<<

A&A 534, A125 (2011) Astronomy DOI: 10.1051/0004-6361/201117368 & c ESO 2011 Astrophysics

The Kepler characterization of the variability among A- and F-type I. General overview K. Uytterhoeven1,2,3,A.Moya4, A. Grigahcène5,J.A.Guzik6, J. Gutiérrez-Soto7,8,9, B. Smalley10, G. Handler11,12, L. A. Balona13,E.Niemczura14, L. Fox Machado15,S.Benatti16,17, E. Chapellier18, A. Tkachenko19, R. Szabó20, J. C. Suárez7,V.Ripepi21, J. Pascual7, P. Mathias22, S. Martín-Ruíz7,H.Lehmann23, J. Jackiewicz24,S.Hekker25,26, M. Gruberbauer27,11,R.A.García1, X. Dumusque5,28,D.Díaz-Fraile7,P.Bradley29, V. Antoci11,M.Roth2,B.Leroy8, S. J. Murphy30,P.DeCat31, J. Cuypers31, H. Kjeldsen32, J. Christensen-Dalsgaard32 ,M.Breger11,33, A. Pigulski14, L. L. Kiss20,34, M. Still35, S. E. Thompson36,andJ.VanCleve36 (Affiliations can be found after the references)

Received 30 May 2011 / Accepted 29 June 2011

ABSTRACT

Context. The Kepler spacecraft is providing time series of photometric data with micromagnitude precision for hundreds of A-F type stars. Aims. We present a first general characterization of the pulsational behaviour of A-F type stars as observed in the Kepler light curves of a sample of 750 candidate A-F type stars, and observationally investigate the relation between γ Doradus (γ Dor), δ Scuti (δ Sct), and hybrid stars. Methods. We compile a database of physical parameters for the sample stars from the literature and new ground-based observations. We analyse the Kepler light curve of each and extract the pulsational frequencies using different frequency analysis methods. We construct two new observables, “energy”and“efficiency”, related to the driving energy of the pulsation mode and the convective efficiency of the outer convective zone, respectively. Results. We propose three main groups to describe the observed variety in pulsating A-F type stars: γ Dor, δ Sct, and hybrid stars. We assign 63% of our sample to one of the three groups, and identify the remaining part as rotationally modulated/active stars, binaries, stars of different spectral type, or stars that show no clear periodic variability. 23% of the stars (171 stars) are hybrid stars, which is a much higher fraction than what has been observed before. We characterize for the first time a large number of A-F type stars (475 stars) in terms of number of detected frequencies, frequency range, and typical pulsation amplitudes. The majority of hybrid stars show frequencies with all kinds of periodicities within the γ Dor and δ Sct range, also between 5 and 10 d−1, which is a challenge for the current models. We find indications for the existence of δ Sct and γ Dor stars beyond the edges of the current observational instability strips. The hybrid stars occupy the entire region within the δ Sct and γ Dor instability strips and beyond. Non-variable stars seem to exist within the instability strips. The location of γ Dor and δ Sct classes in the (Teff,logg)-diagram has been extended. We investigate two newly constructed variables, “efficiency”and“energy”, as a means to explore the relation between γ Dor and δ Sct stars. Conclusions. Our results suggest a revision of the current observational instability strips of δ Sct and γ Dor stars and imply an investigation of pulsation mechanisms to supplement the κ mechanism and convective blocking effect to drive hybrid pulsations. Accurate physical parameters for all stars are needed to confirm these findings. Key words. stars: oscillations – stars: fundamental parameters – binaries: general – asteroseismology – stars: variables: δ Scuti – stars: statistics

1. Introduction The region of variable A- and F-type, including main se- quence (MS), pre-MS, and post-MS stars, with masses be- With the advent of the asteroseismic space missions MOST tween 1.2 and 2.5 M hosts the γ Doradus (γ Dor) and δ Scuti (Walker et al. 2003), CoRoT (Baglin et al. 2006), and Kepler (δ Sct) pulsators. The γ Dor stars were recognized as a new class (Borucki et al. 2010), a new window is opening towards the un- of pulsating stars less than 20 ago (Balona et al. 1994). derstanding of the seismic behaviour of A- and F-type pulsators. Our current understanding is that they pulsate in high-order grav- The main advantages of these space missions are (1) the long- ity (g) modes (Kaye et al. 1999a), excited by a flux modulation term continuous monitoring of thousands of stars, which enables mechanism induced by the upper convective layer (Guzik et al. both the determination of long-period oscillations and the re- 2000; Dupret et al. 2004; Grigahcène 2005). Typical γ Dor peri- solving of beat frequencies; and (2) the photometric precision ods are between 8 h and 3 d. From the ground, about 70 bona fide at the level of milli- to micro-magnitudes, which will provide and 88 candidate γ Dor pulsators have been detected (Balona a more complete frequency spectrum and also allow the detec- et al. 1994; Handler 1999; Henry et al. 2005; De Cat et al. 2006; tion of low-amplitude variations that are unobservable from the Henry et al. 2011, among other papers). ground and providing a more complete frequency spectrum. The availability of these long-term, very precise light curves makes The δ Sct variables, on the other hand, have been known for possible the first comprehensive analysis of the variability of a decades. They show low-order g and pressure (p) modes with sample of several hundred candidate A-F type stars that is pre- periodsbetween15minand5hthatareself-excitedthrough sented here. the κ-mechanism (see reviews by Breger 2000; Handler 2009a). Article published by EDP Sciences A125, page 1 of 70 A&A 534, A125 (2011)

