A Curiously Young Star in an Eclipsing Binary in an Old Open Cluster*
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:2012.09981V1 [Astro-Ph.SR] 17 Dec 2020 2 O
Contrib. Astron. Obs. Skalnat´ePleso XX, 1 { 20, (2020) DOI: to be assigned later Flare stars in nearby Galactic open clusters based on TESS data Olga Maryeva1;2, Kamil Bicz3, Caiyun Xia4, Martina Baratella5, Patrik Cechvalaˇ 6 and Krisztian Vida7 1 Astronomical Institute of the Czech Academy of Sciences 251 65 Ondˇrejov,The Czech Republic(E-mail: [email protected]) 2 Lomonosov Moscow State University, Sternberg Astronomical Institute, Universitetsky pr. 13, 119234, Moscow, Russia 3 Astronomical Institute, University of Wroc law, Kopernika 11, 51-622 Wroc law, Poland 4 Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotl´aˇrsk´a2, 611 37 Brno, Czech Republic 5 Dipartimento di Fisica e Astronomia Galileo Galilei, Vicolo Osservatorio 3, 35122, Padova, Italy, (E-mail: [email protected]) 6 Department of Astronomy, Physics of the Earth and Meteorology, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, Mlynsk´adolina F-2, 842 48 Bratislava, Slovakia 7 Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, H-1121 Budapest, Konkoly Thege Mikl´os´ut15-17, Hungary Received: September ??, 2020; Accepted: ????????? ??, 2020 Abstract. The study is devoted to search for flare stars among confirmed members of Galactic open clusters using high-cadence photometry from TESS mission. We analyzed 957 high-cadence light curves of members from 136 open clusters. As a result, 56 flare stars were found, among them 8 hot B-A type ob- jects. Of all flares, 63 % were detected in sample of cool stars (Teff < 5000 K), and 29 % { in stars of spectral type G, while 23 % in K-type stars and ap- proximately 34% of all detected flares are in M-type stars. -
The [Y/Mg] Clock Works for Evolved Solar Metallicity Stars ? D
Astronomy & Astrophysics manuscript no. clusters_le c ESO 2017 July 28, 2017 The [Y/Mg] clock works for evolved solar metallicity stars ? D. Slumstrup1, F. Grundahl1, K. Brogaard1; 2, A. O. Thygesen3, P. E. Nissen1, J. Jessen-Hansen1, V. Van Eylen4, and M. G. Pedersen5 1 Stellar Astrophysics Centre (SAC). Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus, Denmark e-mail: [email protected] 2 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 3 California Institute of Technology, 1200 E. California Blvd, MC 249-17, Pasadena, CA 91125, USA 4 Leiden Observatory, Leiden University, 2333CA Leiden, The Netherlands 5 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium Received 3 July 2017 / Accepted 20 July2017 ABSTRACT Aims. Previously [Y/Mg] has been proven to be an age indicator for solar twins. Here, we investigate if this relation also holds for helium-core-burning stars of solar metallicity. Methods. High resolution and high signal-to-noise ratio (S/N) spectroscopic data of stars in the helium-core-burning phase have been obtained with the FIES spectrograph on the NOT 2:56 m telescope and the HIRES spectrograph on the Keck I 10 m telescope. They have been analyzed to determine the chemical abundances of four open clusters with close to solar metallicity; NGC 6811, NGC 6819, M67 and NGC 188. The abundances are derived from equivalent widths of spectral lines using ATLAS9 model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Results from asteroseismology and binary studies were used as priors on the atmospheric parameters, where especially the log g is determined to much higher precision than what is possible with spectroscopy. -
Wiyn Consortium, Inc. 950 N
