KEPLER-21B: a 1.6 Rearth PLANET TRANSITING the BRIGHT OSCILLATING F SUBGIANT STAR HD 179070 Steve B

Total Page:16

File Type:pdf, Size:1020Kb

KEPLER-21B: a 1.6 Rearth PLANET TRANSITING the BRIGHT OSCILLATING F SUBGIANT STAR HD 179070 Steve B The Astrophysical Journal, 746:123 (18pp), 2012 February 20 doi:10.1088/0004-637X/746/2/123 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. ∗ KEPLER-21b: A 1.6 REarth PLANET TRANSITING THE BRIGHT OSCILLATING F SUBGIANT STAR HD 179070 Steve B. Howell1,2,36, Jason F. Rowe2,3,36, Stephen T. Bryson2, Samuel N. Quinn4, Geoffrey W. Marcy5, Howard Isaacson5, David R. Ciardi6, William J. Chaplin7, Travis S. Metcalfe8, Mario J. P. F. G. Monteiro9, Thierry Appourchaux10, Sarbani Basu11, Orlagh L. Creevey12,13, Ronald L. Gilliland14, Pierre-Olivier Quirion15, Denis Stello16, Hans Kjeldsen17,Jorgen¨ Christensen-Dalsgaard17, Yvonne Elsworth7, Rafael A. Garc´ıa18, Gunter¨ Houdek19, Christoffer Karoff7, Joanna Molenda-Zakowicz˙ 20, Michael J. Thompson8, Graham A. Verner7,21, Guillermo Torres4, Francois Fressin4, Justin R. Crepp23, Elisabeth Adams4, Andrea Dupree4, Dimitar D. Sasselov4, Courtney D. Dressing4, William J. Borucki2, David G. Koch2, Jack J. Lissauer2, David W. Latham4, Lars A. Buchhave22,35, Thomas N. Gautier III24, Mark Everett1, Elliott Horch25, Natalie M. Batalha26, Edward W. Dunham27, Paula Szkody28,36, David R. Silva1,36, Ken Mighell1,36, Jay Holberg29,36,Jeromeˆ Ballot30, Timothy R. Bedding16, Hans Bruntt12, Tiago L. Campante9,17, Rasmus Handberg17, Saskia Hekker7, Daniel Huber16, Savita Mathur8, Benoit Mosser31, Clara Regulo´ 12,13, Timothy R. White16, Jessie L. Christiansen3, Christopher K. Middour32, Michael R. Haas2, Jennifer R. Hall32,JonM.Jenkins3, Sean McCaulif32, Michael N. Fanelli33, Craig Kulesa34, Don McCarthy34, and Christopher E. Henze2 1 National Optical Astronomy Observatory, Tucson, AZ 85719, USA 2 NASA Ames Research Center, Moffett Field, CA 94035, USA 3 SETI Institute, Mountain View, CA 94043, USA 4 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA 5 Department of Astronomy, University of California, Berkeley, CA 94720, USA 6 NASA Exoplanet Science Institute/Caltech, Pasadena, CA 91125, USA 7 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK 8 High Altitude Observatory and Scientific Computing Division, National Center for Atmospheric Research, Boulder, CO 80307, USA 9 Centro de Astrof´ısica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 10 Institut d’Astrophysique Spatiale, Universite´ Paris XI–CNRS (UMR8617), Batiment 121, 91405 Orsay Cedex, France 11 Department of Astronomy, Yale University, New Haven, CT 06520-8101, USA 12 Departamento de Astrof´ısica, Universidad de La Laguna, E-38206 La Laguna, Tenerife, Spain 13 Instituto de Astrof´ısica de Canarias, E-38200 La Laguna, Tenerife, Spain 14 Space Telescope Science Institute, Baltimore, MD 21218, USA 15 Canadian Space Agency, 6767 Boulevard de l’Aeroport,´ Saint-Hubert, QC, J3Y 8Y9, Canada 16 Sydney Institute for Astronomy (SIfA), School of Physics, University of Sydney, NSW 2006, Australia 17 Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark 18 Laboratoire AIM, CEA/DSM–CNRS–Universite´ Paris Diderot-IRFU/SAp, 91191 Gif-sur-Yvette Cedex, France 19 Institute of Astronomy, University of Vienna, A-1180 