August 2017 BRAS Newsletter

Total Page:16

File Type:pdf, Size:1020Kb

August 2017 BRAS Newsletter August 2017 Issue Next Meeting: Monday, August 14th at 7PM at HRPO nd (2 Mondays, Highland Road Park Observatory) Presenters: Chris Desselles, Merrill Hess, and Ben Toman will share tips, tricks and insights regarding the upcoming Solar Eclipse. What's In This Issue? President’s Message Secretary's Summary Outreach Report - FAE Light Pollution Committee Report Recent Forum Entries 20/20 Vision Campaign Messages from the HRPO Perseid Meteor Shower Partial Solar Eclipse Observing Notes – Lyra, the Lyre & Mythology Like this newsletter? See past issues back to 2009 at http://brastro.org/newsletters.html Newsletter of the Baton Rouge Astronomical Society August 2017 President’s Message August, 21, 2017. Total eclipse of the Sun. What more can I say. If you have not made plans for a road trip, you can help out at HRPO. All who are going on a road trip be prepared to share pictures and experiences at the September meeting. BRAS has lost another member, Bart Bennett, who joined BRAS after Chris Desselles gave a talk on Astrophotography to the Cajun Clickers Computer Club (CCCC) in January of 2016, Bart became the President of CCCC at the same time I became president of BRAS. The Clickers are shocked at his sudden death via heart attack. Both organizations will miss Bart. His obituary is posted online here: http://www.rabenhorst.com/obituary/sidney-barton-bart-bennett/ Last month’s meeting, at LIGO, was a success, even though there was not much solar viewing for the public due to clouds and rain for most of the afternoon. BRAS had a table inside the museum building, where Ben and Craig used material from the Night Sky Network for the public outreach. BRAS gave away the ETX 90 telescope we have been selling tickets @ $5 each. Over $600 was raised and to my great surprise, I held the winning ticket! This will make a very nice gift for my grandkids this Christmas. Sometime next year BRAS will raffle off another ETX 90, which belonged to Wally Pursell and was donated by his family. The Bylaws of BRAS have been updated by Wally Pursell and I, and every member of BRAS will get a copy in the mail in October to review and suggest ETX-90. The book was changes (if any) by November’s meeting. BRAS will vote on adopting the another raffle item. changes at the December meeting. Time to start thinking about officers for next year. The offices of President, Vice-president, and Secretary are up for elections due to term limits. The current officers can serve in another office; they cannot serve in the same office more than two years in a row. Clear Skies, John R. Nagle President of BRAS and Observing Chairperson P.S. The PAS-sponsored Star Gaze is October 17th (Tuesday) to October 22nd (Sunday). You can access the “Deep South Star Gaze Registration and Liability Form by joining this Yahoo group: https://groups.yahoo.com/neo/groups/Deep-South-Star-Gaze/info If you are already signed up, the form is located here: https://groups.yahoo.com/neo/groups/Deep-South-Star- Gaze/files/2017%20DSSG%20Registration%20and%20Liability%20Release/DSSG_2017%20Fall%20Registrat ion_and_Liability_Form.pdf Newsletter of the Baton Rouge Astronomical Society August 2017 Secretary's Summary of July LIGO event No real meeting this month, but we had an excellent picnic out at LIGO on July 15th. The weather was beautiful for most of the event with just some clouds and light rain later in the day. Cooler temperatures than previous years and a nice breeze added to the enjoyment! We had a lot of great food, as usual. While my attempt at making Wally's Boston Baked Bean recipe was marred by an alarmingly present taste of salt, I ended up taking home an empty dish. If anyone had a bout of high blood pressure after sampling the dish, we'll just blame Wally's recipe! (I'll make it better next time, I promise.) As in Outreach Notes, we had some members set up solar scopes and an info table for inside. We were also treated to a recitation of the latest award winning essay by Ephrain Craddock. (Reading award winning essays at the LIGO picnic is getting to be a habit for that young man!) This year, we were even joined by several of our LIGO friends for the picnic and it was fun to Ephrian reads us his new story. catch up with them. Of course, after the food and socializing, we went inside and had fun in the Science Center and took part in the facility tours. It was another great time out there and if you still haven't made the trek out, you have to do so in the near future. To have such an amazing haven of science right in our own back yard is a privilege that should not be overlooked. BRAS Table, Night Sky Network’s display of relative sizes of