Several hundreds of δ Sct stars have been observed from the selected as potential targets for seismic studies by the Kepler ground (e.g. catalogue by Rodríguez & Breger 2001). Asteroseismic Science Consortium, KASC1. Because the instability strips of both classes overlap, the ex- The Kepler Mission offers two observing modes: long ca- istence of hybrid stars, i.e. stars showing pulsations excited by dence (LC) and short cadence (SC). The former monitors se- different excitation mechanisms, is expected, and a few candi- lected stars with a time resolution of ∼30 min (Jenkins et al. date hybrid stars have indeed been detected from the ground 2010a), the latter provides a 1-min sampling (Gilliland et al. (Henry & Fekel 2005; Uytterhoeven et al. 2008; Handler 2009b). 2010b). The LC data are well-suited to search for long-period The main open question in seismic studies of A- and F-type g-mode variations in A-F type stars (periods from a few hours to stars concerns the excitation and mode selection mechanism of p a few days), while the SC data are needed to unravel the p-mode and g modes. The only way to understand and find out sys- oscillations (periods of the order of minutes to hours). tematics in the mode-selection mechanism is a determination The Kepler asteroseismic data are made available to of pulsation frequencies and pulsation mode parameters for a the KASC quarterly. In this paper we consider data from large number of individual class members for each of the pulsa- the first of Kepler operations: the 9.7 d Q0 com- tion classes, and a comparison of the properties of the different missioning period (1−11 May 2009), the 33.5 d Q1 phase case-studies. So far, a systematic study of a sufficiently substan- data (12 May−14 June 2009), the 88.9 d Q2 phase data tial sample was hampered by two factors. First, the number of (19 June−15 September 2009), the 89.3 d time string of Q3 detected well-defined pulsation modes is too small to construct (18 September−16 December 2009), and 89.8 d of Q4 data unique seismic models, which is caused by ground-based obser- (19 December 2009−19 March 2010). The SC data are subdi- vational constraints, such as bad time-sampling and a high noise- vided into three-monthly cycles, labelled, for example, Q3.1, level. Second, only a small number of well-studied cases ex- Q3.2 and Q3.3. ist, because a proper seismic study requires a long-term project, Not all quarters Q0–Q4 are available for all stars. The first involving ground-based multi-site campaigns spanning several year of Kepler operations was dedicated to the survey phase of seasons, or a dedicated space mission. the mission. During this phase as many different stars as possible First demonstrations of the strength and innovative character were monitored with the aim to identify the best potential can- of space data with respect to seismic studies of A-F type stars are didates for seismic studies. From the survey sample, the KASC the detection of two hybrid γ Dor-δ Sct stars by the MOST satel- working groups selected subsamples of the best seismic candi- lite (HD 114839, King et al. 2006;BD+18-4914, Rowe et al. dates for long-term follow-up with Kepler. From quarter Q5 on- 2006), and the detection of an impressive number of frequencies wards, only a limited number of selected KASC stars are being at low amplitudes, including high-degree modes as confirmed observed with Kepler. The results of the selection process of the by ground-based spectroscopy, in the precise space CoRoT pho- most promising γ Dor, δ Sct, and hybrid candidates are presented tometry of the δ Sct stars HD 50844 (Poretti et al. 2009)and in this work. HD 174936 (García Hernández et al. 2009), and the γ Dor star HD 49434 (Chapellier et al. 2011). The first indications that hy- brid behaviour might be common in A-F type stars were found 2.2. Selection of the A-F type star sample from a pilot study of a larger sample of Kepler and CoRoT stars We selected all stars in the Kepler Asteroseismic Science (Grigahcène et al. 2010; Hareter et al. 2010). Recently, Balona Operations Center (KASOC) database initially labelled as γ Dor et al. (2011a) announced the detection of δ Sct and γ Dor type or δ Sct candidates. The stars were sorted into these KASOC pulsations in the Kepler light curves of Ap stars. Hence, a break- catagories either because the Kepler Input Catalogue (KIC; through is expected in a currently poorly-understood field of Latham et al. 2005; Brown et al. 2011) value of their effective seismic studies of A-F type pulsators through a systematic and temperature Teff and gravity log g suggested that they lie in or careful investigation of the pulsational behaviour in a large sam- close to the instability strips of γ Dor and δ Sct stars, or be- ple of stars. cause they where proposed as potential variable A-F type can- The goals of the current paper are (1) to present a first general didates in pre-launch asteroseismic Kepler observing propos- characterization of the pulsational behaviour of main-sequence als. To avoid sampling bias and to aim at completeness of the A-F type stars as observed in the Kepler light curves of a large sample, we analysed all stars listed in the KASOC catalogue sample; and (2) to observationally investigate the relation be- as δ Sct or γ Dor candidates. Our analysis results provide feed- tween γ Dor and δ Sct stars and the role of hybrids. In forthcom- back on the initial guess on variable class assigment by KASOC. ing papers, detailed seismic studies and modelling of selected As will be seen (Sect. 6.2), several of these stars actually be- stars will be presented. long to other pulsation classes, many of which are cool stars. Because there are much fewer B-type stars in the Kepler field of view than cooler stars, there is a natural selection effect towards 2. The Kepler sample of A-F type stars cooler stars. We also included stars initially assigned to other / 2.1. The Kepler data pulsation types that showed periodicities typical for δ Sct and or γ Dor stars. We are aware that many more δ Sct and γ Dor candi- The NASA space mission Kepler was launched in March 2009 date stars are being discovered among the KASC targets, but we and is designed to search for -size planets in the extended cannot include all in this study. solar neighbourhood (Borucki et al. 2010;Kochetal.2010). The total sample we considered consists of 750 stars. To this end, the spacecraft continuously monitors the brightness For 517 stars both LC and SC data are available, while 65 of ∼150 000 stars in a fixed area of 105 deg2 in the and 168 stars were only observed in SC and LC mode, respec- Cygnus, , and , at Galactic latitudes from 6 to 20 deg. tively. An overview of the A-F type star sample is given in The nearly uninterrupted time series with micromagnitude preci- Table 1, available in the on-line version of the paper. The first sion also opens up opportunities for detailed and in-depth aster- three columns indicate the KIC identifier of the star (KIC ID), oseismic studies with unprecedented precision (Gilliland et al. 2010a). Of all Kepler targets, more than 5000 stars have been 1 http://astro.phys.au.dk/KASC