Vienna, Austria 20 Astronomical Institute, University of Wrocław, 51-622 Wrocław, Poland 21 Astronomy Unit, Queen Mary, University of London, London E1 4NS, UK 22 Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark 23 California Institute of Technology, Department of Astrophysics, Pasadena, CA 91125, USA 24 Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA 91109, USA 25 Department of Physics, Southern Connecticut State University, New Haven, CT 06515, USA 26 Department of Physics and Astronomy, San Jose State University, San Jose, CA 95192, USA 27 Lowell Observatory, Flagstaff, AZ 86001, USA 28 Astronomy Department, University of Washington, Seattle, WA 94065, USA 29 Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85726, USA 30 Laboratoire d’Astrophysique de Toulouse-Tarbes, Universite´ de Toulouse, CNRS, 31400 Toulouse, France 31 LESIA, CNRS, Universite´ Pierre et Marie Curie, Universite´ Denis Diderot, Observatoire de Paris, 92195 Meudon cedex, France 32 Orbital Sciences Corporation, NASA Ames Research Center, Moffett Field, CA 94035, USA 33 Bay Area Environmental Research Inst., NASA Ames Research Center, Moffett Field, CA 94035, USA 34 Steward Observatory, University of Arizona, Tucson, AZ 85726, USA 35 Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen, Denmark Received 2011 September 8; accepted 2011 November 21; published 2012 January 31 ABSTRACT We present Kepler observations of the bright (V = 8.3), oscillating star HD 179070. The observations show transit-like events which reveal that the star is orbited every 2.8 days by a small, 1.6 REarth object. Seismic studies of HD 179070 using short cadence Kepler observations show that HD 179070 has a frequency–power spectrum consistent with solar-like oscillations that are acoustic p-modes. Asteroseismic analysis provides robust values for the mass and radius of HD 179070, 1.34 ± 0.06 M and 1.86 ± 0.04 R, respectively, as well as yielding an age of 2.84 ± 0.34 Gyr for this F5 subgiant. Together with ground-based follow-up observations, analysis of the Kepler light curves and image data, and blend scenario models, we conservatively show at the >99.7% confidence level (3σ ) that the transit event is caused by a 1.64 ± 0.04 REarth exoplanet in a 2.785755 ± 0.000032 day orbit. The exoplanet is only 0.04 AU away from the star and our spectroscopic observations provide an upper limit to its mass of ∼10 MEarth (2σ). HD 179070 is the brightest exoplanet host star yet discovered by Kepler. Key words: planetary systems – stars: activity – stars: individual (HD 179070: KIC 3632418) – stars: interiors – stars: late-type – stars: magnetic field – stars: oscillations (including pulsations) – techniques: photometric 1 The Astrophysical Journal, 746:123 (18pp), 2012 February 20 Howell et al. 1. INTRODUCTION 2. KEPLER OBSERVATIONS 2.1. Kepler Photometry The NASA Kepler mission, described in Borucki et al. (2010a), surveys a large area of the sky spanning the boundary The Kepler mission and its photometric performance since its of the constellations Cygnus and Lyra. The prime mission goal launch are described in Borucki et al. (2010a) while the CCD is to detect transits by exoplanets as their orbits allow them imager on board Kepler is described in Koch et al. (2010a) to pass in front of their parent star