WIYN CONSORTIUM, INC. 950 N. Cherry Avenue • P. O. Box 26732 Tucson, AZ 85726-6732 (520) 318-8396 University of Wisconsin • Indiana University • Yale University • National Optical Astronomy Observatory January 30, 2012 To: NSF Portfolio Review Committee Dear Colleagues: The three member universities of the WIYN consortium strongly recommend continuing NSF investment in WIYN through the US OIR national observatory, NOAO. The WIYN partnership among state and private universities and NSF/NOAO has produced a state-of-the-art facility with highly productive yet cost-effective operations. Our most recent external review accurately summarizes the state of the Observatory. The review found that: • WIYN delivers the best images over a wide field-of-view of any continental US facility. • Operations have achieved an outstanding level of reliability and efficiency. • WIYN has had a major impact on the research opportunities available to member universities, involving a broad base of faculty and providing important career development paths for younger faculty and postdocs. • The number of Ph.D. dissertations making important use of the facility is especially impressive. For the astronomy departments of the university partners, WIYN is the largest source of experimental data for doctoral theses. • WIYN has served national interests by 1) providing a proving ground for technological innovations; 2) enabling access to wide-field multi-object spectroscopy for the US astronomical community; and 3) providing substantial aperture very cost-effectively. We believe that few, if any, of the successes of the WIYN Observatory would have been possible without the major contributions of NOAO to our partnership. This letter attempts to document the current and future importance of NOAO as a partner in the WIYN collaboration. -
KEPLER-21B: a 1.6 Rearth PLANET TRANSITING the BRIGHT OSCILLATING F SUBGIANT STAR HD 179070 Steve B
The Astrophysical Journal, 746:123 (18pp), 2012 February 20 doi:10.1088/0004-637X/746/2/123 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. ∗ KEPLER-21b: A 1.6 REarth PLANET TRANSITING THE BRIGHT OSCILLATING F SUBGIANT STAR HD 179070 Steve B. Howell1,2,36, Jason F. Rowe2,3,36, Stephen T. Bryson2, Samuel N. Quinn4, Geoffrey W. Marcy5, Howard Isaacson5, David R. Ciardi6, William J. Chaplin7, Travis S. Metcalfe8, Mario J. P. F. G. Monteiro9, Thierry Appourchaux10, Sarbani Basu11, Orlagh L. Creevey12,13, Ronald L. Gilliland14, Pierre-Olivier Quirion15, Denis Stello16, Hans Kjeldsen17,Jorgen¨ Christensen-Dalsgaard17, Yvonne Elsworth7, Rafael A. Garc´ıa18, Gunter¨ Houdek19, Christoffer Karoff7, Joanna Molenda-Zakowicz˙ 20, Michael J. Thompson8, Graham A. Verner7,21, Guillermo Torres4, Francois Fressin4, Justin R. Crepp23, Elisabeth Adams4, Andrea Dupree4, Dimitar D. Sasselov4, Courtney D. Dressing4, William J. Borucki2, David G. Koch2, Jack J. Lissauer2, David W. Latham4, Lars A. Buchhave22,35, Thomas N. Gautier III24, Mark Everett1, Elliott Horch25, Natalie M. Batalha26, Edward W. Dunham27, Paula Szkody28,36, David R. Silva1,36, Ken Mighell1,36, Jay Holberg29,36,Jeromeˆ Ballot30, Timothy R. Bedding16, Hans Bruntt12, Tiago L. Campante9,17, Rasmus Handberg17, Saskia Hekker7, Daniel Huber16, Savita Mathur8, Benoit Mosser31, Clara Regulo´ 12,13, Timothy R. White16, Jessie L. Christiansen3, Christopher K. Middour32, Michael R. Haas2, Jennifer R. Hall32,JonM.Jenkins3, Sean McCaulif32, Michael N. Fanelli33, Craig -
(S) Or the School Where You Work Do You Have Any Ideas Or
Timestamp Please share your question or concern. Your student's school (s) or Do you have any ideas or suggestions for how you think we can the school where you work address this concern? If the school is closed for a number of days, will the Classified Staff get paid? if not, under this case are we able to claim unemployment. 3/3/2020 14:46:02 What about our FIT and At Risk Students for food? A parent has notified us that the child is being pulled from school (has IEP) due to Coronavirus. Is there language I should use and contacting the parent? Provide standard language/response for parents pulling students and 3/4/2020 9:06:55 how should we mark the attendance? (medical?) The aerosol cleaner that a lot of our custodians use and like is just a cleaner and not a disinfectant. (Reported to Hatton by a dray driver). Can we please direct custodians which products they can use from the CDC list and what procedures they need to use? 3/4/2020 10:48:56 from parent - What is the district doing to prepare? Parent offered to help. I referred parent to Supt. blog. This request came on Sunday, 3/1 before 3/4/2020 13:29:12 parent emails went out. from parent - Parent asked - Does the school allow students to wash hands before lunch with soap and water, not just hand sanitizer? I answered that we do allow them to stop by the bathroom before entering the lunch room. Rattlesnake is also creating a hand washing video to show school-wide as part of the Principal Monday Message. -
