Publications for Timothy Bedding 2021 2020 2019

Total Page:16

File Type:pdf, Size:1020Kb

Publications for Timothy Bedding 2021 2020 2019 Publications for Timothy Bedding 2021 B., Hogg, D. (2020). Forward Modeling the Orbits of Yu, J., Hekker, S., Bedding, T., Stello, D., Huber, D., Gizon, L., Companions to Pulsating Stars from Their Light Travel Time Khanna, S., Bi, S. (2021). Asteroseismology of luminous red Variations. Astronomical Journal, 159(5), 202. <a giants with Kepler - II. Dependence of mass-loss on pulsations href="http://dx.doi.org/10.3847/1538-3881/ab7d38">[More and radiation. Monthly Notices of the Royal Astronomical Information]</a> Society, 501(4), 5135-5148. <a Li, G., Van Reeth, T., Bedding, T., Murphy, S., Antoci, V., href="http://dx.doi.org/10.1093/mnras/staa3970">[More Ouazzani, R., Barbara, N. (2020). Gravity-mode period Information]</a> spacings and near-core rotation rates of 611 ? Doradus stars Murphy, S., Barbara, N., Hey, D., Bedding, T., Fulcher, B. with Kepler. Monthly Notices of the Royal Astronomical (2021). Finding binaries from phase modulation of pulsating Society, 491(3), 3586-3605. <a stars with Kepler �VI. Orbits for 10 new binaries with href="http://dx.doi.org/10.1093/mnras/stz2906">[More mischaracterized primaries. Monthly Notices of the Royal Information]</a> Astronomical Society, 493(4), 5382-5388. <a Mart�nez, R., Gaudi, B., Rodriguez, J., Zhou, G., Labadie- href="http://dx.doi.org/10.1093/mnras/staa562">[More Bartz, J., Quinn, S., Penev, K., Tan, T., Latham, D., Paredes, L., Information]</a> Bedding, T., et al (2020). KELT-25 b and KELT-26 b: A Hot Li, Y., Bedding, T., Stello, D., Sharma, S., Huber, D., Murphy, Jupiter and a Substellar Companion Transiting Young A Stars S. (2021). Testing the intrinsic scatter of the asteroseismic Observed by TESS. Astronomical Journal, 160(3), 1-21. <a scaling relations with Kepler red giants. Monthly Notices of the href="http://dx.doi.org/10.3847/1538-3881/ab9f2d">[More Royal Astronomical Society, 501(3), 3162-3172. <a Information]</a> href="http://dx.doi.org/10.1093/mnras/staa3932">[More Jiang, C., Bedding, T., Stassun, K., Veras, D., Corsaro, E., Information]</a> Buzasi, D., Miko?ajczyk, P., Zhang, Q., Ou, J., Campante, T., 2020 Li, T., et al (2020). TESS Asteroseismic Analysis of the Known Exoplanet Host Star HD 222076. The Astrophysical Journal, Chaplin, W., Serenelli, A., Miglio, A., Morel, T., Mackereth, J., 896(1), 1-10. <a href="http://dx.doi.org/10.3847/1538- Vincenzo, F., Kjeldsen, H., Basu, S., Ball, W., Stokholm, A., 4357/ab8f29">[More Information]</a> Bedding, T., et al (2020). Age dating of an early Milky Way Murphy, S., Gray, R., Corbally, C., Kuehn, C., Bedding, T., merger via asteroseismology of the naked-eye star ? Indi. Killam, J. (2020). The discovery of lambda Bootis stars - The Nature Astronomy, 4(4), 382-389. <a Southern Survey II. Monthly Notices of the Royal Astronomical href="http://dx.doi.org/10.1038/s41550-019-0975-9">[More Society, 499(2), 2701-2713. <a Information]</a> href="http://dx.doi.org/10.1093/mnras/staa2347">[More Malla, S., Stello, D., Huber, D., Montet, B., Bedding, T., Information]</a> Andersen, M., Grundahl, F., Jessen-Hansen, J., Hey, D., Li, G., Guo, Z., Fuller, J., Bedding, T., Murphy, S., Colman, I., Pall�, P., et al (2020). Asteroseismic masses