A125, page 2 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. (RA), (Dec), and Kepler magni- tude (Kp). The Kepler bandpass is wider than the typical broad-band filters that are commonly used in optical astronomy (e.g. Johnson UBVRI), and can be described as “white” light. The next three columns provide information on the spectral type (Spectral Type), alternative name of the target (Name), and a comment on its variability (Variable). Information on binarity comes from the Washington Double Star Catalog (Worley & Douglass 1997; Mason et al. 2001), unless mentioned otherwise. For binary stars labelled with “”, the double star was suspected by inspecting Digitized Sky Survey and 2MASS images by eye. The next set of columns provides information on the Kepler time series. For each star, the number of datapoints (N datapoints), the total time span of the dataset (ΔT) expressed in d, the longest time gap in the Kepler light curves (δT) expressed in d, and the available (range of) quarters in LC (Quarters LC) and SC (Quarters SC) mode are given.

Fig. 1. 750 sample stars in the (Teff,logg)-diagram. The cross at the left 2.3. Sample stars in the literature top corner represents the typical error bars on the values: 290 K for Teff and0.3dexforlogg. Most of the 750 sample stars were previously unstudied. We searched the catalogue by Skiff (2007) and found information on spectral types for only 212 stars. Besides 198 confirmed A- with caution because the contribution of the binary components or F-type stars, among which are fourteen chemically peculiar might not have been correctly separated. stars, we discovered that stars with a different spectral type also KIC-independent values of log g and Teff are only avail- ended up in the sample. There are six known B stars, one M star, able for 110 stars. The values used for the subsequent analy- three K stars, and six G-type stars in the sample. The G star sis are (in order of priority, depending on availability and ac- KIC 7548061 (V1154 Cyg) is a known and well-studied Cepheid curacy) the spectroscopically derived values, or the most recent (e.g. Pigulski et al. 2009) and is the subject of a dedicated paper photometrically derived values. For all other stars we use the based on Kepler data by Szabó et al. (2011). Sixty-two stars are only source: the KIC values. The corresponding adopted Teff known to belong to multiple systems, including at least four- (in K), and log g (in dex) values are given in boldface in the sixth teen eclipsing binaries (EB; KIC 1432149, Hartman et al. 2004; and tenth column of Table 2, respectively (column “Adopted”). KIC 10206340, Malkov et al. 2006; catalogues by Prša et al. For 65 and 71 stars no value of Teff and log g, respectively, 2011;andSlawsonetal.2011). Seven stars are only known as is available. Figure 1 shows the sample of 750 stars in the “(pulsating) variable stars”. The star KIC 2987660 (HD 182634) (Teff,logg)-diagram. We estimated the error bars on the KIC val- is reported as a δ Sct star by Henry et al. (2001). Our sample ues by comparing them with the adopted values taken from 2 also includes a candidate α Canum Venaticorum star, namely the literature or ground-based data. The average difference was KIC 9851142 or V2094 Cyg (Carrier et al. 2002;Otero2007). 290 K for Teff and 0.3 dex for log g. v sin i values are only avail- The Kepler field hosts four open clusters. In our sample at least able for 52 of the sample stars. six known members of NGC 6819 are included. Also one, eight, and nine members of NGC 6791, NGC 6811, and NGC 6866, respectively, are in our sample. All 750 stars are included in 3.1. Literature the analysis. Besides papers dedicated to specific targets of our sample, the on-line catalogues by Soubiran et al. (2010), Lafrasse et al. (2010), Kharchenko et al. (2009), Masana et al. (2006), 3. Physical parameters of the sample stars Nordström et al. (2004), Glebocki & Stawikowski (2000), Seismic models require accurate values of physical parameters Allende Prieto & Lambert (1999), and Wright et al. (2003)were very helpful in the search for values of T ff,logg,andv sin i. such as log g, Teff, [M/H], and projected rotational e Also, photometric indices by Hauck & Mermilliod (1998)were velocity v sin i. We compiled an overview of all Teff,logg,and v sin i values available for the sample stars in Table 2 in the used to estimate values of Teff and log g. We took care not to on-line version of the paper. The different sources include lit- include Teff values that are derived from the spectral type rather erature and KIC, along with values derived from new ground- than directly from data. The literature values of Teff and log g can − based data. A description of the different sources is given be- be found in Cols. 3 5 and 8, 9 of Table 2, respectively (“lit”). low. The columns of Table 2 are (1) KIC identifier (KIC ID); We note that the given errors on Teff and log g, which sometimes seem unrealistic small, are taken from the quoted paper and are (2) Teff value from KIC; (3)−(5) Teff values taken from the literature or derived from new ground-based data (Literature); not rounded to the number of significant digits. Values of v sin i, expressed in km s−1, are given in the last two columns of Table 2. (6) adopted Teff value (Adopted); (7) log g value from KIC; (8)−(9) log g values taken from the literature or derived from The source of each value is indicated by the label. new ground-based data (Literature); (10) adopted log g value − (Adopted); (11) (12) v sin i values derived from spectroscopic 3.2. Kepler Input Catalogue data (Spectra). Stars that are known to be spectroscopic binaries ◦ are flagged behind its KIC identifier (KIC ID). The derived The KIC provides an estimate of Teff and log g for most Kepler physical parameters of the binary stars have to be considered targets derived from Sloan photometry (see the second and