planets –Craig and Ben. Michele took a bunch of snapshots and her i-phone made this little movie of the event: https://www.dropbox.com/s/02yv59js7dzjdfq/Ligo2017.mov?dl=0 Since this was an informal meeting, there was no business discussed or conducted and no formal secretary notes. (That's why you're just getting this summary!) Of course, it will be business as usual for the next meeting and I hope to see you out there. Clear Skies, Ben Toman BRAS Secretary (For all the good I'm worth!) TOUR OF LIGO’S CONTROL ROOM Newsletter of the Baton Rouge Astronomical Society August 2017 BRAS Outreach Report Hi Everyone, Summer has been slower, but not altogether dead. We had some members (Steve Richard, Chris Raby, Brad Schaefer, Scott Cadwallader...sorry if I'm missing anyone!) bring out scopes for solar observing at our picnic at LIGO on July 15th. Believe it or not, the clouds stayed away for a short time so we could see a nice sunspot group. Afterwards and concurrently, Craig Brenden set up a table inside the LIGO Science Center and showed off the scale model solar system and gave out information on the club and the HRPO to patrons. He was joined later by yours truly. Of course, the upcoming event that all are talking about is the total solar eclipse on August 21st. There will be an event at the HRPO (please see the message from the HRPO for more info) and as will surely be mentioned, they could use a hand. If you are not one of the lucky ones heading up to the path of totality, please consider volunteering at the HRPO to assist with the public. There has been a lot of interest in this event and it will likely grow to a fever pitch the closer the date comes. Finally, associated with the eclipse, BRAS will be giving a presentation at the Ascension Parish Library branch in Gonzalez on Tuesday, August 15th at 6:30pm. Chris Kersey will be the lead presenter. If you would like to assist (demos, possible solar observing) please let me know as soon as you can. Tuesday, August 15th 2017 Officers: Eclipse Talk Ascension Parish Library (Gonzalez) President: John Nagle 6:30pm Vice-President: Craig Brenden Secretary: Ben Toman Clear Skies, Treasurer: Trey Anding BRAS Liaison for BREC: Chris Kersey BRAS Liaison for LSU: Ben Toman Greg Guzik Outreach Coordinator Committees/Coordinators: Outreach: Ben Toman Observing: John Nagle Light Pollution: Thomas Halligan Webmaster: Frederick Barnett Newsletter: Michele Fry Newsletter of the Baton Rouge Astronomical Society August 2017 BRAS Light Pollution Committee Report Meeting takes place at 6:45, 45 minutes before the regular monthly meeting. Everyone is welcome to join in. Thomas Halligan Light Pollution Chairperson Space is right overhead—double stars, nebulae, the Milky Way Galaxy and other galaxies. We can see it if we let it through Recent Entries in the BRAS Forum Below are selected additions to the BRAS Forum. There are also nine active polls. The Forum has reached 4600 posts. Happy Birthday, U.S. of A. Langley Research Center Turns 100 BREC Asking for Input on Possible Zoo Move Moon Occulted Porrima on 30 June Newsletter of the Baton Rouge Astronomical Society August 2017 20/20 Vision Campaign GLOBE at Night: 14 to 23 August [Hercules] OBSERVATIONS NEEDED FOR SCHOOL PROJECT BRAS is in the process of assisting yet another student at St. Joseph’s Academy acquire raw data. This young lady (named Shreya) will need data concerning how light pollution effects the view of certain variable stars while they are at their minima. Below is our suggested list of variable stars for Shreya. Dates are the times during which the star is at least thirty degrees above the horizon at 9pm Standard Time and 10pm Daylight Time. All periods (time from maximum to maximum) are fewer than ninety days. All chosen stars have a difference of at least 1.0 between maximum and minimum magnitude. RX Leporis Magnitude Range: 5.4 to 7.4 Period: 75 days Class: K Dates: 11 December to 9 March T Monocerotis Magnitude Range: 5.6 to 6.6 Period: 27 days Class: G Dates: 14 December to 12 April S Leporis Magnitude Range: 6.0 to 7.6 Period: 89 days Class: K Dates: 12 January to 4 March ST Ursae Majoris Magnitude Range: 6.0 to 7.6 Period: 81 days Class: M Dates: 12 February to 15 July g Herculis Magnitude Range: 4.4 to 6.0 Period: 80 days Class: M Dates: 29 April to 28 September R Lyrae Magnitude Range: 3.9 to 5.0 Period: 46 days Class: M Dates: 5 June to 6 November Sheliak Magnitude Range: 3.3 to 4.4 Period: 12.9 days Class: B Dates: 8 June to 31 October X Cygni Magnitude Range: 5.9 to 6.9 Period: 16.4 days Class: F Dates: 5 July to 29 November Algol Magnitude Range: 2.1 to 3.4 Period: 2.87 days Class: B Dates: 9 October to 9 March Observations should only be made when the Moon is below the horizon.