as viewed from the Earth. and van Cleve (2008). The Kepler observations of HD 179070 Exoplanets, both large and small and orbiting bright and faint used herein consist of data covering a time period of 460 days stars, have already been detected by the Kepler mission (see or Kepler observation Quarters 0 through 5 (JD 2,454,955 to Borucki et al. 2010b; Koch et al. 2010b; Batalha et al. 2010; 2,455,365). The photometric observations were reduced using Latham et al. 2010; Dunham et al. 2010; Jenkins et al. 2010a; the Kepler mission data pipeline (Jenkins et al. 2010b) and then Holman et al. 2010;Torresetal.2011;Howelletal.2010; passed through various consistency checks and exoplanet transit Lissauer et al. 2011) and many more exoplanet candidates are detection software as described in Van Cleve (2009) and Batalha known (Borucki et al. 2011). et al. (2011). Details of the Kepler light curves and the transit We report herein on one of the brightest targets in the Kepler model fitting procedures can be found in Howell et al. (2010), field, HD 179070 (KIC 3632418, KOI 975). This V = 8.3 Batalha et al. (2011), and Rowe et al. (2006). F6IV star has been observed prior to the Kepler mission as The top panel of Figure 1 shows the raw Kepler light curve a matter of course for essentially all of the Henry Draper of HD 179070 where the larger, low-frequency modulations do catalog stars. Catalog information37 for HD 179070 provides not likely represent real changes in the star. Thermal jumps in a Teff of 6137 K (spectral type F6 IV), a Hipparcos distance the focal plane temperature near days 100, 120, and 370 are of 108 ± 10 pc, [Fe/H] =−0.15, an age of 2.8 Gyr, a radial apparent (see Van Cleve 2009) due to safeing events in Q2 and − velocity (RV) of −28 km s 1, and E(b − y) = 0.011 mag. The Q5. Normalized and phase-folded light curves are produced and age, metallicity, and color excess reported in the catalog come the transit event in the phased light curve is modeled in an effort from the photometric study by Nordstrom¨ et al. (2004). Nothing to understand the transiting object. The middle panel of Figure 1 special distinguishes it from any other stars in the HD catalog. shows a blow-up (as highlighted in yellow) of a section of the HD 179070 is strongly saturated in the Kepler observations. raw light curve and represents a typical normalized result. The Techniques to obtain good photometry from saturated stars dotted lines mark the individual transit events and the entire are employed by the Kepler project and have been used to Kepler light curve shown here contains 164 individual transits. analyze light curves of other Kepler saturated stars (e.g., Welsh Taking random quarters of the total light curve and binning them et al. 2011). While a star will saturate the CCD detectors on on the transit period provide consistent results as shown in the Kepler if brighter than V ∼ R ∼ 11.5, collecting all the bottom panel of Figure 1 albeit of lower signal-to-noise ratio pixels which contain the starlight, including the bleed trail, (S/N). The bottom panel (Figure 1) shows the entire phase- allows a photometric study to be performed (see Gilliland folded light curve after detrending and binning all available et al. 2010). Kepler light curves of HD 179070 from the data.