of four evolved Hey, D. (2020). The effect of tides on near-core rotation: planet-hosting stars using SONG and TESS: Resolving the analysis of 35 Kepler � Doradus stars in eclipsing and retired A-star mass controversy. Monthly Notices of the Royal spectroscopic binaries. Monthly Notices of the Royal Astronomical Society, 496(4), 5423-5435. <a Astronomical Society, 497(4), 4363-4375. <a href="http://dx.doi.org/10.1093/mnras/staa1793">[More href="http://dx.doi.org/10.1093/mnras/staa2266">[More Information]</a> Information]</a> Li, Y., Bedding, T., Li, T., Bi, S., Stello, D., Zhou, Y., White, Metcalfe, T., Van Saders, J., Basu, S., Buzasi, D., Chaplin, W., T. (2020). Asteroseismology of 36 Kepler subgiants � I. Egeland, R., Garc�a, R., Gaulme, P., Huber, D., Reinhold, T., Oscillation frequencies, linewidths, and amplitudes. Monthly Bedding, T., Li, T., et al (2020). The Evolution of Rotation and Notices of the Royal Astronomical Society, 495(2), 2363-2386. Magnetic Activity in 94 Aqr Aa from Asteroseismology with <a TESS. The Astrophysical Journal, 900(2), 154. <a href="http://dx.doi.org/10.1093/MNRAS/STAA1335">[More href="http://dx.doi.org/10.3847/1538-4357/aba963">[More Information]</a> Information]</a> Li, T., Bedding, T., Christensen-Dalsgaard, J., Stello, D., Li, Y., Murphy, S., Paunzen, E., Bedding, T., Walczak, P., Huber, D. Keen, M. (2020). Asteroseismology of 36 Kepler subgiants-II. (2020). The pulsation properties of lambda bootis stars I. The Determining ages from detailed modelling. Monthly Notices of southern TESS sample. Monthly Notices of the Royal the Royal Astronomical Society, 495(3), 3431-3462. <a Astronomical Society, 495(2), 1888-1912. <a href="http://dx.doi.org/10.1093/mnras/staa1350">[More href="http://dx.doi.org/10.1093/mnras/staa1271">[More Information]</a> Information]</a> Yu, J., Bedding, T., Stello, D., Huber, D., Compton, D., Gizon, Bedding, T., Murphy, S., Hey, D., Huber, D., Li, T., Smalley, L., Hekker, S. (2020). Asteroseismology of luminous red giants B., Stello, D., White, T., Ball, W., Chaplin, W., Colman, I., Li, with Kepler I: Long-period variables with radial and non-radial G., Li, Y., et al (2020). Very regular high-frequency pulsation modes. Monthly Notices of the Royal Astronomical Society, modes in young intermediate-mass stars. Nature, 581(7807), 493(1), 1388-1403. <a 147-151. <a href="http://dx.doi.org/10.1038/s41586-020-2226- href="http://dx.doi.org/10.1093/mnras/staa300">[More 8">[More Information]</a> Information]</a> Hey, D., Murphy, S., Foreman-Mackey, D., Bedding, T., Pope, 2019 Huber, D., Chaplin, W., Chontos, A., Kjeldsen, H., Christensen- Dalsgaard, J., Bedding, T., Ball, W., Brahm, R., Espinoza, N., Campante, T., Corsaro, E., Lund, M., Mosser, B., Serenelli, A., Henning, T., Li, T., Stello, D., et al (2019). A Hot Saturn Veras, D., Adibekyan, V., Antia, H., Ball, W., Basu, S., Orbiting an Oscillating Late Subgiant Discovered by TESS. Bedding, T., Stello, D., et al (2019). TESS Asteroseismology of Astronomical Journal, 157(6), 1-14. <a the Known Red-giant Host Stars HD 212771 and HD 203949. href="http://dx.doi.org/10.3847/1538-3881/ab1488">[More The Astrophysical Journal, 885(1), 1-12. <a Information]</a> href="http://dx.doi.org/10.3847/1538-4357/ab44a8">[More Information]</a> Li, T., Bedding, T., Kjeldsen, H., Stello, D., Christensen- Dalsgaard, J., Deng, L. (2019). Asteroseismic