GLIESE 687 B—A NEPTUNE-MASS PLANET ORBITING a NEARBY RED DWARF
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born. -
Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects
Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects NASA Grant No. NNX17AE81G First Year Report Prepared by: Marc G. Millis, Jeff Greason, Rhonda Stevenson Tau Zero Foundation Business Office: 1053 East Third Avenue Broomfield, CO 80020 Prepared for: NASA Headquarters, Space Technology Mission Directorate (STMD) and NASA Innovative Advanced Concepts (NIAC) Washington, DC 20546 June 2018 Millis 2018 Grant NNX17AE81G_for_CR.docx pg 1 of 69 ABSTRACT Progress toward developing an evaluation process for interstellar propulsion and power options is described. The goal is to contrast the challenges, mission choices, and emerging prospects for propulsion and power, to identify which prospects might be more advantageous and under what circumstances, and to identify which technology details might have greater impacts. Unlike prior studies, the infrastructure expenses and prospects for breakthrough advances are included. This first year's focus is on determining the key questions to enable the analysis. Accordingly, a work breakdown structure to organize the information and associated list of variables is offered. A flow diagram of the basic analysis is presented, as well as more detailed methods to convert the performance measures of disparate propulsion methods into common measures of energy, mass, time, and power. Other methods for equitable comparisons include evaluating the prospects under the same assumptions of payload, mission trajectory, and available energy. Missions are divided into three eras of readiness (precursors, era of infrastructure, and era of breakthroughs) as a first step before proceeding to include comparisons of technology advancement rates. Final evaluation "figures of merit" are offered. Preliminary lists of mission architectures and propulsion prospects are provided. -
The Search for Another Earth – Part II
GENERAL ARTICLE The Search for Another Earth – Part II Sujan Sengupta In the first part, we discussed the various methods for the detection of planets outside the solar system known as the exoplanets. In this part, we will describe various kinds of exoplanets. The habitable planets discovered so far and the present status of our search for a habitable planet similar to the Earth will also be discussed. Sujan Sengupta is an 1. Introduction astrophysicist at Indian Institute of Astrophysics, Bengaluru. He works on the The first confirmed exoplanet around a solar type of star, 51 Pe- detection, characterisation 1 gasi b was discovered in 1995 using the radial velocity method. and habitability of extra-solar Subsequently, a large number of exoplanets were discovered by planets and extra-solar this method, and a few were discovered using transit and gravi- moons. tational lensing methods. Ground-based telescopes were used for these discoveries and the search region was confined to about 300 light-years from the Earth. On December 27, 2006, the European Space Agency launched 1The movement of the star a space telescope called CoRoT (Convection, Rotation and plan- towards the observer due to etary Transits) and on March 6, 2009, NASA launched another the gravitational effect of the space telescope called Kepler2 to hunt for exoplanets. Conse- planet. See Sujan Sengupta, The Search for Another Earth, quently, the search extended to about 3000 light-years. Both Resonance, Vol.21, No.7, these telescopes used the transit method in order to detect exo- pp.641–652, 2016. planets. Although Kepler’s field of view was only 105 square de- grees along the Cygnus arm of the Milky Way Galaxy, it detected a whooping 2326 exoplanets out of a total 3493 discovered till 2Kepler Telescope has a pri- date. -
EPSC2018-126, 2018 European Planetary Science Congress 2018 Eeuropeapn Planetarsy Science Ccongress C Author(S) 2018