Recommended publications
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Divinus Lux Observatory Bulletin: Report #28 100 Dave Arnold
    Vol. 9 No. 2 April 1, 2013 Journal of Double Star Observations Page Journal of Double Star Observations VOLUME 9 NUMBER 2 April 1, 2013 Inside this issue: Using VizieR/Aladin to Measure Neglected Double Stars 75 Richard Harshaw BN Orionis (TYC 126-0781-1) Duplicity Discovery from an Asteroidal Occultation by (57) Mnemosyne 88 Tony George, Brad Timerson, John Brooks, Steve Conard, Joan Bixby Dunham, David W. Dunham, Robert Jones, Thomas R. Lipka, Wayne Thomas, Wayne H. Warren Jr., Rick Wasson, Jan Wisniewski Study of a New CPM Pair 2Mass 14515781-1619034 96 Israel Tejera Falcón Divinus Lux Observatory Bulletin: Report #28 100 Dave Arnold HJ 4217 - Now a Known Unknown 107 Graeme L. White and Roderick Letchford Double Star Measures Using the Video Drift Method - III 113 Richard L. Nugent, Ernest W. Iverson A New Common Proper Motion Double Star in Corvus 122 Abdul Ahad High Speed Astrometry of STF 2848 With a Luminera Camera and REDUC Software 124 Russell M. Genet TYC 6223-00442-1 Duplicity Discovery from Occultation by (52) Europa 130 Breno Loureiro Giacchini, Brad Timerson, Tony George, Scott Degenhardt, Dave Herald Visual and Photometric Measurements of a Selected Set of Double Stars 135 Nathan Johnson, Jake Shellenberger, Elise Sparks, Douglas Walker A Pixel Correlation Technique for Smaller Telescopes to Measure Doubles 142 E. O. Wiley Double Stars at the IAU GA 2012 153 Brian D. Mason Report on the Maui International Double Star Conference 158 Russell M. Genet International Association of Double Star Observers (IADSO) 170 Vol. 9 No. 2 April 1, 2013 Journal of Double Star Observations Page 75 Using VizieR/Aladin to Measure Neglected Double Stars Richard Harshaw Cave Creek, Arizona [email protected] Abstract: The VizierR service of the Centres de Donnes Astronomiques de Strasbourg (France) offers amateur astronomers a treasure trove of resources, including access to the most current version of the Washington Double Star Catalog (WDS) and links to tens of thousands of digitized sky survey plates via the Aladin Java applet.
    [Show full text]
  • Wiyn Consortium, Inc. 950 N
    WIYN CONSORTIUM, INC. 950 N. Cherry Avenue • P. O. Box 26732 Tucson, AZ 85726-6732 (520) 318-8396 University of Wisconsin • Indiana University • Yale University • National Optical Astronomy Observatory January 30, 2012 To: NSF Portfolio Review Committee Dear Colleagues: The three member universities of the WIYN consortium strongly recommend continuing NSF investment in WIYN through the US OIR national observatory, NOAO. The WIYN partnership among state and private universities and NSF/NOAO has produced a state-of-the-art facility with highly productive yet cost-effective operations. Our most recent external review accurately summarizes the state of the Observatory. The review found that: • WIYN delivers the best images over a wide field-of-view of any continental US facility. • Operations have achieved an outstanding level of reliability and efficiency. • WIYN has had a major impact on the research opportunities available to member universities, involving a broad base of faculty and providing important career development paths for younger faculty and postdocs. • The number of Ph.D. dissertations making important use of the facility is especially impressive. For the astronomy departments of the university partners, WIYN is the largest source of experimental data for doctoral theses. • WIYN has served national interests by 1) providing a proving ground for technological innovations; 2) enabling access to wide-field multi-object spectroscopy for the US astronomical community; and 3) providing substantial aperture very cost-effectively. We believe that few, if any, of the successes of the WIYN Observatory would have been possible without the major contributions of NOAO to our partnership. This letter attempts to document the current and future importance of NOAO as a partner in the WIYN collaboration.