A125, page 3 of 70 A&A 534, A125 (2011) seventh column, “KIC”, of Table 2, respectively). Unfortunately, To derive stellar atmospheric parameters, the observed spec- the KIC values of log g are known to have large error tra, which covers the wavelength range 3870−6940 Å, were bars (Molenda-Zakowicz˙ et al. 2011; Lehmann et al. 2011). compared with synthetic spectra. The synthetic spectra were Moreover, a comparison between KIC estimates of the stellar computed with the SYNTHE code (Kurucz 1993), using atmo- radius and the radius derived from evolutionary models indicate spheric models computed with the line-blanketed LTE ATLAS9 that the KIC values of log g might be shifted towards lower val- code (Kurucz 1993). The parameters were derived using the ues by about 0.1 dex. The temperature values, on the other hand, methodology presented in Niemczura et al. (2009) which relies are fairly good for A-F type stars, and become less reliable for on an efficient spectral synthesis based on a least-squares opti- more massive or peculiar stars, because for higher temperatures misation algorithm. The resulting values of Teff,logg and v sin i the interstellar reddening is apparently not properly taken into are presented in Table 2, under label “h”. The detailed analysis account. The stars in our sample are reddened up to 0.3 mag results, including element abundances and microturbulence, will in (B − V), with an average reddening of E(B − V) = 0.04 mag. be presented in a dedicated paper (Niemczura et al., in prep.), The 85 stars for which no KIC Teff value is available, which are including several other Kepler stars. generally faint stars (Kp > 11 mag), are not considered in any analysis related to temperature, unless values of Teff exist in the literature or are available from the analysis of new ground-based 3.3.3. Spectra from the Tautenburg Observatory observations (see below). Spectra of 26 sample stars were obtained from May to August 2010 with the Coude-Échelle spectrograph attached to 3.3. New ground-based observations of sample stars the 2-m telescope of the Thüringer Landessternwarte Tautenburg (TLS), Germany. The spectra cover 4700 to 7400 Å in wave- In the framework of the ground-based observational project for length range, with a resolution of R = 32 000. The spectra were the characterization of KASC targets (see Uytterhoeven et al. reduced using standard ESO-MIDAS packages. We obtained be- 2010a,b, for an overview), targets of the A-F type sample are tween two and seven spectra per star, which were being observed using multi-colour photometry and/or high-to- corrected and co-added. The resulting signal-to-noise in the con- mid-resolution spectroscopy. The goal is to obtain precise values tinua is between 150 and 250. / of physical parameters that are needed for the seismic modelling Stellar parameters such as Teff,logg,[MH], and v sin i have of the stars. A detailed analysis of a first subsample of A-F type been determined by a comparison of the observed spectra with stars has been presented by Catanzaro et al. (2011). Several other synthetic ones, where we used the spectral range 4740 to 5800 Å, papers are in preparation. We include the available results to date which is almost free of telluric contributions. The synthetic spec- in this paper, because the precise values of Teff and log g are tra have been computed with the SynthV programme (Tsymbal needed for the interpretations in Sects. 7 and 8. 1996) based on atmosphere models computed with LLmodels (Shulyak et al. 2004). Scaled solar abundances have been used for different values of [M/H]. A detailed description of the ap- 3.3.1. Strömgren photometry from the Observatorio plied method can be found in Lehmann et al. (2011). The result- San Pedro Mártir ing values of Teff,logg and v sin i are presented in Table 2, under label “g”. Errors are determined from χ2 statistics and represent Multi-colour observations were obtained for 48 sample stars a1-σ confidence level. Detailed analysis results, including also over the period 2010 June 13−17 with the six-channel values of [M/H] and microturbulent velocity, will be published uvby − β Strömgren spectrophotometer attached to the 1.5-m in a dedicated paper (Tkachenko et al., in prep.). telescope at the Observatorio Astrónomico Nacional-San Pedro Mártir (OAN-SPM), Baja California, Mexico. Each night, a set of standard stars was observed to transform instrumental obser- 4. Characterization of the sample vations into the standard system using the well known trans- formation relations given by Strömgren (1966), and to correct Figure 2 shows the distribution of the 750 sample stars in Teff for atmospheric extinction. Next, the photometric data were de- (top left), log g (top right), Kepler magnitude Kp (bottom left), Δ reddeded using Moon’s UVBYBETA programme (Moon 1985), and total length of the Kepler light curve T, expressed in d (bottom right). For the analysis we used Teff and log g values and Teff and log g values were obtained using the uvby grid pre- sented by Smalley & Kupka (1997). A detailed description of given in boldface in Table 2. Note that seven stars in our sample = ff the data will be given by Fox Machado et al. (in prep.). The re- are hotter than Teff 9000 K, and fall o the diagram. sulting stellar atmospheric parameters are presented in Table 2 The following typical global parameters have been observed under label “b”. for δ Sct and γ Dor stars (e.g. Rodríguez & Breger 2001; Handler & Shobbrook 2002): log g = 3.2−4.3andTeff = 6300−8600 K for δ Sct stars, and log g = 3.9−4.3andTeff = 6900−7500 K for 3.3.2. SOPHIE spectra from the Observatoire γ Dor stars. While γ Dor stars are generally MS stars, several de Haute Provence more evolved δ Sct stars have been observed. The distributions in Fig. 2 show that about 70% of the We also analysed spectra of two sample stars, KIC 11253226 total sample does indeed have Teff values between 6300 K and KIC 11447883, obtained during the nights of 2009 July 31, and 8600 K. However, a significant number (about 20%) are August 1, and August 5 with the high-resolution (R ∼ 70 000) cooler stars. The log g values of our sample are concentrated spectrograph SOPHIE, which is attached to the 1.93-m telescope on 3.5−4.5, which represents about 76% of the total sample. at the Observatoire de Haute Provence (OHP), France. The spec- The sample consists of stars with magnitudes in the range tra were reduced using a software package directly adapted from 6 < Kp < 15 mag. The majority (about 55%) is located in the HARPS, subsequently corrected to the heliocentric frame, and interval Kp = [10, 12] mag. Given that stars with magnitudes manually normalized by fitting a cubic spline. fainter than V = 9aredifficult to monitor spectroscopically from