Recommended publications
  • INFORMATION CIRCULAR No. 185 (FEBRUARY 2015)
    INTERNATIONAL ASTRONOMICAL UNION COMMISSION 26 (DOUBLE STARS) INFORMATION CIRCULAR No. 185 (FEBRUARY 2015) NEW ORBITS ADS Name P T e Ω(2000) 2015 Author(s) α2000δ n a i ! Last ob. 2016 32 STF 3056 AB 545y 2142.0 0.670 136◦4 141◦9 000709 ZIRM 00047+3416 0◦6606 000623 99◦4 119◦6 2009.8 141.9 0.708 147 BU 255 245. 2067.2 0.960 166.1 66.3 0.445 ZIRM 00118+2825 1.4694 0.661 116.0 265.4 2008.8 65.9 0.442 285 AC 1 525. 1820.1 0.600 107.5 288.7 1.839 ZIRM 00209+3259 0.6857 1.234 84.0 26.8 2012.1 288.8 1.841 363 A 431 AB 53.56 2003.58 0.644 25.5 329.5 0.172 SCARDIA 00271-0753 6.7214 0.364 109.0 293.0 2013.573 321.9 0.168 et al. (*) 1081 STF 113 A-BC 650. 1686.0 0.640 87.2 20.4 1.637 ZIRM 01198-0031 0.5538 1.324 43.5 106.7 2013.9 20.6 1.638 - MCA 7 3.800 2010.280 0.017 145.0 47.8 0.030 DOCOBO 02366+1227 94.737 0.077 112.7 3.7 2010.718 322.9 0.078 et al. (**) - FIN 333 83.73 1998.06 0.423 34.1 34.1 0.462 DOCOBO 02434-6643 4.300 0.509 90.0 269.2 2013.737 34.1 0.457 et al. (**) 2524 A 2909 11.345 2013.744 0.507 16.2 23.1 0.129 DOCOBO 03244-1539 31.732 0.172 71.3 283.0 2013.737 3 38.4 0.125 et al.
    [Show full text]
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Explore the Universe Observing Certificate Second Edition
    RASC Observing Committee Explore the Universe Observing Certificate Second Edition Explore the Universe Observing Certificate Welcome to the Explore the Universe Observing Certificate Program. This program is designed to provide the observer with a well-rounded introduction to the night sky visible from North America. Using this observing program is an excellent way to gain knowledge and experience in astronomy. Experienced observers find that a planned observing session results in a more satisfying and interesting experience. This program will help introduce you to amateur astronomy and prepare you for other more challenging certificate programs such as the Messier and Finest NGC. The program covers the full range of astronomical objects. Here is a summary: Observing Objective Requirement Available Constellations and Bright Stars 12 24 The Moon 16 32 Solar System 5 10 Deep Sky Objects 12 24 Double Stars 10 20 Total 55 110 In each category a choice of objects is provided so that you can begin the certificate at any time of the year. In order to receive your certificate you need to observe a total of 55 of the 110 objects available. Here is a summary of some of the abbreviations used in this program Instrument V – Visual (unaided eye) B – Binocular T – Telescope V/B - Visual/Binocular B/T - Binocular/Telescope Season Season when the object can be best seen in the evening sky between dusk. and midnight. Objects may also be seen in other seasons. Description Brief description of the target object, its common name and other details. Cons Constellation where object can be found (if applicable) BOG Ref Refers to corresponding references in the RASC’s The Beginner’s Observing Guide highlighting this object.