    [Show full text]
  • The Kepler Characterization of the Variability Among A- and F-Type Stars I
    A&A 534, A125 (2011) Astronomy DOI: 10.1051/0004-6361/201117368 & c ESO 2011 Astrophysics The Kepler characterization of the variability among A- and F-type stars I. General overview K. Uytterhoeven1,2,3,A.Moya4, A. Grigahcène5,J.A.Guzik6, J. Gutiérrez-Soto7,8,9, B. Smalley10, G. Handler11,12, L. A. Balona13,E.Niemczura14, L. Fox Machado15,S.Benatti16,17, E. Chapellier18, A. Tkachenko19, R. Szabó20, J. C. Suárez7,V.Ripepi21, J. Pascual7, P. Mathias22, S. Martín-Ruíz7,H.Lehmann23, J. Jackiewicz24,S.Hekker25,26, M. Gruberbauer27,11,R.A.García1, X. Dumusque5,28,D.Díaz-Fraile7,P.Bradley29, V. Antoci11,M.Roth2,B.Leroy8, S. J. Murphy30,P.DeCat31, J. Cuypers31, H. Kjeldsen32, J. Christensen-Dalsgaard32 ,M.Breger11,33, A. Pigulski14, L. L. Kiss20,34, M. Still35, S. E. Thompson36,andJ.VanCleve36 (Affiliations can be found after the references) Received 30 May 2011 / Accepted 29 June 2011 ABSTRACT Context. The Kepler spacecraft is providing time series of photometric data with micromagnitude precision for hundreds of A-F type stars. Aims. We present a first general characterization of the pulsational behaviour of A-F type stars as observed in the Kepler light curves of a sample of 750 candidate A-F type stars, and observationally investigate the relation between γ Doradus (γ Dor), δ Scuti (δ Sct), and hybrid stars. Methods. We compile a database of physical parameters for the sample stars from the literature and new ground-based observations. We analyse the Kepler light curve of each star and extract the pulsational frequencies using different frequency analysis methods.
    [Show full text]
  • 5. Cosmic Distance Ladder Ii: Standard Candles
    5. COSMIC DISTANCE LADDER II: STANDARD CANDLES EQUIPMENT Computer with internet connection GOALS In this lab, you will learn: 1. How to use RR Lyrae variable stars to measures distances to objects within the Milky Way galaxy. 2. How to use Cepheid variable stars to measure distances to nearby galaxies. 3. How to use Type Ia supernovae to measure distances to faraway galaxies. 1 BACKGROUND A. MAGNITUDES Astronomers use apparent magnitudes , which are often referred to simply as magnitudes, to measure brightness: The more negative the magnitude, the brighter the object. The more positive the magnitude, the fainter the object. In the following tutorial, you will learn how to measure, or photometer , uncalibrated magnitudes: http://skynet.unc.edu/ASTR101L/videos/photometry/ 2 In Afterglow, go to “File”, “Open Image(s)”, “Sample Images”, “Astro 101 Lab”, “Lab 5 – Standard Candles”, “CD-47” and open the image “CD-47 8676”. Measure the uncalibrated magnitude of star A: uncalibrated magnitude of star A: ____________________ Uncalibrated magnitudes are always off by a constant and this constant varies from image to image, depending on observing conditions among other things. To calibrate an uncalibrated magnitude, one must first measure this constant, which we do by photometering a reference star of known magnitude: uncalibrated magnitude of reference star: ____________________ 3 The known, true magnitude of the reference star is 12.01. Calculate the correction constant: correction constant = true magnitude of reference star – uncalibrated magnitude of reference star correction constant: ____________________ Finally, calibrate the uncalibrated magnitude of star A by adding the correction constant to it: calibrated magnitude = uncalibrated magnitude + correction constant calibrated magnitude of star A: ____________________ The true magnitude of star A is 13.74.
    [Show full text]
  • Appendix a Correspondence
    APPENDIX A CORRESPONDENCE Page 1 of 2 From:PATTERSON,PATIENCEE[[email protected]]onbehalfof AJOSEACOMMENTS[[email protected]] Sent:Friday,January28,201112:53PM To:GingerRitter Cc:HowardNass Subject:RE:SBInetProgram Dear Ms. Ritter: Thanks for your email. The completion of the AJO-1 tower project is still on-going and has not been cancelled in the sense of stopping. This project will go to completion. After extensive review, Secretary Napolitano has directed CBP to end SBInet as originally conceived and instead implement a new border security technology plan, which will utilize existing, proven technology tailored to the distinct terrain and population density of each border region. Our nation's border security is still very much a high priority and projects to enhance border security will continue. Please do provide comments on the Supplemental Draft EA that you have mentioned. As our other projects move forward, we will be in touch to share future information regarding our environmental compliance requirements. Thank you very much. Sincerely, Patience Patience E. Patterson, RPA Manager, Environmental Resources Office of Technology Innovation and Acquisition US Customs and Border Protection 1901 S. Bell Street - 7th Floor - #734 Arlington, VA 20598 Desk: (571) 468-7290 Cell: (202) 870-7422 Fax: (571) 468-7391 [email protected] From: Ginger Ritter [mailto:[email protected]] Sent: Wednesday, January 26, 2011 4:24 PM To: AJOSEACOMMENTS Subject: SBInet Program file://K:\Projects\80306407_SBInet_Environmental_Compliance_Support\SEA_189\SEA\D..