modelling of the Hall, O., Davies, G., Elsworth, Y., Miglio, A., Bedding, T., subgiant Mu Herculis using SONG data: Lifting the degeneracy Brown, A., Khan, S., Hawkins, K., Garc�a, R., Chaplin, W., between age and model input parameters. Monthly Notices of et al (2019). Testing asteroseismology with Gaia DR2: the Royal Astronomical Society, 483(1), 780-789. <a Hierarchical models of the Red Clump. Monthly Notices of the href="http://dx.doi.org/10.1093/mnras/sty3000">[More Royal Astronomical Society, 486(3), 3569-3585. <a Information]</a> href="http://dx.doi.org/10.1093/mnras/stz1092">[More Information]</a> Compton, D., Bedding, T., Stello, D. (2019). Asteroseismology of main-sequence F stars with Kepler: Overcoming short mode Schofield, M., Chaplin, W., Huber, D., Campante, T., Davies, lifetimes. Monthly Notices of the Royal Astronomical Society, G., Miglio, A., Ball, W., Appourchaux, T., Basu, S., Bedding, 485(1), 560-569. <a T., Stello, D., et al (2019). The Asteroseismic Target List for href="http://dx.doi.org/10.1093/mnras/stz432">[More Solar-like Oscillators Observed in 2 minute Cadence with the Information]</a> Transiting Exoplanet Survey Satellite. The Astrophysical Journal Supplement Series, 241(1), 1-10. <a Arentoft, T., Grundahl, F., White, T., Slumstrup, D., Handberg, href="http://dx.doi.org/10.3847/1538-4365/ab04f5">[More R., Lund, M., Brogaard, K., Andersen, M., Silva Aguirre, V., Information]</a> Zhang, C., Bedding, T., Stello, D., et al (2019). Asteroseismology of the Hyades red giant and planet host Chontos, A., Huber, D., Latham, D., Bieryla, A., Eylen, V., Tauri. Astronomy & Astrophysics, 622, 1-12. <a Bedding, T., Berger, T., Buchhave, L., Campante, T., Chaplin, href="http://dx.doi.org/10.1051/0004-6361/201834690">[More W., Colman, I., et al (2019). The Curious Case of KOI 4: Information]</a> Confirming Kepler's First Exoplanet Detection. Astronomical Journal, 157(5), 1-14. <a href="http://dx.doi.org/10.3847/1538- Murphy, S., Hey, D., Van Reeth, T., Bedding, T. (2019). Gaia- 3881/ab0e8e">[More Information]</a> derived luminosities of Kepler A/F stars and the pulsator fraction across the delta Scuti instability strip. Monthly Notices Antoci, V., Cunha, M., Bowman, D., Murphy, S., Kurtz, D., of the Royal Astronomical Society, 485(2), 2380-2400. <a Bedding, T., Borre, C., Christophe, S., Daszynska-Daszkiewicz, href="http://dx.doi.org/10.1093/mnras/stz590">[More J., Fox-Machado, L., Li, G., et al (2019). The first view of delta Information]</a> Scuti and gamma Doradus stars with the TESS mission. Monthly Notices of the Royal Astronomical Society, 490(3), Addison, B., Wright, D., Wittenmyer, R., Horner, J., Mengel, 4040-4059. <a M., Johns, D., Marti, C., Nicholson, B., Soutter, J., Bowler, B., href="http://dx.doi.org/10.1093/mnras/stz2787">[More Bedding, T., et al (2019). Minerva-Australis. I. Design, Information]</a> Commissioning, and First Photometric Results. Publications of the Astronomical Society of the Pacific, 131(1005), 1-15. <a Sharma, S., Stello, D., Bland-Hawthorn, J., Hayden, M., Zinn, href="http://dx.doi.org/10.1088/1538-3873/ab03aa">[More J., Kallinger, T., Hon, M., Asplund, M., Buder, S., De Silva, G., Information]</a> Lewis, G., Bedding, T., Chen, B., Khanna, S., Li, T., et al (2019).