    [Show full text]
  • Homogeneous Spectroscopic Parameters for Bright Planet Host Stars from the Northern Hemisphere the Impact on Stellar and Planetary Mass (Research Note)
    A&A 576, A94 (2015) Astronomy DOI: 10.1051/0004-6361/201425227 & c ESO 2015 Astrophysics Homogeneous spectroscopic parameters for bright planet host stars from the northern hemisphere The impact on stellar and planetary mass (Research Note) S. G. Sousa1,2,N.C.Santos1,2, A. Mortier1,3,M.Tsantaki1,2, V. Adibekyan1, E. Delgado Mena1,G.Israelian4,5, B. Rojas-Ayala1,andV.Neves6 1 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal 3 SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK 4 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain 5 Departamento de Astrofísica, Universidade de La Laguna, 38205 La Laguna, Tenerife, Spain 6 Departamento de Física, Universidade Federal do Rio Grande do Norte, Brazil Received 27 October 2014 / Accepted 19 February 2015 ABSTRACT Aims. In this work we derive new precise and homogeneous parameters for 37 stars with planets. For this purpose, we analyze high resolution spectra obtained by the NARVAL spectrograph for a sample composed of bright planet host stars in the northern hemisphere. The new parameters are included in the SWEET-Cat online catalogue. Methods. To ensure that the catalogue is homogeneous, we use our standard spectroscopic analysis procedure, ARES+MOOG, to derive effective temperatures, surface gravities, and metallicities. These spectroscopic stellar parameters are then used as input to compute the stellar mass and radius, which are fundamental for the derivation of the planetary mass and radius.
    [Show full text]
  • Okayama and Subaru Planet Search Programs
    Okayama and Subaru Planet Search Programs Bun’ei Sato Tokyo Institute of Technology Oct. 7‐9 2009 Searching for Planets around Evolved Intermediate‐Mass Stars Understanding properties of planets as a function of stellar mass, evolutionary stage, etc. (c) Okayama Astrophysical Observatory Why Giants? Distribution of planet‐hosting stars GK giants A4 V BA dwarfs G9 III 0 planets ~30 planets FGK dwarfs ~290 planets M dwarfs ~10 planets Sun East‐Asian Planet Search Network (EAPSNET) Okayama 1.88m tel., Japan 300 GK giants (V<6), since 2001 10 planets and 1 brown dwarf Xinglong 2.16m tel., China & Okayama 100 GK giants (V~6), since 2005 (1 planet and 1 brown dwarf) Bohyunsan 1.8m tel., Korea & Okayama 140 GK giants (V<6.5), since 2005 1 brown dwarf Subaru 8.2m tel., Japan & EAPSNET >200 GK giants (6.5<V<7), since 2006 Several candidates Goal: TUBITAK 1.5m tel., Turkey ~100 planets 50 GK giants (V~6.5), since 2008 from 1000 stars RV Precision with OAO/HIDES 2001~2002 2003~2005 2006~2008 σRV~4m/s Short-term (~weeks) precision is 2m/s (Kambe et al. 2008) Discoveries from EAPSNET Star Name Sp. Type Stellar Stellar Planetary Semi‐ Eccen Metallicity Mass Radius Mass major tricity ([Fe/H]) (M~) (R~) (MJUP) Axis (AU) (dex) HD 119445 G6III 3.9 20.5 37.6 1.71 0.08 +0.04 ε Tau K0 III 2.7 13.7 7.6 1.93 0.15 +0.13 11 Com G8 III 2.7 19 19.4 1.29 0.23 -0.28 81 Cet G5 III 2.4 11 5.3 2.5 0.21 +0.06 18 Del G6 III 2.3 8.5 10.3 2.6 0.08 -0.05 HD 104985 G9 III 2.3 11 8.3 0.95 0.09 -0.35 ξ Aql K0 III 2.2 12 2.8 0.68 0 -0.18 14 And K0 III 2.2 11 4.8 0.83 0 -0.24 HD 81688 K0 III‐IV 2.1 13 2.7 0.81 0 -0.34 HD 173416 G8 III 2.0 13.5 2.7 1.2 0.21 -0.22 6 Lyn K0 IV 1.7 5.2 2.4 2.2 0.13 -0.13 HD 167042 K1 IV 1.5 4.5 1.6 1.3 0.10 +0.00 To be Submitted OAO OAO OAO All of these are subgiants with 1.5-1.7M~ and [Fe/H]=0.0-0.1 Planet Frequency vs.