A125, page 4 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

at the same timescale as the expected pulsations in γ Dor and δ Sct stars are introduced by the correction, we also corrected a subsample of stars by a different procedure that takes three types of effects into account, namely outliers, jumps, and drifts (see García et al. 2011). Both correction methods gave the same frequency analysis results within the accuracy of the dataset. Next, the Kepler flux (FKp(t)) was converted to parts-per- million (ppm) (F (t)), using the following formula: ppm  FKp(t) F (t) = 106 × − 1 , (1) ppm f(t) with f (t) a polynomial fit to the light curve. A test on the ef- fect of the use of different polynomial orders (2 to 10) on the detected frequencies in the time series showed that, in general, a third or fourth order polynomial fits the overall curvature bet- ter than a linear fit. The choice of the polynomial did not change −1 Fig. 2. Distribution in Teff (top left), log g (top right), Kepler magni- periodicities with frequencies higher than 0.2 d . The obtained tude Kp (bottom left), and total time span ΔT of the Kepler light curves, error for frequencies between 0.01 and 0.2 d−1 was of the or- expressed in d (bottom right) of the 750 sample stars. The number of der of 1/ΔT d−1, with ΔT the total time span of the light curve stars belonging to each bin (N) is indicated on the Y-axis. We used the expressed in d. adopted values of Teff and log g, as given in boldface in Table 2.

5.2. Frequency analysis the ground with 2 m-class telescopes, the fact that about 92% of the stars are fainter than V = 9 has implications for the feasibility The Kepler time series of the 750 sample stars were analysed of possible spectroscopic ground-based follow-up observations in a homogenous way, using a programme based on the Lomb- (see Uytterhoeven et al. 2010a,b). Scargle analysis method (Scargle 1982). Frequencies were ex- Finally, the total length of the Kepler dataset (not taking tracted in an iterative way until the Scargle false alarm proba- into account possible gaps of several tens of days) is spread be- bility (fap; Scargle 1982), a measure for the significance of a tween 9.5 and 322 d. For a considerable fraction (19%) of the peak with respect to the underlying noise level, reached 0.001. sample only Q0 and Q1 data are available, with a total length In view of the almost uninterrupted and equidistant sampling of of 44 d, implying a frequency resolution slightly worse than the Kepler data, this estimate of the fap is a fast and reliable ap- 0.02 d−1. On the other hand, 351 stars, or 47% of the total sam- proximation of the true fap, because the number of independent ple, have a time span of more than 200 d (resulting in a frequency frequencies can be estimated precisely (see also the discussion resolution better than 0.005 d−1). Of these 351 stars, 46% have a in Sect. 4 of Balona et al. 2011b). Frequencies were calculated maximum time gap in the light curve of less than 10 d, and 23% with an oversampling factor of 10. Time series consisting of only have a gap of over 200 d and up to 325 d. LC data were not searched for periods shorter than 1 h, because the corresponding Nyquist frequency is 24 d−1. For SC data, with In the following sections we will describe the variability − analysis results of all 750 stars. At this stage we did not exclude a time sampling of about 1 min, frequencies up to 720 d 1 could any of the stars from the sample on grounds of non-compatibility be detected. of physical parameters with the current expectations for A- and As a comparison, subsamples of the stars were analysed F-type pulsators, to present a homogenous analysis and to inves- using different analysis methods, such as SigSpec (Reegen tigate if Kepler confirms the current understanding of δ Sct and 2007, 2011), Period04 (Lenz & Breger 2005), the general- γ Dor stars. ized Lomb-Scargle periodogram (Zechmeister & Kürster 2009), and the non-interactive code, freqfind (Leroy & Gutiérrez-Soto, in prep.). The latter code is based on the non-uniform fast Fourier 5. Frequency analysis transform by Keiner et al. (2009), and significantly decreases the 5.1. Treatment of the Kepler light curves computation time for unevenly spaced data. The results obtained with the different methods were consistent. In this paper we used the “non-corrected” light curves avail- able to KASC for asteroseismic investigations through the 6. Classification KASOC database. A description of the Kepler data reduction pipeline is given by Jenkins et al. (2010a,b). However, these raw 6.1. δ Sct, γ Dor, and hybrid stars time series suffer from some instrumental perturbations that need to be corrected for, e.g. perturbations caused by the heating and We performed a careful inspection (one-by-one, and by eye) of cooling down of the Kepler CCDs, variations caused by changes the 750 light curves, the extracted frequency spectra, and list of in the aperture size of the source mask, etc. Some of the effects detected frequencies, and tried to identify candidate δ Sct, γ Dor, are well known, and the corresponding non-stellar frequencies and hybrid stars. We used a conservative approach and omitted are tabulated by the Kepler team (e.g. frequencies near 32, 400, frequencies with amplitudes lower than 20 ppm for the classi- −1 fication. We also filtered out obvious combination frequencies 430, and 690 d ). Other perturbations are not documented, and 2 are harder to evaluate and correct for. and harmonics in an automatic way, and only considered appar- We subjected the light curves of all sample stars to an auto- ent independent frequencies for the analysis. We suspect that the mated procedure that involves fitting a cubic spline to the time 2 As obvious combination frequencies and harmonics we consid- series, and correcting the residuals for discontinuities and out- ered nfi or kfi ± lfj, with fi and f j different frequencies, n ∈ [2, 3, 4, 5], liers. To investigate if and to what extent artificial periodicities and k, l ∈ [1, 2, 3, 4, 5].