Recommended publications
  • Limits from the Hubble Space Telescope on a Point Source in SN 1987A
    Limits from the Hubble Space Telescope on a Point Source in SN 1987A The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Graves, Genevieve J. M., Peter M. Challis, Roger A. Chevalier, Arlin Crotts, Alexei V. Filippenko, Claes Fransson, Peter Garnavich, et al. 2005. “Limits from the Hubble Space Telescopeon a Point Source in SN 1987A.” The Astrophysical Journal 629 (2): 944–59. https:// doi.org/10.1086/431422. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41399924 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA The Astrophysical Journal, 629:944–959, 2005 August 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. LIMITS FROM THE HUBBLE SPACE TELESCOPE ON A POINT SOURCE IN SN 1987A Genevieve J. M. Graves,1, 2 Peter M. Challis,2 Roger A. Chevalier,3 Arlin Crotts,4 Alexei V. Filippenko,5 Claes Fransson,6 Peter Garnavich,7 Robert P. Kirshner,2 Weidong Li,5 Peter Lundqvist,6 Richard McCray,8 Nino Panagia,9 Mark M. Phillips,10 Chun J. S. Pun,11,12 Brian P. Schmidt,13 George Sonneborn,11 Nicholas B. Suntzeff,14 Lifan Wang,15 and J. Craig Wheeler16 Received 2005 January 27; accepted 2005 April 26 ABSTRACT We observed supernova 1987A (SN 1987A) with the Space Telescope Imaging Spectrograph (STIS) on the Hubble Space Telescope (HST ) in 1999 September and again with the Advanced Camera for Surveys (ACS) on the HST in 2003 November.
    [Show full text]
  • Characterizing Two Solar-Type Kepler Subgiants with Asteroseismology: Kic 10920273 and Kic 11395018
    The Astrophysical Journal, 763:49 (10pp), 2013 January 20 doi:10.1088/0004-637X/763/1/49 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. CHARACTERIZING TWO SOLAR-TYPE KEPLER SUBGIANTS WITH ASTEROSEISMOLOGY: KIC 10920273 AND KIC 11395018 G. Doganˇ 1,2,3, T. S. Metcalfe1,3,4, S. Deheuvels3,5,M.P.DiMauro6, P. Eggenberger7, O. L. Creevey8,9,10, M. J. P. F. G. Monteiro11, M. Pinsonneault3,12, A. Frasca13, C. Karoff2, S. Mathur1,S.G.Sousa11,I.M.Brandao˜ 11, T. L. Campante11,14, R. Handberg2, A. O. Thygesen2,15, K. Biazzo16,H.Bruntt2, E. Niemczura17, T. R. Bedding18, W. J. Chaplin3,14, J. Christensen-Dalsgaard2,3,R.A.Garc´ıa3,19, J. Molenda-Zakowicz˙ 17, D. Stello18, J. L. Van Saders3,12, H. Kjeldsen2, M. Still20, S. E. Thompson21, and J. Van Cleve21 1 High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307, USA; [email protected] 2 Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark 3 Kavli Institute for Theoretical Physics, Kohn Hall, University of California, Santa Barbara, CA 93106, USA 4 Space Science Institute, Boulder, CO 80301, USA 5 Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101, USA 6 INAF-IAPS, Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma, Italy 7 Geneva Observatory, University of Geneva, Maillettes 51, 1290 Sauverny, Switzerland 8 Universite´ de Nice, Laboratoire Cassiopee,´ CNRS UMR 6202, Observatoire de la Coteˆ d’Azur, BP 4229, F-06304 Nice Cedex 4, France 9 IAC Instituto de Astrof´ısica de Canarias, C/V´ıa Lactea´ s/n, E-38200 Tenerife, Spain 10 Universidad de La Laguna, Avda.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses First visibility of the lunar crescent and other problems in historical astronomy. Fatoohi, Louay J. How to cite: Fatoohi, Louay J. (1998) First visibility of the lunar crescent and other problems in historical astronomy., Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/996/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk me91 In the name of Allah, the Gracious, the Merciful >° 9 43'' 0' eji e' e e> igo4 U61 J CO J: lic 6..ý v Lo ý , ý.,, "ý J ýs ýºý. ur ý,r11 Lýi is' ý9r ZU LZJE rju No disaster can befall on the earth or in your souls but it is in a book before We bring it into being; that is easy for Allah. In order that you may not grieve for what has escaped you, nor be exultant at what He has given you; and Allah does not love any prideful boaster.