    [Show full text]
  • Li Abundances in F Stars: Planets, Rotation, and Galactic Evolution,
    A&A 576, A69 (2015) Astronomy DOI: 10.1051/0004-6361/201425433 & c ESO 2015 Astrophysics Li abundances in F stars: planets, rotation, and Galactic evolution, E. Delgado Mena1,2, S. Bertrán de Lis3,4, V. Zh. Adibekyan1,2,S.G.Sousa1,2,P.Figueira1,2, A. Mortier6, J. I. González Hernández3,4,M.Tsantaki1,2,3, G. Israelian3,4, and N. C. Santos1,2,5 1 Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal e-mail: [email protected] 2 Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, 4150-762 Porto, Portugal 3 Instituto de Astrofísica de Canarias, C/via Lactea, s/n, 38200 La Laguna, Tenerife, Spain 4 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 5 Departamento de Física e Astronomía, Faculdade de Ciências, Universidade do Porto, Portugal 6 SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS, UK Received 28 November 2014 / Accepted 14 December 2014 ABSTRACT Aims. We aim, on the one hand, to study the possible differences of Li abundances between planet hosts and stars without detected planets at effective temperatures hotter than the Sun, and on the other hand, to explore the Li dip and the evolution of Li at high metallicities. Methods. We present lithium abundances for 353 main sequence stars with and without planets in the Teff range 5900–7200 K. We observed 265 stars of our sample with HARPS spectrograph during different planets search programs. We observed the remaining targets with a variety of high-resolution spectrographs.
    [Show full text]
  • Stability of Planets in Binary Star Systems
    StabilityStability ofof PlanetsPlanets inin BinaryBinary StarStar SystemsSystems Ákos Bazsó in collaboration with: E. Pilat-Lohinger, D. Bancelin, B. Funk ADG Group Outline Exoplanets in multiple star systems Secular perturbation theory Application: tight binary systems Summary + Outlook About NFN sub-project SP8 “Binary Star Systems and Habitability” Stand-alone project “Exoplanets: Architecture, Evolution and Habitability” Basic dynamical types S-type motion (“satellite”) around one star P-type motion (“planetary”) around both stars Image: R. Schwarz Exoplanets in multiple star systems Observations: (Schwarz 2014, Binary Catalogue) ● 55 binary star systems with 81 planets ● 43 S-type + 12 P-type systems ● 10 multiple star systems with 10 planets Example: γ Cep (Hatzes et al. 2003) ● RV measurements since 1981 ● Indication for a “planet” (Campbell et al. 1988) ● Binary period ~57 yrs, planet period ~2.5 yrs Multiplicity of stars ~45% of solar like stars (F6 – K3) with d < 25 pc in multiple star systems (Raghavan et al. 2010) Known exoplanet host stars: single double triple+ source 77% 20% 3% Raghavan et al. (2006) 83% 15% 2% Mugrauer & Neuhäuser (2009) 88% 10% 2% Roell et al. (2012) Exoplanet catalogues The Extrasolar Planets Encyclopaedia http://exoplanet.eu Exoplanet Orbit Database http://exoplanets.org Open Exoplanet Catalogue http://www.openexoplanetcatalogue.com The Planetary Habitability Laboratory http://phl.upr.edu/home NASA Exoplanet Archive http://exoplanetarchive.ipac.caltech.edu Binary Catalogue of Exoplanets http://www.univie.ac.at/adg/schwarz/multiple.html Habitable Zone Gallery http://www.hzgallery.org Binary Catalogue Binary Catalogue of Exoplanets http://www.univie.ac.at/adg/schwarz/multiple.html Dynamical stability Stability limit for S-type planets Rabl & Dvorak (1988), Holman & Wiegert (1999), Pilat-Lohinger & Dvorak (2002) Parameters (a , e , μ) bin bin Outer limit at roughly max.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Multiple Star Systems Observed with Corot and Kepler