A125, page 5 of 70 A&A 534, A125 (2011) variable signal of a few stars is contaminated by the light varia- have only or mainly frequencies lower than 5 d−1.However,the tions of a brighter neighbouring star on the CCD. We flagged all classification of pure γ Dor stars is not as straightforward, be- stars with a high contamination factor (>0.15), as given by the cause several other physical processes and phenomena can give KIC. If the light curves of the neighbouring stars on the CCD rise to variability on similar timescales, such as binarity and were available through KASOC3, we carefully checked the light rotational modulation caused by migrating star spots. We tried curves of these stars with their neighbours. Stars that show an ob- our best to select only γ Dor stars, but are aware that nonethe- vious contamination effect were omitted from classification. We less, and most likely, our selection is contaminated with a few used information on Teff (Table 2) to distinguish between δ Sct non-bona fide γ Dor stars. For stars that were observed in non- and γ Dor stars versus β Cep and SPB stars. To be conservative, consecutive Kepler quarters, we tried to beware of frequencies low frequencies (<0.5 d−1) (see, for instance, the frequency spec- introduced by the spectral window. For instance, frequently a tra in Fig. 4) are currently not taken into account in the analysis, peak near 48 d−1 (555 μHz) is detected (e.g. KIC 2166218 and because in this frequency range real stellar frequencies are con- KIC 7798339), which for a γ Dor pulsator can result in an incor- taminated with frequencies resulting from instrumental effects rect classification as hybrid star. (see Sect. 5.1), and the separation of the different origins requires In Figs. 3−5 a portion of the light curve with a time span a dedicated study, which is beyond the scope of this paper. of2d(δ Sct stars) or 5 d (γ Dor and hybrid stars) and a schematic We encountered a variety of light curve behaviour. Based overview of the detected independent frequencies (i.e. combina- on a small number of stars and using only the first quarter tion frequencies are filtered out in an automated way, see above) of Kepler data, Grigahcène et al. (2010) already proposed a are given for a few representative stars of each group. The am- subdivision of the A-F type pulsators into pure δ Sct stars, plitudes and Kepler flux are expressed in ppm, and the frequen- pure γ Dor stars, δ Sct/γ Dor hybrids and γ Dor/δ Sct hybrids, cies are given in both d−1 (bottom X-axis) and μHz (top X-axis). using the fact that frequencies are only detected in the δ Sct The dotted grey line in the amplitude spectra separates the δ Sct (i.e. >5d−1,or>58 μHz) or γ Dor (i.e. <5d−1 or <58 μHz) and γ Dor regime. The dates are in the Heliocentric Julian Date domain, or in both domains with dominant frequencies in ei- (HJD) format HJD0 = 2 454 950.0. The figures illustrate the va- ther the δ Sct star or γ Dor star region, respectively. Among the riety of pulsational behaviour within the groups. The δ Sct stars 750 sample stars we see different manifestations of hybrid vari- (Fig. 3) display an impressive variety of amplitude heights. The ability. There are stars that show frequencies with amplitudes of variability of the stars in panels (d) and (e), KIC 9845907 and similar height in both regimes, and stars with dominant frequen- KIC 9306095, respectively, is dominated by one high-amplitude cies in the γ Dor (δ Sct) domain and low amplitude frequencies frequency. Several lower amplitude variations are also present. in the δ Sct (γ Dor) domain. The light curves show diversity as The chance of confusing a high amplitude δ Sct star (HADS) well. Balona et al. (2011d) already commented on the different and binarity is high for KIC 9306095. The stars in panels (a)−(c) shapes of light curves of pure γ Dor stars. show multiperiodic variations with frequency amplitudes of sim- In this work, we focus on stars that show at least three ilar size. The rotational frequency near 1.2 d−1 and its first har- independent frequencies. We classified the stars in three monic of the star KIC 10717871 (panel c) could be mistaken for groups: δ Sct stars, γ Dor stars, and hybrid stars. Because the γ Dor-like frequencies. Because there are no other longer-term underlying physics that causes the different types of hybrid periodicities, there is no evidence for the possible hybrid status behaviour is currently not clear, all types of hybridity (both of this star. δ Sct/γ Dor hybrids and γ Dor/δ Sct hybrids) are included in the The light curves of γ Dor stars (Fig. 4) vary from obvi- group of hybrids. A star was classified as a hybrid star only if it ous beat patterns to less recognizable variable signals. Balona satisfied all of the following criteria: et al. (2011d) already pointed out that there are symmetric (e.g. panel d) and asymmetric (e.g. panel e) light curves among – frequencies are detected in the δ Sct (i.e. >5d−1 or >58 μHz) − the stars that show obvious beating, and that most likely in these and γ Dor domain (i.e. <5d 1 or <58 μHz); cases the pulsation frequencies are comparable to the rotation – the amplitudes in the two domains are either comparable, frequency. Balona et al. (2011d) also suggested that the more or the amplitudes do not differ more than a factor of 5−7 irregular light curves likely stem from slowly rotating stars. (case-to-case judgement); Examples of hybrid stars are given in Fig. 5. The grey – at least two independent frequencies are detected in both dotted line in the right panels guide the eye to separate regimes with amplitudes higher than 100 ppm. the δ Sct and γ Dor regimes. The stars KIC 3119604 and KIC 2853280 (panels a and b, respectively) are clearly dom- By using these criteria, we should reduce the number of false inated by δ Sct frequencies, while the γ Dor frequencies have positive detections. In particular, we tried to avoid a hybrid star lower amplitudes. The star KIC 9664869 (panel c) is an ex- classification of “pure” δ Sct stars that show a prominent long- ample of a star that exhibits frequencies with amplitudes of term variability signal caused by rotation. We also tried to take comparable height in the two regimes. The highest peak in the care of more evolved δ Sct stars that are expected to pulsate with γ Dor region is most likely related to the pe- frequencies lower than 5 d−1. Stars that exhibited only or mainly −1 riod, however, because several harmonics are also observed. The frequencies in the δ Sct domain (i.e. >5d ) and did not sat- bottom two panels are examples of hybrid stars dominated by isfy all of the above given criteria were assigned to the pure γ Dor periodicities. δ Sct group. Likewise, the group of pure γ Dor stars consists of Table 3, available in the on-line version of the paper, presents stars that do not comply with the hybrid star criteria, and that an overview of the stars assigned to the three groups. For each star (KIC ID) we provide the classification (Class), the to- 3 Unfortunately, only 40 stars of the sample could be checked in this tal number of independent frequencies (N) detected above the way. We saw a clear contamination for the stars KIC 4048488 and = KIC 4048494, KIC 5724810 and KIC 5724811, and KIC 3457431 and significance level (fap 0.001) and with amplitudes higher KIC 3457434. Less clear contamination is seen for KIC 4937255 and than 20 ppm, and the number of independent frequencies de- KIC 4937257, and KIC 10035772 and KIC 10035775, which are stars tected in the γ Dor and δ Sct regime (NγDor and NδSct, respec- that show no obvious periodic variable signals. tively). The next column gives as a reference the total number