EPSC Abstracts Vol. 12, EPSC2018-126, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Stellar wind interaction with the expanding atmosphere of Gliese 436b A.G. Berezutskiy (1), I.F. Shaikhislamov (1), M.L. Khodachenko (2,3) and I.B. Miroshnichenko (1,4) (1) Institute of Laser Physics, Siberian Brunch Russian Academy of Science, Novosibirsk, Russia; (2) Space Research Institute, Austrian Academy of Science, Graz, Austria; (3) Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia (4) Novosibirsk State Technical University, Novosibirsk, Russia ([email protected]) Abstract the escaping planetary upper atmospheric material are also taken into account. We study an exosphere of a Neptune-size exoplanet Gliese 436b, orbiting the red dwarf at an extremely 3. Results close distance (0.028 au), taking into account its interaction with the stellar wind plasma flow. It was At the initial state of the simulations, the atmosphere shown that Gliese 436 b has a bowshock region of Gliese 436b is assumed to consist of the molecular between planetary and stellar wind which localized hydrogen and helium atoms at a ratio NHe / NH2 = 1/5 on the distance of ~33 Rp, where density of planetary with the temperature 750 K. We consider the case of -3 atoms slightly dominates over the protons. a weak stellar wind (SW) with nsw=100 cm , Tsw=1 МК, Vsw=70 km/s, which is much less intense than 1. Introduction the solar wind. Because of this fact, , we did not consider generation of Energetic Neutral Atoms The modelled planet Gliese 436b has a mass (ENAs). -
Extra-Solar Planetary Systems
From the Academy Extra-solar planetary systems Joan Najita*†, Willy Benz‡, and Artie Hatzes§ *National Optical Astronomy Observatories, 950 North Cherry Avenue, Tucson, AZ 85719; ‡Physikalisches Institut, Universita¨t Bern, Sidlerstrasse 5, Ch-3012, Bern, Switzerland; and §McDonald Observatory, University of Texas, Austin, TX 78712 he discovery of extra-solar planets has captured the imagi- Table 1. Properties of extra-solar planet candidates Tnation and interest of the public and scientific communities K, alike, and for the same reasons: we are all want to know the Parent star M sin i Period, days a,AU e m⅐sϪ1 answers to questions such as ‘‘Where do we come from?’’ and ‘‘Are we alone?’’ Throughout this century, popular culture has HD 187123 0.52 3.097 0.042 0. 72. presumed the existence of other worlds and extra-terrestrial Bootis 3.64 3.3126 0.042 0. 469. intelligence. As a result, the annals of popular culture are filled HD 75289 0.42 3.5097 0.046 0. 54. with thoughts on what extra-solar planets and their inhabitants 51 Peg 0.44 4.2308 0.051 0.01 56. are like. And now toward the end of the century, astronomers And b 0.71 4.617 0.059 0.034 73.0 have managed to confirm at least one aspect of this speculative HD 217107 1.28 7.11 0.07 0.14 140. search for understanding in finding convincing evidence of Gliese 86 3.6 15.83 0.11 0.042 379. planets beyond the solar system. 1 Cancri 0.85 14.656 0.12 0.03 75.8 The discovery of extra-solar planets has brought with it a HD 195019 3.43 18.3 0.14 0.05 268. -
Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55 -
Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water
University of Groningen Kapteyn Astronomical Institute Simulating (Sub)Millimeter Observations of Exoplanet Atmospheres in Search of Water September 5, 2018 Author: N.O. Oberg Supervisor: Prof. Dr. F.F.S. van der Tak Abstract Context: Spectroscopic characterization of exoplanetary atmospheres is a field still in its in- fancy. The detection of molecular spectral features in the atmosphere of several hot-Jupiters and hot-Neptunes has led to the preliminary identification of atmospheric H2O. The Atacama Large Millimiter/Submillimeter Array is particularly well suited in the search for extraterrestrial water, considering its wavelength coverage, sensitivity, resolving power and spectral resolution. Aims: Our aim is to determine the detectability of various spectroscopic signatures of H2O in the (sub)millimeter by a range of current and future observatories and the suitability of (sub)millimeter astronomy for the detection and characterization of exoplanets. Methods: We have created an atmospheric modeling framework based on the HAPI radiative transfer code. We have generated planetary spectra in the (sub)millimeter regime, covering a wide variety of possible exoplanet properties and atmospheric compositions. We have set limits on the detectability of these spectral features and of the planets themselves with emphasis on ALMA. We estimate the capabilities required to study exoplanet atmospheres directly in the (sub)millimeter by using a custom sensitivity calculator. Results: Even trace abundances of atmospheric water vapor can cause high-contrast spectral ab- sorption features in (sub)millimeter transmission spectra of exoplanets, however stellar (sub) millime- ter brightness is insufficient for transit spectroscopy with modern instruments. Excess stellar (sub) millimeter emission due to activity is unlikely to significantly enhance the detectability of planets in transit except in select pre-main-sequence stars. -