Appendix a Correspondence
APPENDIX A CORRESPONDENCE Page 1 of 2 From:PATTERSON,PATIENCEE[[email protected]]onbehalfof AJOSEACOMMENTS[[email protected]] Sent:Friday,January28,201112:53PM To:GingerRitter Cc:HowardNass Subject:RE:SBInetProgram Dear Ms. Ritter: Thanks for your email. The completion of the AJO-1 tower project is still on-going and has not been cancelled in the sense of stopping. This project will go to completion. After extensive review, Secretary Napolitano has directed CBP to end SBInet as originally conceived and instead implement a new border security technology plan, which will utilize existing, proven technology tailored to the distinct terrain and population density of each border region. Our nation's border security is still very much a high priority and projects to enhance border security will continue. Please do provide comments on the Supplemental Draft EA that you have mentioned. As our other projects move forward, we will be in touch to share future information regarding our environmental compliance requirements. Thank you very much. Sincerely, Patience Patience E. Patterson, RPA Manager, Environmental Resources Office of Technology Innovation and Acquisition US Customs and Border Protection 1901 S. Bell Street - 7th Floor - #734 Arlington, VA 20598 Desk: (571) 468-7290 Cell: (202) 870-7422 Fax: (571) 468-7391 [email protected] From: Ginger Ritter [mailto:[email protected]] Sent: Wednesday, January 26, 2011 4:24 PM To: AJOSEACOMMENTS Subject: SBInet Program file://K:\Projects\80306407_SBInet_Environmental_Compliance_Support\SEA_189\SEA\D.. -
Asteroseismic Inferences on Red Giants in Open Clusters NGC 6791, NGC 6819, and NGC 6811 Using Kepler
A&A 530, A100 (2011) Astronomy DOI: 10.1051/0004-6361/201016303 & c ESO 2011 Astrophysics Asteroseismic inferences on red giants in open clusters NGC 6791, NGC 6819, and NGC 6811 using Kepler S. Hekker1,2, S. Basu3, D. Stello4, T. Kallinger5, F. Grundahl6,S.Mathur7,R.A.García8, B. Mosser9,D.Huber4, T. R. Bedding4,R.Szabó10, J. De Ridder11,W.J.Chaplin2, Y. Elsworth2,S.J.Hale2, J. Christensen-Dalsgaard6 , R. L. Gilliland12, M. Still13, S. McCauliff14, and E. V. Quintana15 1 Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands e-mail: [email protected] 2 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 3 Department of Astronomy, Yale University, PO Box 208101, New Haven CT 06520-8101, USA 4 Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006, Australia 5 Department of Physics and Astronomy, University of British Colombia, 6224 Agricultural Road, Vancouver, BC V6T 1Z1, Canada 6 Department of Physics and Astronomy, Building 1520, Aarhus University, 8000 Aarhus C, Denmark 7 High Altitude Observatory, NCAR, PO Box 3000, Boulder, CO 80307, USA 8 Laboratoire AIM, CEA/DSM-CNRS, Université Paris 7 Diderot, IRFU/SAp, Centre de Saclay, 91191 Gif-sur-Yvette, France 9 LESIA, UMR8109, Université Pierre et Marie Curie, Université Denis Diderot, Observatoire de Paris, 92195 Meudon Cedex, France 10 Konkoly Observatory of the Hungarian Academy of Sciences, Konkoly Thege Miklós út 15-17, 1121 Budapest, Hungary 11 Instituut voor Sterrenkunde, K.U. Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 12 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 13 Bay Area Environmental Research Institute/Nasa Ames Research Center, Moffett Field, CA 94035, USA 14 Orbital Sciences Corporation/Nasa Ames Research Center, Moffett Field, CA 94035, USA 15 SETI Institute/Nasa Ames Research Center, Moffett Field, CA 94035, USA Received 13 December 2010 / Accepted 19 April 2011 ABSTRACT Context. -
Nd AAS Meeting Abstracts