A125, page 6 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

Fig. 3. Light curve and frequency spectrum of five stars assigned to the δ Sct group, illustrating the variety of pulsational behaviour within the group. The left panel shows a portion of the Kepler light curves. The Kepler flux is expressed in ppm, HJD is given in d with respect to HJD0 = 2 454 950.0. The right panel gives a schematic representation of the detected independent frequencies, expressed in d−1 (bottom X-axis) or μHz (top X-axis). Amplitudes are given in ppm. The dotted grey line separates the δ Sct and γ Dor regime. Note the different Y-axis scales for each star. a) KIC 8415752; b) KIC 8103917; c) KIC10717871; d) KIC 9845907; e) KIC 9306095.

of frequencies detected above the significance level, including by rotation or binarity. A more careful analysis and interpreta- combination frequencies and harmonics (Ntotal). The next four tion of the full frequency spectrum of all individual stars of the columns denote the frequency range of peaks in the γ Dor and sample will clarify this matter, but this is beyond the scope of δ Sct regimes ((Freq Range)γDor and (Freq Range)δSct, expressed this paper. −1 in d ), the highest amplitude (Amplitudehigh, expressed in ppm) We compared our classification with the automated super- −1 and associated frequency (Freqhigh,ind ). In the last column a vised classification results presented by Debosscher et al. (2011). flag (•) indicates if the risk on light contamination with a neigh- Because these authors studied public Kepler Q1 data, only bouring star on the CCD is high (contamination factor >0.15). 479 objects of our sample appear in their catalogue. We point out A typical error on the frequency associated with the highest am- that the classifier by Debosscher et al. (2009) only takes three in- plitude is 0.0001 d−1. The error on the amplitude ranges from dependent frequencies with the highest amplitudes into account. a few ppm up to about 30 ppm. We note that for stars identi- Hence, the recognition and classification of hybrid behaviour fied as γ Dor or δ Sct stars we report on frequencies up to 6 d−1 is currently not implemented. Moreover, because the classifier or from 4 d−1, respectively, to account for, for instance, the fre- does not take external information into account that can distin- quency spectrum of more evolved stars. guish between B-type stars and A-F type stars (e.g. colour infor- We note that for several stars classified as γ Dor star only mation, spectral classification based on spectra), there is often LC data are available. This may create a selection effect, be- a confusion between δ Sct and β Cep stars, and between γ Dor cause short-term δ Sct periods are more difficult to detect in the and SPB stars. In general, there is good agreement (>87%, clas- short timestring of LC data owing to sampling restrictions. Also, sified in terms of δ Sct or β Cep stars) with the classification by as mentioned above, even though we carefully checked the stars Debosscher et al. (2011) for stars that we classified as δ Sct stars. one by one, we expect to have a few false positive detections of The γ Dor stars, as we classified them, are in general less eas- hybrid and γ Dor stars because the typical γ Dor frequencies can ily recognized by the automated classifier. Often they appear be easily confused with variations of the order of a day caused as “miscellaneous” in their list. This is not surprising, because

A125, page 7 of 70 A&A 534, A125 (2011)

