? Pointers Is Dubhe Dubhe yellowish compared to Merak? 1 Merak THE PLOUGH Figure 1: Sketch of the northern sky in autumn. © Rob Peeling, CaDAS, 2007 version 1.2 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. Close to the horizon is a group of stars like the outline of a saucepan with the handle stretching to your left. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The two right-hand stars are called the Pointers. Can you tell that the higher of the two, Dubhe is slightly yellowish compared to the lower, Merak? Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white- hot. 2. Use the Pointers to guide you upwards to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the left are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris.
    [Show full text]
  • Detecting Reflected Light from Close-In Extrasolar Giant Planets with the Kepler Photometer
    Accepted for publication by the Astrophysical Journal 05/2003 Detecting Reflected Light from Close-In Extrasolar Giant Planets with the Kepler Photometer Jon M. Jenkins SETI Institute/NASA Ames Research Center, MS 244-30, Moffett Field, CA 94035 [email protected] and Laurance R. Doyle SETI Institute, 2035 Landings Drive, Mountain View, CA 94043 [email protected] ABSTRACT NASA’s Kepler Mission promises to detect transiting Earth-sized planets in the habitable zones of solar-like stars. In addition, it will be poised to detect the reflected light component from close-in extrasolar giant planets (CEGPs) similar to 51 Peg b. Here we use the DIARAD/SOHO time series along with models for the reflected light signatures of CEGPs to evaluate Kepler’s ability to detect arXiv:astro-ph/0305473v1 24 May 2003 such planets. We examine the detectability as a function of stellar brightness, stellar rotation period, planetary orbital inclination angle, and planetary orbital period, and then estimate the total number of CEGPs that Kepler will detect over its four year mission. The analysis shows that intrinsic stellar variability of solar-like stars is a major obstacle to detecting the reflected light from CEGPs. Monte Carlo trials are used to estimate the detection threshold required to limit the total number of expected false alarms to no more than one for a survey of 100,000 stellar light curves. Kepler will likely detect 100-760 51 Peg b-like planets by reflected light with orbital periods up to 7 days. Subject headings: planetary systems — techniques: photometry — methods: data analysis –2– 1.
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • A Planetary System from the Early Universe 27 March 2012
    A planetary system from the early Universe 27 March 2012 This suggests a key question: Originally, the universe contained almost no chemical elements other than hydrogen and helium. Almost all heavier elements have been produced, over time inside stars, and then flung into space as massive stars end their lives in giant explosions (supernovae). So what about planet formation under conditions like those of the very early universe, say: 13 billion years ago? If metal-rich stars are more likely to form planets, are there, conversely, stars with a metal content so low that they cannot form planets at all? And if the answer is yes, then when, throughout cosmic history, should we expect the Artist's impression of HIP 11952 and its two Jupiter-like very first planets to form? planets. Image: Timotheos Samartzidis Now a group of astronomers, including researchers from the Max-Planck-Institute for Astronomy in Heidelberg, Germany, has discovered a planetary A group of European astronomers has discovered system that could help provide answers to those an ancient planetary system that is likely to be a questions. As part of a survey targeting especially survivor from one of the earliest cosmic eras, 13 metal-poor stars, they identified two giant planets billion years ago. The system consists of the star around a star known by its catalogue number as HIP 11952 and two planets, which have orbital HIP 11952, a star in the constellation Cetus ("the periods of 290 and 7 days, respectively. Whereas whale" or "the sea monster") at a distance of about planets usually form within clouds that include 375 light-years from Earth.
    [Show full text]
  • Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water
    University of Groningen Kapteyn Astronomical Institute Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water September 5, 2018 Author: N.O. Oberg Supervisor: Prof. Dr. F.F.S. van der Tak Abstract Context: Spectroscopic characterization of exoplanetary atmospheres is a field still in its in- fancy. The detection of molecular spectral features in the atmosphere of several hot-Jupiters and hot-Neptunes has led to the preliminary identification of atmospheric H2O. The Atacama Large Millimiter/Submillimeter Array is particularly well suited in the search for extraterrestrial water, considering its wavelength coverage, sensitivity, resolving power and spectral resolution. Aims: Our aim is to determine the detectability of various spectroscopic signatures of H2O in the (sub)millimeter by a range of current and future observatories and the suitability of (sub)millimeter astronomy for the detection and characterization of exoplanets. Methods: We have created an atmospheric modeling framework based on the HAPI radiative transfer code. We have generated planetary spectra in the (sub)millimeter regime, covering a wide variety of possible exoplanet properties and atmospheric compositions. We have set limits on the detectability of these spectral features and of the planets themselves with emphasis on ALMA. We estimate the capabilities required to study exoplanet atmospheres directly in the (sub)millimeter by using a custom sensitivity calculator. Results: Even trace abundances of atmospheric water vapor can cause high-contrast spectral ab- sorption features in (sub)millimeter transmission spectra of exoplanets, however stellar (sub) millime- ter brightness is insufficient for transit spectroscopy with modern instruments. Excess stellar (sub) millimeter emission due to activity is unlikely to significantly enhance the detectability of planets in transit except in select pre-main-sequence stars.