nd AAS Meeting Abstracts 101 – Kavli Foundation Lectureship: The Outreach Kepler Mission: Exoplanets and Astrophysics Search for Habitable Worlds 200 – SPD Harvey Prize Lecture: Modeling 301 – Bridging Laboratory and Astrophysics: 102 – Bridging Laboratory and Astrophysics: Solar Eruptions: Where Do We Stand? Planetary Atoms 201 – Astronomy Education & Public 302 – Extrasolar Planets & Tools 103 – Cosmology and Associated Topics Outreach 303 – Outer Limits of the Milky Way III: 104 – University of Arizona Astronomy Club 202 – Bridging Laboratory and Astrophysics: Mapping Galactic Structure in Stars and Dust 105 – WIYN Observatory - Building on the Dust and Ices 304 – Stars, Cool Dwarfs, and Brown Dwarfs Past, Looking to the Future: Groundbreaking 203 – Outer Limits of the Milky Way I: 305 – Recent Advances in Our Understanding Science and Education Overview and Theories of Galactic Structure of Star Formation 106 – SPD Hale Prize Lecture: Twisting and 204 – WIYN Observatory - Building on the 308 – Bridging Laboratory and Astrophysics: Writhing with George Ellery Hale Past, Looking to the Future: Partnerships Nuclear 108 – Astronomy Education: Where Are We 205 – The Atacama Large 309 – Galaxies and AGN II Now and Where Are We Going? Millimeter/submillimeter Array: A New 310 – Young Stellar Objects, Star Formation 109 – Bridging Laboratory and Astrophysics: Window on the Universe and Star Clusters Molecules 208 – Galaxies and AGN I 311 – Curiosity on Mars: The Latest Results 110 – Interstellar Medium, Dust, Etc. 209 – Supernovae and Neutron -
Open Clusters
Open Clusters Open clusters (also known as galactic clusters) are of tremendous importance to the science of astronomy, if not to astrophysics and cosmology generally. Star clusters serve as the "laboratories" of astronomy, with stars now all at nearly the same distance and all created at essentially the same time. Each cluster thus is a running experiment, where we can observe the effects of composition, age, and environment. We are hobbled by seeing only a snapshot in time of each cluster, but taken collectively we can understand their evolution, and that of their included stars. These clusters are also important tracers of the Milky Way and other parent galaxies. They help us to understand their current structure and derive theories of the creation and evolution of galaxies. Just as importantly, starting from just the Hyades and the Pleiades, and then going to more distance clusters, open clusters serve to define the distance scale of the Milky Way, and from there all other galaxies and the entire universe. However, there is far more to the study of star clusters than that. Anyone who has looked at a cluster through a telescope or binoculars has realized that these are objects of immense beauty and symmetry. Whether a cluster like the Pleiades seen with delicate beauty with the unaided eye or in a small telescope or binoculars, or a cluster like NGC 7789 whose thousands of stars are seen with overpowering wonder in a large telescope, open clusters can only bring awe and amazement to the viewer. These sights are available to all. -
IDENTIFYING EXOPLANETS with DEEP LEARNING II: TWO NEW SUPER-EARTHS UNCOVERED by a NEURAL NETWORK in K2 DATA Anne Dattilo1,†, Andrew Vanderburg1,?, Christopher J
Preprint typeset using LATEX style emulateapj v. 12/16/11 IDENTIFYING EXOPLANETS WITH DEEP LEARNING II: TWO NEW SUPER-EARTHS UNCOVERED BY A NEURAL NETWORK IN K2 DATA Anne Dattilo1,y, Andrew Vanderburg1,?, Christopher J. Shallue2, Andrew W. Mayo3,z, Perry Berlind4, Allyson Bieryla4, Michael L. Calkins4, Gilbert A. Esquerdo4, Mark E. Everett5, Steve B. Howell6, David W. Latham4, Nicholas J. Scott6, Liang Yu7 ABSTRACT For years, scientists have used data from NASA's Kepler Space Telescope to look for and discover thousands of transiting exoplanets. In its extended K2 mission, Kepler observed stars in various regions of sky all across the ecliptic plane, and therefore in different galactic environments. Astronomers want to learn how the population of exoplanets are different in these different environments. However, this requires an automatic and unbiased way to identify the exoplanets in these regions and rule out false positive signals that mimic transiting planet signals. We present a method for classifying these exoplanet signals using deep learning, a class of machine learning algorithms that have become popular in fields ranging from medical science to linguistics. We modified a neural network previously used to identify exoplanets in the Kepler field to be able to identify exoplanets in different K2 campaigns, which range in galactic environments. We train a convolutional neural network, called AstroNet-K2, to predict whether a given possible exoplanet signal is really caused by an exoplanet or a false positive. AstroNet-K2 is highly successful at classifying exoplanets and false positives, with accuracy of 98% on our test set. It is especially efficient at identifying and culling false positives, but for now, still needs human supervision to create a complete and reliable planet candidate sample. -