    Multiple star systems observed with CoRoT and Kepler John Southworth Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK Abstract. The CoRoT and Kepler satellites were the first space platforms designed to perform high-precision photometry for a large number of stars. Multiple systems dis- play a wide variety of photometric variability, making them natural benefactors of these missions. I review the work arising from CoRoT and Kepler observations of multiple sys- tems, with particular emphasis on eclipsing binaries containing giant stars, pulsators, triple eclipses and/or low-mass stars. Many more results remain untapped in the data archives of these missions, and the future holds the promise of K2, TESS and PLATO. 1 Introduction The CoRoT and Kepler satellites represent the first generation of astronomical space missions capable of large-scale photometric surveys. The large quantity – and exquisite quality – of the data they pro- vided is in the process of revolutionising stellar and planetary astrophysics. In this review I highlight the immense variety of the scientific results from these concurrent missions, as well as the context provided by their precursors and implications for their successors. CoRoT was led by CNES and ESA, launched on 2006/12/27,and retired in June 2013 after an irre- trievable computer failure in November 2012. It performed 24 observing runs, each lasting between 21 and 152days, with a field of viewof 2×1.3◦ ×1.3◦, obtaining light curves of 163000 stars [42]. Kepler was a NASA mission, launched on 2009/03/07and suffering a critical pointing failure on 2013/05/11. It observed the same 105deg2 sky area for its full mission duration, obtaining high-precision light curves of approximately 191000 stars.
    [Show full text]
  • Wynyard Planetarium & Observatory a Autumn Observing Notes
    Wynyard Planetarium & Observatory A Autumn Observing Notes Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn Tour of the Sky with the Naked Eye CASSIOPEIA Look for the ‘W’ 4 shape 3 Polaris URSA MINOR Notice how the constellations swing around Polaris during the night Pherkad Kochab Is Kochab orange compared 2 to Polaris? Pointers Is Dubhe Dubhe yellowish compared to Merak? 1 Merak THE PLOUGH Figure 1: Sketch of the northern sky in autumn. © Rob Peeling, CaDAS, 2007 version 1.2 Wynyard Planetarium & Observatory PUBLIC OBSERVING – Autumn North 1. On leaving the planetarium, turn around and look northwards over the roof of the building. Close to the horizon is a group of stars like the outline of a saucepan with the handle stretching to your left. This is the Plough (also called the Big Dipper) and is part of the constellation Ursa Major, the Great Bear. The two right-hand stars are called the Pointers. Can you tell that the higher of the two, Dubhe is slightly yellowish compared to the lower, Merak? Check with binoculars. Not all stars are white. The colour shows that Dubhe is cooler than Merak in the same way that red-hot is cooler than white- hot. 2. Use the Pointers to guide you upwards to the next bright star. This is Polaris, the Pole (or North) Star. Note that it is not the brightest star in the sky, a common misconception. Below and to the left are two prominent but fainter stars. These are Kochab and Pherkad, the Guardians of the Pole. Look carefully and you will notice that Kochab is slightly orange when compared to Polaris.