    [Show full text]
  • Nd AAS Meeting Abstracts
    nd AAS Meeting Abstracts 101 – Kavli Foundation Lectureship: The Outreach Kepler Mission: Exoplanets and Astrophysics Search for Habitable Worlds 200 – SPD Harvey Prize Lecture: Modeling 301 – Bridging Laboratory and Astrophysics: 102 – Bridging Laboratory and Astrophysics: Solar Eruptions: Where Do We Stand? Planetary Atoms 201 – Astronomy Education & Public 302 – Extrasolar Planets & Tools 103 – Cosmology and Associated Topics Outreach 303 – Outer Limits of the Milky Way III: 104 – University of Arizona Astronomy Club 202 – Bridging Laboratory and Astrophysics: Mapping Galactic Structure in Stars and Dust 105 – WIYN Observatory - Building on the Dust and Ices 304 – Stars, Cool Dwarfs, and Brown Dwarfs Past, Looking to the Future: Groundbreaking 203 – Outer Limits of the Milky Way I: 305 – Recent Advances in Our Understanding Science and Education Overview and Theories of Galactic Structure of Star Formation 106 – SPD Hale Prize Lecture: Twisting and 204 – WIYN Observatory - Building on the 308 – Bridging Laboratory and Astrophysics: Writhing with George Ellery Hale Past, Looking to the Future: Partnerships Nuclear 108 – Astronomy Education: Where Are We 205 – The Atacama Large 309 – Galaxies and AGN II Now and Where Are We Going? Millimeter/submillimeter Array: A New 310 – Young Stellar Objects, Star Formation 109 – Bridging Laboratory and Astrophysics: Window on the Universe and Star Clusters Molecules 208 – Galaxies and AGN I 311 – Curiosity on Mars: The Latest Results 110 – Interstellar Medium, Dust, Etc. 209 – Supernovae and Neutron
    [Show full text]
  • Cosmic Distance Ladder
    Cosmic Distance Ladder How do we know the distances to objects in space? Jason Nishiyama Cosmic Distance Ladder Space is vast and the techniques of the cosmic distance ladder help us measure that vastness. Units of Distance Metre (m) – base unit of SI. 11 Astronomical Unit (AU) - 1.496x10 m 15 Light Year (ly) – 9.461x10 m / 63 239 AU 16 Parsec (pc) – 3.086x10 m / 3.26 ly Radius of the Earth Eratosthenes worked out the size of the Earth around 240 BCE Radius of the Earth Eratosthenes used an observation and simple geometry to determine the Earth's circumference He noted that on the summer solstice that the bottom of wells in Alexandria were in shadow While wells in Syene were lit by the Sun Radius of the Earth From this observation, Eratosthenes was able to ● Deduce the Earth was round. ● Using the angle of the shadow, compute the circumference of the Earth! Out to the Solar System In the early 1500's, Nicholas Copernicus used geometry to determine orbital radii of the planets. Planets by Geometry By measuring the angle of a planet when at its greatest elongation, Copernicus solved a triangle and worked out the planet's distance from the Sun. Kepler's Laws Johann Kepler derived three laws of planetary motion in the early 1600's. One of these laws can be used to determine the radii of the planetary orbits. Kepler III Kepler's third law states that the square of the planet's period is equal to the cube of their distance from the Sun.