00E the Construction of the Universe Symphony
The basic construction of the Universe Symphony. There are 30 asterisms (Suites) in the Universe Symphony. I divided the asterisms into 15 groups. The asterisms in the same group, lay close to each other. Asterisms!! in Constellation!Stars!Objects nearby 01 The W!!!Cassiopeia!!Segin !!!!!!!Ruchbah !!!!!!!Marj !!!!!!!Schedar !!!!!!!Caph !!!!!!!!!Sailboat Cluster !!!!!!!!!Gamma Cassiopeia Nebula !!!!!!!!!NGC 129 !!!!!!!!!M 103 !!!!!!!!!NGC 637 !!!!!!!!!NGC 654 !!!!!!!!!NGC 659 !!!!!!!!!PacMan Nebula !!!!!!!!!Owl Cluster !!!!!!!!!NGC 663 Asterisms!! in Constellation!Stars!!Objects nearby 02 Northern Fly!!Aries!!!41 Arietis !!!!!!!39 Arietis!!! !!!!!!!35 Arietis !!!!!!!!!!NGC 1056 02 Whale’s Head!!Cetus!! ! Menkar !!!!!!!Lambda Ceti! !!!!!!!Mu Ceti !!!!!!!Xi2 Ceti !!!!!!!Kaffalijidhma !!!!!!!!!!IC 302 !!!!!!!!!!NGC 990 !!!!!!!!!!NGC 1024 !!!!!!!!!!NGC 1026 !!!!!!!!!!NGC 1070 !!!!!!!!!!NGC 1085 !!!!!!!!!!NGC 1107 !!!!!!!!!!NGC 1137 !!!!!!!!!!NGC 1143 !!!!!!!!!!NGC 1144 !!!!!!!!!!NGC 1153 Asterisms!! in Constellation Stars!!Objects nearby 03 Hyades!!!Taurus! Aldebaran !!!!!! Theta 2 Tauri !!!!!! Gamma Tauri !!!!!! Delta 1 Tauri !!!!!! Epsilon Tauri !!!!!!!!!Struve’s Lost Nebula !!!!!!!!!Hind’s Variable Nebula !!!!!!!!!IC 374 03 Kids!!!Auriga! Almaaz !!!!!! Hoedus II !!!!!! Hoedus I !!!!!!!!!The Kite Cluster !!!!!!!!!IC 397 03 Pleiades!! ! Taurus! Pleione (Seven Sisters)!! ! ! Atlas !!!!!! Alcyone !!!!!! Merope !!!!!! Electra !!!!!! Celaeno !!!!!! Taygeta !!!!!! Asterope !!!!!! Maia !!!!!!!!!Maia Nebula !!!!!!!!!Merope Nebula !!!!!!!!!Merope -
Angular Momentum Evolution of Young Low-Mass Stars and Brown Dwarfs: Observations and Theory
Angular momentum evolution of young low-mass stars and brown dwarfs: observations and theory Jer´ omeˆ Bouvier Observatoire de Grenoble Sean P. Matt Exeter University Subhanjoy Mohanty Imperial College London Aleks Scholz University of St Andrews Keivan G. Stassun Vanderbilt University Claudio Zanni Osservatorio Astrofisico di Torino This chapter aims at providing the most complete review of both the emerging concepts and the latest observational results regarding the angular momentum evolution of young low-mass stars and brown dwarfs. In the time since Protostars & Planets V, there have been major developments in the availability of rotation period measurements at multiple ages and in different star-forming environments that are essential for testing theory. In parallel, substantial theoretical developments have been carried out in the last few years, including the physics of the star-disk interaction, numerical simulations of stellar winds, and the investigation of angular momentum transport processes in stellar interiors. This chapter reviews both the recent observational and theoretical advances that prompted the development of renewed angular momentum evolution models for cool stars and brown dwarfs. While the main observational trends of the rotational history of low mass objects seem to be accounted for by these new models, a number of critical open issues remain that are outlined in this review. 1. INTRODUCTION vational and theoretical sides, on the issue of the angular momentum evolution of young stellar objects since Pro- The angular momentum content of a newly born star is tostars & Planets V. On the observational side, thousands one of the fundamental quantities, like mass and metallic- of new rotational periods have been derived for stars over ity, that durably impacts on the star’s properties and evolu- the entire mass range from solar-type stars down to brown tion.