    [Show full text]
  • RAFT I: Discovery of New Planetary Candidates and Updated Orbits from Archival FEROS Spectra
    Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 26 May 2015 (MN LATEX style file v2.2) RAFT I: Discovery of new planetary candidates and updated orbits from archival FEROS spectra M. G. Soto,⋆ J. S. Jenkins,⋆ M. I. Jones† ⋆Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile email: [email protected] †Department of Electrical Engineering and Center of Astro-Engineering UC, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 782-0436 Macul, Santiago, Chile ABSTRACT A recent reanalysis of archival data has lead several authors to arrive at strikingly different conclusions for a number of planet-hosting candidate stars. In particular, some radial veloci- ties measured using FEROS spectra have been shown to be inaccurate, throwing some doubt on the validity of a number of planet detections. Motivated by these results, we have begun the Reanalysis of Archival FEROS specTra (RAFT) program and here we discuss the first results from this work. We have reanalyzed FEROS data for the stars HD 11977, HD 47536, HD 70573, HD 110014 and HD 122430, all of which are claimed to have at least one plane- tary companion. We have reduced the raw data and computed the radial velocity variations of these stars, achieving a long-term precision of ∼ 10ms−1 on the known stable star τ Ceti, and in good agreement with the residuals to our fits. We confirm the existence of planets around HD 11977, HD 47536 and HD 110014, but with different orbital parameters than those pre- viously published. In addition, we found no evidence of the second planet candidate around HD 47536, nor any companions orbiting HD 122430 and HD 70573.
    [Show full text]
  • THE VALLEY SKYWATCHER Volume 47 Number 3 Summer 2010
    THE VALLEY SKYWATCHER Volume 47 Number 3 Summer 2010 The Valley Skywatcher is the official publication of the Chagrin Valley Astronomical Society, founded 1963. Our mailing address is PO Box 11, Chagrin Falls, OH 44022 More information can be found on our web site: www.chagrinvalleyastronomy.org Editor: Dan Rothstein Table of Contents: A Few Summer Double Stars George Gliba Constellation Quiz Dan Rothstein Discovery History and Recent Light Curves for 1700 Zvezdara Ron Baker Astronomical Alignments in Ireland Dan Rothstein A Few Summer Double Stars - by G.W. Gliba There are many fine double stars available in the Summer sky that can be split in a small refractor or medium size reflector this time of the year. One of my favorite is Xi Bootids, because it was originally thought to be the radiant to a solo minor meteorite shower, which is now known to be a complex of several radiants, now recognized by the IAU as the Bootid-Corona Borealis Complex. It can be split with a good 2.4-inch refractor. The components consists of a 4.8 magnitude primary star that is a G8V with a 7th magnitude companion of K5V spec. type, which appears yellow and orange respectively to an observer. This star system is 22 light years distant. The G8V component is also a variable star of low amplitude know as a BY Draconis type star, which varies from 4.52 to 4.67 over 10.137 days. However, this variability can't be noticed visually. Much easier and more colorful is the nice pair Epsilon Bootis nearby, also known as Izar.
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • Flares on Active M-Type Stars Observed with XMM-Newton and Chandra
    Flares on active M-type stars observed with XMM-Newton and Chandra Urmila Mitra Kraev Mullard Space Science Laboratory Department of Space and Climate Physics University College London A thesis submitted to the University of London for the degree of Doctor of Philosophy I, Urmila Mitra Kraev, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Abstract M-type red dwarfs are among the most active stars. Their light curves display random variability of rapid increase and gradual decrease in emission. It is believed that these large energy events, or flares, are the manifestation of the permanently reforming magnetic field of the stellar atmosphere. Stellar coronal flares are observed in the radio, optical, ultraviolet and X-rays. With the new generation of X-ray telescopes, XMM-Newton and Chandra , it has become possible to study these flares in much greater detail than ever before. This thesis focuses on three core issues about flares: (i) how their X-ray emission is correlated with the ultraviolet, (ii) using an oscillation to determine the loop length and the magnetic field strength of a particular flare, and (iii) investigating the change of density sensitive lines during flares using high-resolution X-ray spectra. (i) It is known that flare emission in different wavebands often correlate in time. However, here is the first time where data is presented which shows a correlation between emission from two different wavebands (soft X-rays and ultraviolet) over various sized flares and from five stars, which supports that the flare process is governed by common physical parameters scaling over a large range.
    [Show full text]
  • Exoplanet Meteorology: Characterizing the Atmospheres Of
    Exoplanet Meteorology: Characterizing the Atmospheres of Directly Imaged Sub-Stellar Objects by Abhijith Rajan A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved April 2017 by the Graduate Supervisory Committee: Jennifer Patience, Co-Chair Patrick Young, Co-Chair Paul Scowen Nathaniel Butler Evgenya Shkolnik ARIZONA STATE UNIVERSITY May 2017 ©2017 Abhijith Rajan All Rights Reserved ABSTRACT The field of exoplanet science has matured over the past two decades with over 3500 confirmed exoplanets. However, many fundamental questions regarding the composition, and formation mechanism remain unanswered. Atmospheres are a window into the properties of a planet, and spectroscopic studies can help resolve many of these questions. For the first part of my dissertation, I participated in two studies of the atmospheres of brown dwarfs to search for weather variations. To understand the evolution of weather on brown dwarfs we conducted a multi- epoch study monitoring four cool brown dwarfs to search for photometric variability. These cool brown dwarfs are predicted to have salt and sulfide clouds condensing in their upper atmosphere and we detected one high amplitude variable. Combining observations for all T5 and later brown dwarfs we note a possible correlation between variability and cloud opacity. For the second half of my thesis, I focused on characterizing the atmospheres of directly imaged exoplanets. In the first study Hubble Space Telescope data on HR8799, in wavelengths unobservable from the ground, provide constraints on the presence of clouds in the outer planets. Next, I present research done in collaboration with the Gemini Planet Imager Exoplanet Survey (GPIES) team including an exploration of the instrument contrast against environmental parameters, and an examination of the environment of the planet in the HD 106906 system.
    [Show full text]