    [Show full text]
  • The Cosmic Distance Scale • Distance Information Is Often Crucial to Understand the Physics of Astrophysical Objects
    The cosmic distance scale • Distance information is often crucial to understand the physics of astrophysical objects. This requires knowing the basic properties of such an object, like its size, its environment, its location in space... • There are essentially two ways to derive distances to astronomical objects, through absolute distance estimators or through relative distance estimators • Absolute distance estimators Objects for whose distance can be measured directly. They have physical properties which allow such a measurement. Examples are pulsating stars, supernovae atmospheres, gravitational lensing time delays from multiple quasar images, etc. • Relative distance estimators These (ultimately) depend on directly measured distances, and are based on the existence of types of objects that share the same intrinsic luminosity (and whose distance has been determined somehow). For example, there are types of stars that have all the same intrinsic luminosity. If the distance to a sample of these objects has been measured directly (e.g. through trigonometric parallax), then we can use these to determine the distance to a nearby galaxy by comparing their apparent brightness to those in the Milky Way. Essentially we use that log(D1/D2) = 1/5 * [(m1 –m2) - (A1 –A2)] where D1 is the distance to system 1, D2 is the distance to system 2, m1 is the apparent magnitudes of stars in S1 and S2 respectively, and A1 and A2 corrects for the absorption towards the sources in S1 and S2. Stars or objects which have the same intrinsic luminosity are known as standard candles. If the distance to such a standard candle has been measured directly, then the relative distances will have been anchored to an absolute distance scale.
    [Show full text]
  • Speckle Observations of Binary Stars with the WIYN Telescope. I
    Rochester Institute of Technology RIT Scholar Works Articles 1-1999 Speckle Observations of Binary Stars with the WIYN Telescope. I. Measures During 1997 Elliott .P Horch Rochester Institute of Technology Zoran Ninkov Rochester Institute of Technology William F. van Altena Yale University Reed D. Meyer Yale University Terrence M. Girard Yale University See next page for additional authors Follow this and additional works at: http://scholarworks.rit.edu/article Recommended Citation Elliott orH ch et al 1999 AJ 117 548 DOI: https://doi.org/10.1086/300704 This Article is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Articles by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. Authors Elliott .P Horch, Zoran Ninkov, William F. van Altena, Reed D. Meyer, Terrence M. Girard, and J. Gethyn Timothy This article is available at RIT Scholar Works: http://scholarworks.rit.edu/article/767 THE ASTRONOMICAL JOURNAL, 117:548È561, 1999 January ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. SPECKLE OBSERVATIONS OF BINARY STARS WITH THE WIYN TELESCOPE. I. MEASURES DURING 19971 ELLIOTT HORCH2 AND ZORAN NINKOV Center for Imaging Science, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623-5604; ephpci=cis.rit.edu, ninkov=cis.rit.edu WILLIAM F. VAN ALTENA,REED D. MEYER,2 AND TERRENCE M. GIRARD Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101; vanalten=astro.yale.edu, rdm=astro.yale.edu, girard=astro.yale.edu AND J.