The Search for Exomoons and the Characterization of Exoplanet Atmospheres
Corso di Laurea Specialistica in Astronomia e Astrofisica The search for exomoons and the characterization of exoplanet atmospheres Relatore interno : dott. Alessandro Melchiorri Relatore esterno : dott.ssa Giovanna Tinetti Candidato: Giammarco Campanella Anno Accademico 2008/2009 The search for exomoons and the characterization of exoplanet atmospheres Giammarco Campanella Dipartimento di Fisica Università degli studi di Roma “La Sapienza” Associate at Department of Physics & Astronomy University College London A thesis submitted for the MSc Degree in Astronomy and Astrophysics September 4th, 2009 Università degli Studi di Roma ―La Sapienza‖ Abstract THE SEARCH FOR EXOMOONS AND THE CHARACTERIZATION OF EXOPLANET ATMOSPHERES by Giammarco Campanella Since planets were first discovered outside our own Solar System in 1992 (around a pulsar) and in 1995 (around a main sequence star), extrasolar planet studies have become one of the most dynamic research fields in astronomy. Our knowledge of extrasolar planets has grown exponentially, from our understanding of their formation and evolution to the development of different methods to detect them. Now that more than 370 exoplanets have been discovered, focus has moved from finding planets to characterise these alien worlds. As well as detecting the atmospheres of these exoplanets, part of the characterisation process undoubtedly involves the search for extrasolar moons. The structure of the thesis is as follows. In Chapter 1 an historical background is provided and some general aspects about ongoing situation in the research field of extrasolar planets are shown. In Chapter 2, various detection techniques such as radial velocity, microlensing, astrometry, circumstellar disks, pulsar timing and magnetospheric emission are described. A special emphasis is given to the transit photometry technique and to the two already operational transit space missions, CoRoT and Kepler. -
Symplectic Integration of Equations of Motion and Variational Equations for Extrasolar Systems of N - Planets
A U T D P MS C P Symplectic Integration of Equations of Motion and Variational Equations for Extrasolar Systems of N - Planets Author Supervisor Dimitra S Prof. George V October, 2017 ii iii Abstract The aim of this present thesis was the symplectic integration of the equations of motion and the variational equations for a N - body system. In order to implement the integration we use a symplectic 6th order integrator presented by Yoshida. For the integration of variational equations we apply the Tangent Map (TM) method. The algorithm is applied on three Extrasolar systems : GJ 876, HR 8799 and TRAPPIST-1. The Fast Lyapunov Indicator (FLI) of the system is calculated for all systems and it is used as a tool to detect chaotic orbits. We also apply the Angu- lar Momentum Deficit criterion to decide whether this systems are AMD - stable or not. Περίληψη Σκοπός αυτής της διατριβής είναι η συμπλεκτική ολοκλήρωση των εξισώσεων της κίνησης και των εξισώσεων των μεταβολών σε ένα σύστημα Ν - σωμάτων. Για να επιτύχουμε την αριθμητική ολοκλήρωση υλοποιούμε τον αλγόριθμο του συμπλε- κτικού ολοκληρωτή 6ης τάξης του Yoshida. Για την ολοκλήρωση των εξισώσεων των μεταβολών εφαρμόσαμε τη μέθοδο Tangent Map (TM). Ο αλγόριθμος που δη- μιουργήσαμε τον εφαρμόσαμε σε τρία εξωπλανητικά συστήματα τα GJ 876, HR 8799 και TRAPPIST-1. Ο Γρήγορος Δείκτης Lyapunov (Fast Lyapunov Indicator, FLI) του συστήματος, υπολογίζεται με σκοπός την ταξινόμηση των τροχιών στο σύστημα σε τακτικές και χαοτικές. Εφαρμόζουμε επίσης το κριτήριο σταθερότη- τας κατά την ποσότητα Angular Momentum Deficit (AMD) ή Έλλειμμα Στρο- φορμής για την κατηγοριοποίηση των συστημάτων ως ευσταθή ή ασταθή κατά την ποσότητα αυτή. -
Kuiper Belt Analogues in Nearby M-Type Planet- Host Systems