    [Show full text]
  • Arxiv:1909.05961V1 [Astro-Ph.SR] 12 Sep 2019
    Draft version September 16, 2019 Typeset using LATEX twocolumn style in AASTeX62 TESS ASTEROSEISMOLOGY OF THE KNOWN RED-GIANT HOST STARS HD 212771 AND HD 203949 Tiago L. Campante,1, 2, 3 Enrico Corsaro,4 Mikkel N. Lund,5, 3 Beno^ıt Mosser,6 Aldo Serenelli,7, 8, 3 Dimitri Veras,9, 10, 3, ∗ Vardan Adibekyan,1 H. M. Antia,11 Warrick Ball,12, 5 Sarbani Basu,13 Timothy R. Bedding,14, 5, 3 Diego Bossini,1 Guy R. Davies,12, 5 Elisa Delgado Mena,1 Rafael A. Garc´ıa,15, 16 Rasmus Handberg,5 Marc Hon,17 Stephen R. Kane,18 Steven D. Kawaler,19, 3 James S. Kuszlewicz,20, 5 Miles Lucas,19 Savita Mathur,21, 22 Nicolas Nardetto,23 Martin B. Nielsen,12, 5, 24 Marc H. Pinsonneault,25, 3 Sabine Reffert,26 V´ıctor Silva Aguirre,5 Keivan G. Stassun,27, 28 Dennis Stello,17, 14, 5, 3 Stephan Stock,26 Mathieu Vrard,1 Mutlu Yıldız,29 William J. Chaplin,12, 5, 3 Daniel Huber,30, 3 Jacob L. Bean,31 Zeynep C¸elik Orhan,29 Margarida S. Cunha,1, 2 Jørgen Christensen-Dalsgaard,5, 3 Hans Kjeldsen,5, 32 Travis S. Metcalfe,33, 20 Andrea Miglio,12, 5 Mario´ J. P. F. G. Monteiro,1, 2 Benard Nsamba,1 Sibel Ortel¨ ,29 Filipe Pereira,1 Sergio´ G. Sousa,1, 2 Maria Tsantaki,1 and Margaret C. Turnbull34 1Instituto de Astrof´ısica e Ci^enciasdo Espa¸co,Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 2Departamento de F´ısica e Astronomia, Faculdade de Ci^enciasda Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal 3Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030, USA 4INAF | Osservatorio Astrofisico di Catania, via S.