    [Show full text]
  • Sized Exoplanet Thomas Barclay1,2, Jason F
    A sub-Mercury-sized exoplanet Thomas Barclay1,2, Jason F. Rowe1,3, Jack J. Lissauer1, Daniel Huber1,4, François Fressin5, Steve B. Howell1, Stephen T. Bryson1, William J. Chaplin6, Jean-Michel Désert5, Eric D. Lopez7, Geoffrey W. Marcy8, Fergal Mullally1,3, Darin Ragozzine5,9, Guillermo Torres5, Elisabeth R. Adams5, Eric Agol10, David Barrado11,12, Sarbani Basu13, Timothy R. Bedding14, Lars A. Buchhave15,16, David Charbonneau5, Jessie L. Christiansen1,3, Jørgen Christensen-Dalsgaard17, David Ciardi18, William D. Cochran19, Andrea K. Dupree5, Yvonne Elsworth6, Mark Everett20, Debra A. Fischer13, Eric B. Ford9, Jonathan J. Fortney7, John C. Geary5, Michael R. Haas1, Rasmus Handberg17, Saskia Hekker6,21, Christopher E. Henze1, Elliott Horch22, Andrew W. Howard23, Roger C. Hunter1, Howard Isaacson8, Jon M. Jenkins1,3, Christoffer Karoff17, Steven D. Kawaler24, Hans Kjeldsen17, Todd C. Klaus25, David W. Latham5, Jie Li1,3, Jorge Lillo-Box12, Mikkel N. Lund17, Mia Lundkvist17, Travis S. Metcalfe26, Andrea Miglio6, Robert L. Morris1,3, Elisa V. Quintana1,3, Dennis Stello14, Jeffrey C. Smith1,3, Martin Still1,2, & Susan E. Thompson1,3 1 NASA Ames Research Center, Moffett Field, CA 94035, USA 2 Bay Area Environmental Research Institute, 596 First St West, Sonoma, CA 95476, USA 3 SETI Institute, 189 Bernardo Ave, Mountain View, CA 94043, USA 4 NASA Postdoctoral Program Fellow 5 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 6 School of Physics and Astronomy, University of Birmingham, Edgbaston, B15 2TT, UK 7 Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA 8 Department of Astronomy, UC Berkeley, Berkeley, CA 94720, USA 9 Astronomy Department, University of Florida, 211 Bryant Space Sciences Center, Gainesville, FL 32111, USA 10 Department of Astronomy, Box 351580, University of Washington, Seattle, WA 98195, USA 11 Calar Alto Observatory, Centro Astronómico Hispano Alemán, C/ Jesús Durbán Remón, E- 04004 Almería, Spain 12 Depto.
    [Show full text]
  • Allison Merritt P.O
    Department of Astronomy Yale University ALLISON MERRITT P.O. Box 208101 New Haven, CT, 06520-8101 curriculum vitae [email protected] http://www.astro.yale.edu/atmerritt/ EDUCATION Yale University (2011 - Present) PhD candidate in Astronomy Advisor: Pieter van Dokkum Thesis: Unveiling the Low Surface Brightness Universe with the Dragonfly Telephoto Array Yale University Master of Science (2014) Master of Philosophy (2014) University of California, Berkeley (2007 - 2011) B.A. in Astronomy and Physics RESEARCH INTERESTS Structure and stellar content of galactic stellar halos Low surface brightness satellite galaxies of massive galaxies Ultra diffuse galaxies in clusters, groups, and the field PROFESSIONAL ACTIVITIES Journal Referee 2015 — present The Astrophysical Journal Yale Time Allocation Committee 2016 — present Member Yale Galaxy Lunch 2015 — present Board Member Statistics for Astronomers Summer School VIII 2012 Pennsylvania State University SCIENTIFIC TALKS FLASH Seminar September 2016 University of California, Santa Cruz CCAPP Seminar (invited) September 2016 The Ohio State University Galaxies and Cosmology Seminar November 2016 Harvard-Smithsonian Center for Astrophysics Fall Seminar November 2016 Columbia University Journal Club November 2016 Space Telescope Science Institute KICP Friday Cosmology Seminar (invited) November 2016 The Kavli Institute for Cosmological Physics at the University of Chicago Journal Club November 2016 University of California, Los Angeles Astrophysics Seminar November 2016 University of California, Irvine Lunch Talk December 2016 Carnegie Observatories Lunch Talk December 2016 National Optical Astronomy Observatory Tea Talk December 2016 California Institute of Technology “On the Origin (and Evolution) of Baryonic Galaxy Halos” Conference March 2017 Galapagos Islands, Ecuador PUBLICATIONS LEAD AUTHOR Merritt, A. van Dokkum, P., Danieli, S., Abraham, R., Zhang, J., Karachentsev, I.
    [Show full text]