Original citation: Kennedy, Grant M., Bryden, G., Ardila, D., Eiroa, C., Lestrade, J.-F., Marshall, P., Matthews, B. C., Moro-Martin, A. and Wyatt, M. C. (2018) Kuiper belt analogues in nearby M-type planet- host systems. Monthly Notices of the Royal Astronomical Society, 476 (4). pp. 4584- 4591. doi:10.1093/mnras/sty492 Permanent WRAP URL: http://wrap.warwick.ac.uk/99195 Copyright and reuse: The Warwick Research Archive Portal (WRAP) makes this work by researchers of the University of Warwick available open access under the following conditions. Copyright © and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable the material made available in WRAP has been checked for eligibility before being made available. Copies of full items can be used for personal research or study, educational, or not-for-profit purposes without prior permission or charge. Provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. Publisher’s statement: This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society ©: 2018 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. A note on versions: The version presented here may differ from the published version or, version of record, if you wish to cite this item you are advised to consult the publisher’s version. -
Dynamical Evolution of the Gliese 436 Planetary System Kozai Migration As a Potential Source for Gliese 436B’S Eccentricity
A&A 545, A88 (2012) Astronomy DOI: 10.1051/0004-6361/201219183 & c ESO 2012 Astrophysics Dynamical evolution of the Gliese 436 planetary system Kozai migration as a potential source for Gliese 436b’s eccentricity H. Beust1, X. Bonfils1, G. Montagnier2,X.Delfosse1, and T. Forveille1 1 UJF-Grenoble 1 / CNRS-INSU, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, 38041 Grenoble, France e-mail: [email protected] 2 European Organization for Astronomical Research in the Southern Hemisphere (ESO), Casilla 19001, Santiago 19, Chile Received 7 March 2012 / Accepted 1 August 2012 ABSTRACT Context. The close-in planet orbiting GJ 436 presents a puzzling orbital eccentricity (e 0.14) considering its very short orbital period. Given the age of the system, this planet should have been tidally circularized a long time ago. Many attempts to explain this were proposed in recent years, either involving abnormally weak tides, or the perturbing action of a distant companion. Aims. In this paper, we address the latter issue based on Kozai migration. We propose that GJ 436b was formerly located further away from the star and that it underwent a migration induced by a massive, inclined perturber via Kozai mechanism. In this context, the perturbations by the companion trigger high-amplitude variations to GJ 436b that cause tides to act at periastron. Then the orbit tidally shrinks to reach its present day location. Methods. We numerically integrate the 3-body system including tides and general relativity correction. We use a modified symplectic integrator as well as a fully averaged integrator. -
IAU Division C Working Group on Star Names 2019 Annual Report
IAU Division C Working Group on Star Names 2019 Annual Report Eric Mamajek (chair, USA) WG Members: Juan Antonio Belmote Avilés (Spain), Sze-leung Cheung (Thailand), Beatriz García (Argentina), Steven Gullberg (USA), Duane Hamacher (Australia), Susanne M. Hoffmann (Germany), Alejandro López (Argentina), Javier Mejuto (Honduras), Thierry Montmerle (France), Jay Pasachoff (USA), Ian Ridpath (UK), Clive Ruggles (UK), B.S. Shylaja (India), Robert van Gent (Netherlands), Hitoshi Yamaoka (Japan) WG Associates: Danielle Adams (USA), Yunli Shi (China), Doris Vickers (Austria) WGSN Website: https://www.iau.org/science/scientific_bodies/working_groups/280/ WGSN Email: [email protected] The Working Group on Star Names (WGSN) consists of an international group of astronomers with expertise in stellar astronomy, astronomical history, and cultural astronomy who research and catalog proper names for stars for use by the international astronomical community, and also to aid the recognition and preservation of intangible astronomical heritage. The Terms of Reference and membership for WG Star Names (WGSN) are provided at the IAU website: https://www.iau.org/science/scientific_bodies/working_groups/280/. WGSN was re-proposed to Division C and was approved in April 2019 as a functional WG whose scope extends beyond the normal 3-year cycle of IAU working groups. The WGSN was specifically called out on p. 22 of IAU Strategic Plan 2020-2030: “The IAU serves as the internationally recognised authority for assigning designations to celestial bodies and their surface features. To do so, the IAU has a number of Working Groups on various topics, most notably on the nomenclature of small bodies in the Solar System and planetary systems under Division F and on Star Names under Division C.” WGSN continues its long term activity of researching cultural astronomy literature for star names, and researching etymologies with the goal of adding this information to the WGSN’s online materials.