    [Show full text]
  • Multiple Star Systems Observed with Corot and Kepler
    Multiple star systems observed with CoRoT and Kepler John Southworth Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK Abstract. The CoRoT and Kepler satellites were the first space platforms designed to perform high-precision photometry for a large number of stars. Multiple systems dis- play a wide variety of photometric variability, making them natural benefactors of these missions. I review the work arising from CoRoT and Kepler observations of multiple sys- tems, with particular emphasis on eclipsing binaries containing giant stars, pulsators, triple eclipses and/or low-mass stars. Many more results remain untapped in the data archives of these missions, and the future holds the promise of K2, TESS and PLATO. 1 Introduction The CoRoT and Kepler satellites represent the first generation of astronomical space missions capable of large-scale photometric surveys. The large quantity – and exquisite quality – of the data they pro- vided is in the process of revolutionising stellar and planetary astrophysics. In this review I highlight the immense variety of the scientific results from these concurrent missions, as well as the context provided by their precursors and implications for their successors. CoRoT was led by CNES and ESA, launched on 2006/12/27,and retired in June 2013 after an irre- trievable computer failure in November 2012. It performed 24 observing runs, each lasting between 21 and 152days, with a field of viewof 2×1.3◦ ×1.3◦, obtaining light curves of 163000 stars [42]. Kepler was a NASA mission, launched on 2009/03/07and suffering a critical pointing failure on 2013/05/11. It observed the same 105deg2 sky area for its full mission duration, obtaining high-precision light curves of approximately 191000 stars.
    [Show full text]
  • Magnetism, Dynamo Action and the Solar-Stellar Connection
    Living Rev. Sol. Phys. (2017) 14:4 DOI 10.1007/s41116-017-0007-8 REVIEW ARTICLE Magnetism, dynamo action and the solar-stellar connection Allan Sacha Brun1 · Matthew K. Browning2 Received: 23 August 2016 / Accepted: 28 July 2017 © The Author(s) 2017. This article is an open access publication Abstract The Sun and other stars are magnetic: magnetism pervades their interiors and affects their evolution in a variety of ways. In the Sun, both the fields themselves and their influence on other phenomena can be uncovered in exquisite detail, but these observations sample only a moment in a single star’s life. By turning to observa- tions of other stars, and to theory and simulation, we may infer other aspects of the magnetism—e.g., its dependence on stellar age, mass, or rotation rate—that would be invisible from close study of the Sun alone. Here, we review observations and theory of magnetism in the Sun and other stars, with a partial focus on the “Solar-stellar connec- tion”: i.e., ways in which studies of other stars have influenced our understanding of the Sun and vice versa. We briefly review techniques by which magnetic fields can be measured (or their presence otherwise inferred) in stars, and then highlight some key observational findings uncovered by such measurements, focusing (in many cases) on those that offer particularly direct constraints on theories of how the fields are built and maintained. We turn then to a discussion of how the fields arise in different objects: first, we summarize some essential elements of convection and dynamo theory, includ- ing a very brief discussion of mean-field theory and related concepts.
    [Show full text]
  • Highlights of Discoveries for $\Delta $ Scuti Variable Stars from the Kepler
    Highlights of Discoveries for δ Scuti Variable Stars from the Kepler Era Joyce Ann Guzik1,∗ 1Los Alamos National Laboratory, Los Alamos, NM 87545 USA Correspondence*: Joyce Ann Guzik [email protected] ABSTRACT The NASA Kepler and follow-on K2 mission (2009-2018) left a legacy of data and discoveries, finding thousands of exoplanets, and also obtaining high-precision long time-series data for hundreds of thousands of stars, including many types of pulsating variables. Here we highlight a few of the ongoing discoveries from Kepler data on δ Scuti pulsating variables, which are core hydrogen-burning stars of about twice the mass of the Sun. We discuss many unsolved problems surrounding the properties of the variability in these stars, and the progress enabled by Kepler data in using pulsations to infer their interior structure, a field of research known as asteroseismology. Keywords: Stars: δ Scuti, Stars: γ Doradus, NASA Kepler Mission, asteroseismology, stellar pulsation 1 INTRODUCTION The long time-series, high-cadence, high-precision photometric observations of the NASA Kepler (2009- 2013) [Borucki et al., 2010; Gilliland et al., 2010; Koch et al., 2010] and follow-on K2 (2014-2018) [Howell et al., 2014] missions have revolutionized the study of stellar variability. The amount and quality of data provided by Kepler is nearly overwhelming, and will motivate follow-on observations and generate new discoveries for decades to come. Here we review some highlights of discoveries for δ Scuti (abbreviated as δ Sct) variable stars from the Kepler mission. The δ Sct variables are pre-main-sequence, main-sequence (core hydrogen-burning), or post-main-sequence (undergoing core contraction after core hydrogen burning, and beginning shell hydrogen burning) stars with spectral types A through mid-F, and masses around 2 solar masses.