    [Show full text]
  • Correlations Between the Stellar, Planetary, and Debris Components of Exoplanet Systems Observed by Herschel⋆
    A&A 565, A15 (2014) Astronomy DOI: 10.1051/0004-6361/201323058 & c ESO 2014 Astrophysics Correlations between the stellar, planetary, and debris components of exoplanet systems observed by Herschel J. P. Marshall1,2, A. Moro-Martín3,4, C. Eiroa1, G. Kennedy5,A.Mora6, B. Sibthorpe7, J.-F. Lestrade8, J. Maldonado1,9, J. Sanz-Forcada10,M.C.Wyatt5,B.Matthews11,12,J.Horner2,13,14, B. Montesinos10,G.Bryden15, C. del Burgo16,J.S.Greaves17,R.J.Ivison18,19, G. Meeus1, G. Olofsson20, G. L. Pilbratt21, and G. J. White22,23 (Affiliations can be found after the references) Received 15 November 2013 / Accepted 6 March 2014 ABSTRACT Context. Stars form surrounded by gas- and dust-rich protoplanetary discs. Generally, these discs dissipate over a few (3–10) Myr, leaving a faint tenuous debris disc composed of second-generation dust produced by the attrition of larger bodies formed in the protoplanetary disc. Giant planets detected in radial velocity and transit surveys of main-sequence stars also form within the protoplanetary disc, whilst super-Earths now detectable may form once the gas has dissipated. Our own solar system, with its eight planets and two debris belts, is a prime example of an end state of this process. Aims. The Herschel DEBRIS, DUNES, and GT programmes observed 37 exoplanet host stars within 25 pc at 70, 100, and 160 μm with the sensitiv- ity to detect far-infrared excess emission at flux density levels only an order of magnitude greater than that of the solar system’s Edgeworth-Kuiper belt. Here we present an analysis of that sample, using it to more accurately determine the (possible) level of dust emission from these exoplanet host stars and thereafter determine the links between the various components of these exoplanetary systems through statistical analysis.
    [Show full text]
  • Exoplanet.Eu Catalog Page 1 # Name Mass Star Name
    exoplanet.eu_catalog # name mass star_name star_distance star_mass OGLE-2016-BLG-1469L b 13.6 OGLE-2016-BLG-1469L 4500.0 0.048 11 Com b 19.4 11 Com 110.6 2.7 11 Oph b 21 11 Oph 145.0 0.0162 11 UMi b 10.5 11 UMi 119.5 1.8 14 And b 5.33 14 And 76.4 2.2 14 Her b 4.64 14 Her 18.1 0.9 16 Cyg B b 1.68 16 Cyg B 21.4 1.01 18 Del b 10.3 18 Del 73.1 2.3 1RXS 1609 b 14 1RXS1609 145.0 0.73 1SWASP J1407 b 20 1SWASP J1407 133.0 0.9 24 Sex b 1.99 24 Sex 74.8 1.54 24 Sex c 0.86 24 Sex 74.8 1.54 2M 0103-55 (AB) b 13 2M 0103-55 (AB) 47.2 0.4 2M 0122-24 b 20 2M 0122-24 36.0 0.4 2M 0219-39 b 13.9 2M 0219-39 39.4 0.11 2M 0441+23 b 7.5 2M 0441+23 140.0 0.02 2M 0746+20 b 30 2M 0746+20 12.2 0.12 2M 1207-39 24 2M 1207-39 52.4 0.025 2M 1207-39 b 4 2M 1207-39 52.4 0.025 2M 1938+46 b 1.9 2M 1938+46 0.6 2M 2140+16 b 20 2M 2140+16 25.0 0.08 2M 2206-20 b 30 2M 2206-20 26.7 0.13 2M 2236+4751 b 12.5 2M 2236+4751 63.0 0.6 2M J2126-81 b 13.3 TYC 9486-927-1 24.8 0.4 2MASS J11193254 AB 3.7 2MASS J11193254 AB 2MASS J1450-7841 A 40 2MASS J1450-7841 A 75.0 0.04 2MASS J1450-7841 B 40 2MASS J1450-7841 B 75.0 0.04 2MASS J2250+2325 b 30 2MASS J2250+2325 41.5 30 Ari B b 9.88 30 Ari B 39.4 1.22 38 Vir b 4.51 38 Vir 1.18 4 Uma b 7.1 4 Uma 78.5 1.234 42 Dra b 3.88 42 Dra 97.3 0.98 47 Uma b 2.53 47 Uma 14.0 1.03 47 Uma c 0.54 47 Uma 14.0 1.03 47 Uma d 1.64 47 Uma 14.0 1.03 51 Eri b 9.1 51 Eri 29.4 1.75 51 Peg b 0.47 51 Peg 14.7 1.11 55 Cnc b 0.84 55 Cnc 12.3 0.905 55 Cnc c 0.1784 55 Cnc 12.3 0.905 55 Cnc d 3.86 55 Cnc 12.3 0.905 55 Cnc e 0.02547 55 Cnc 12.3 0.905 55 Cnc f 0.1479 55
    [Show full text]