    [Show full text]
  • Livre-Ovni.Pdf
    UN MONDE BIZARRE Le livre des étranges Objets Volants Non Identifiés Chapitre 1 Paranormal Le paranormal est un terme utilisé pour qualifier un en- mé n'est pas considéré comme paranormal par les semble de phénomènes dont les causes ou mécanismes neuroscientifiques) ; ne sont apparemment pas explicables par des lois scien- tifiques établies. Le préfixe « para » désignant quelque • Les différents moyens de communication avec les chose qui est à côté de la norme, la norme étant ici le morts : naturels (médiumnité, nécromancie) ou ar- consensus scientifique d'une époque. Un phénomène est tificiels (la transcommunication instrumentale telle qualifié de paranormal lorsqu'il ne semble pas pouvoir que les voix électroniques); être expliqué par les lois naturelles connues, laissant ain- si le champ libre à de nouvelles recherches empiriques, à • Les apparitions de l'au-delà (fantômes, revenants, des interprétations, à des suppositions et à l'imaginaire. ectoplasmes, poltergeists, etc.) ; Les initiateurs de la parapsychologie se sont donné comme objectif d'étudier d'une manière scientifique • la cryptozoologie (qui étudie l'existence d'espèce in- ce qu'ils considèrent comme des perceptions extra- connues) : classification assez injuste, car l'objet de sensorielles et de la psychokinèse. Malgré l'existence de la cryptozoologie est moins de cultiver les mythes laboratoires de parapsychologie dans certaines universi- que de chercher s’il y a ou non une espèce animale tés, notamment en Grande-Bretagne, le paranormal est inconnue réelle derrière une légende ; généralement considéré comme un sujet d'étude peu sé- rieux. Il est en revanche parfois associé a des activités • Le phénomène ovni et ses dérivés (cercle de culture).
    [Show full text]
  • Arxiv:2105.11583V2 [Astro-Ph.EP] 2 Jul 2021 Keck-HIRES, APF-Levy, and Lick-Hamilton Spectrographs
    Draft version July 6, 2021 Typeset using LATEX twocolumn style in AASTeX63 The California Legacy Survey I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades Lee J. Rosenthal,1 Benjamin J. Fulton,1, 2 Lea A. Hirsch,3 Howard T. Isaacson,4 Andrew W. Howard,1 Cayla M. Dedrick,5, 6 Ilya A. Sherstyuk,1 Sarah C. Blunt,1, 7 Erik A. Petigura,8 Heather A. Knutson,9 Aida Behmard,9, 7 Ashley Chontos,10, 7 Justin R. Crepp,11 Ian J. M. Crossfield,12 Paul A. Dalba,13, 14 Debra A. Fischer,15 Gregory W. Henry,16 Stephen R. Kane,13 Molly Kosiarek,17, 7 Geoffrey W. Marcy,1, 7 Ryan A. Rubenzahl,1, 7 Lauren M. Weiss,10 and Jason T. Wright18, 19, 20 1Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 2IPAC-NASA Exoplanet Science Institute, Pasadena, CA 91125, USA 3Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305, USA 4Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 5Cahill Center for Astronomy & Astrophysics, California Institute of Technology, Pasadena, CA 91125, USA 6Department of Astronomy & Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802, USA 7NSF Graduate Research Fellow 8Department of Physics & Astronomy, University of California Los Angeles, Los Angeles, CA 90095, USA 9Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA 10Institute for Astronomy, University of Hawai`i,
    [Show full text]
  • A Basic Requirement for Studying the Heavens Is Determining Where In
    Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun­ damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short).
    [Show full text]
  • A Triply Eclipsing System with Intrinsically Variable Red Giant Component A
    Title : will be set by the publisher Editors : will be set by the publisher EAS Publications Series, Vol. ?, 2013 HD181068: A TRIPLY ECLIPSING SYSTEM WITH INTRINSICALLY VARIABLE RED GIANT COMPONENT A. Derekas1, T. Borkovits21, 3, J. Fuller4, D. Huber5 and H. Lehmann6 Abstract. We present the analysis of HD 181068 which is one of the first triply eclipsing triple system discovered. Using Kepler photome- try, ground based spectroscopic and interferometric measurements, we determined the stellar and orbital parameters of the system. We show that the oscillations observed in the red giant component of the system are tidally forced oscillations, while one of the most surprising results is that it does not show solar-like oscillations. 1 Introduction The ultraprecise and continous photometry of Kepler space telescope led to great discoveries not just in the field of exoplanets but in stellar astrophysics too. Among others, it opened a new era in the investigation of multiple star systems, such as dis- coveries of the first triply eclipsing triple systems, KOI-126 (Carter et al. (2011)) and HD 181068 (Derekas et al. (2011)). The special geometry of these triply (or mutually) eclipsing triple systems, enables us fast and easy determination of fur- ther characteristics that otherwise could only be studied with great effort on a long time-scale. Here we present the analysis of the triply eclipsing hierarchical triple sys- tem HD 181068 based on Kepler photometry, ground based high-resolution spec- troscopy and interferometry. HD 181068 has a magnitude of V = 7.1 and a dis- tance of about 250 pc (van Leeuwen (2007)).
    [Show full text]
  • 1999-2000 Annual Report
    Anglo-Australian Observatory Annual Report of the Anglo-Australian Telescope Board 1 July 1999 to 30 June 2000 ANGLO-AUSTRALIAN OBSERVATORY PO Box 296, Epping, NSW 1710, Australia 167 Vimiera Road, Eastwood, NSW 2122, Australia PH (02) 9372 4800 (international) + 61 2 9372 4800 FAX (02) 9372 4880 (international) + 61 2 9372 4880 e-mail [email protected] ANGLO-AUSTRALIAN TELESCOPE BOARD PO Box 296, Epping, NSW 1710, Australia 167 Vimiera Road, Eastwood, NSW 2122, Australia PH (02) 9372 4813 (international) + 61 2 9372 4813 FAX (02) 9372 4880 (international) + 61 2 9372 4880 e-mail [email protected] ANGLO-AUSTRALIAN TELESCOPE/UK SCHMIDT TELESCOPE PriVate Bag, Coonabarabran, NSW 2357, Australia PH (02) 6842 6291 (international) + 61 2 6842 6291 AAT FAX (02) 6884 2298 (international) + 61 2 6884 298 UKST FAX (02) 6842 2288 (international) + 61 2 6842 2288 WWW http://www.aao.gov.au/ © Anglo-Australian Telescope Board 2000 ISSN 1443-8550 COVER: A digital image of the Antennae galaxies (NGC4038-39) made by combining three images from the Tek2 CCD on the AAT (Steve Lee and David Malin). A new wide field CCD Imager (WFI) will come into use in 2000 and will enable many more images like this to be made. COVER DESIGN: Encore International COMPUTER TYPESET AT THE: Anglo-Australian ObserVatory ii The Right Honourable Stephen Byers, MP, President of the Board of Trade and Secretary of State for Trade and Industry, Government of the United Kingdom of Great Britain and Northern Ireland The Honourable Dr David Kemp, MP, Minister for Education, Training and Youth Affairs GoVernment of the Commonwealth of Australia In accordance with Article 8 of the Agreement between the Australian GoVernment and the GoVernment of the United Kingdom to proVide for the establishment and operation of an optical telescope at Siding Spring Mountain in the state of New South Wales, I present herewith a report by the Anglo-Australian Telescope Board for the year from 1 July 1999 to 30 June 2000.
    [Show full text]