Fig. 4. Similar figure as Fig. 3, but for five candidate γ Dor stars. Note the different X-axis scale with respect to Fig. 3. a) KIC 1432149; b) KIC 5180796; c) KIC 7106648; d) KIC 8330056; e) KIC 7304385. so far only a few high-quality light curves of well-recognized in our sample, but there are ∼40 such stars observed by Kepler, γ Dor stars were available that could be used as a template to which are studied separately (Kolenberg et al. 2010;Benkoetal.˝ feed the classifier. Stars that we identified as hybrid stars appear 2010). Unclear cases mostly show a behaviour that might be re- in the catalogue by Debosscher et al. (2011) as “miscellaneous” lated to rotation and are hence also labelled “rotation/activity”. or as δ Sct, γ Dor, β Cep, or SPB stars. The work presented in this We also assigned the candidate γ Dor stars for which less than paper will provide valuable feedback and information to refine three significant peaks were detected to this category. The light the automated supervised classification procedure developed by curve and frequency spectra of a few examples of these other Debosscher et al. (2009). classifications are given in Figs. 6 and 7. One hundred and twenty-one stars do not show an obvi- ous periodicity in the expected range for γ Dor and δ Sct stars, 6.2. Other classes or have an unresolved frequency spectrum within the available About 63% of our sample is recognized as δ Sct, γ Dor, or hy- dataset. The star KIC 9386259 (Fig. 6, panel a) is an example of brid star. Table 4, in the on-line version of the paper, gives an a star showing no clear periodicity. Furthermore, we used the la- overview of the “classification” of the remaining 37% of the bel“...”forsomestarsforwhichlessthanthreesignificantfre- stars. For each star (KIC ID) the associated classification (Class) quencies were detected (e.g. KIC 11509728 and KIC 11910256). and a flag (Flag) indicating a high risk on light contamination by We investigated the stars for signatures of solar-like oscillations a neighbouring star (• if there is a contamination factor >0.15), and identified 75 candidate solar-like oscillators (“solar-like”, are given. Table 4 includes stars that show no clear periodic vari- see Table 4). ability on timescales typical for δ Sct and γ Dorpulsators(“...”, We identified seven B-type stars and 44 stars in the or “solar-like”), stars that exhibit stellar activity and show a ro- sample. The giant stars show an envelope of frequencies with − tationally modulated signal (“rotation/activity”), binaries (“bi- amplitudes up to 100−200 ppm in the region 0.5−5d 1, as il- nary” or eclipsing binary “EB”), B-type stars (“Bstar”), can- lustrated by KIC 2584202 (Fig. 6, panel b). Among the B-type didate red giant stars (“red giant”), Cepheids (“Cepheid”), and stars, we recognized five SPB stars and one candidate β Cep star. stars whose light is contaminated by another star (“contami- Within the sample we identified at least 39 binaries, includ- nated”). Although the observed ranges in Teff and log g include ing28EBs.InTable4 the binary stars are labelled “binary”, typical values for RR Lyr stars (see Fig. 2), we did not find any or “EB” for an EB. If the variability of one of the components

A125, page 8 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

Fig. 5. Similar figure as Fig. 3, but for five candidate hybrid stars. a) KIC 3119604; b) KIC 2853280; c) KIC 9664869; d) KIC 9970568; e) KIC 3337002. The two top panel a)−b) are δ Sct frequency-dominated stars, and the two bottom panels d)−e) are γ Dor frequency-dominated stars. is identified as typical for one of the three groups outlined We discovered several interesting targets among the 750 stars in Sect. 6.1, we also indicated this in Table 4. Panels (c)−(e) of the sample. Dedicated studies of groups of individual stars of Fig. 6 show examples of EBs. An interesting target is will be presented in forthcoming papers. Below, we will sort the KIC 11973705, because it most likely is a binary with a δ Sct stars into different classes. and SPB component (see also Balona et al. 2011b). For three stars reported in the literature as EBs (Prša et al. 2011;Slawson et al. 2011; Hartman et al. 2004), KIC 2557115, KIC 5810113, 7. Characterization of the different classes and KIC 1432149, we find no clear evidence of their eclipsing The classification described in the previous section results in nature in the Kepler lightcurves. In case of KIC 1432149, pre- the following distribution. A total of 63% of the sample can be sented by Hartman et al. (2004) as an EB with period 9.3562 d, identified as γ Dor, δ Sct or hybrid stars: 27% are classified as we cannot confirm its eclipsing nature or its , and δ Sct stars (206 stars), 23% as hybrid stars (171 stars; of which we suspect that this target has been misidentified as an EB. 115 stars are δ Sct-dominated and 56 stars are γ Dor-dominated), Several stars show an irregular light curve typical of stellar and 13% as γ Dor stars (100 stars). A striking result is that al- activity, or a clearly rotationally modified signal (panels (a)−(c) most a quarter of the sample, i.e. 171 stars, shows hybrid be- of Fig. 7). It is also not impossible that low-amplitude pulsat- haviour. This is in sharp contrast with the results obtained from ing γ Dor star candidates are hidden among the stars labelled ground-based observations, where so far only three candidate as “rotation/activity” in Table 4. Namely, when only one or two γ Dor-δ Sct hybrid stars have been discovered. The far superior of their pulsation frequencies reach the current detection thresh- precision of the space data opens a new window in detecting old, they are not yet assigned to a pulsation group. A possible low amplitude variations. This result was already hinted at by γ Dor candidate is given in panel (d) of Fig. 7. Grigahcène et al. (2010) and Hareter et al. (2010), but the quan- In some cases the light curves look very peculiar, and tification by means of this sample is remarkable. the origin of the variability is not clear. This is the case Of the remaining 37% of the sample, a considerable number for KIC 3348390 (panel (e) of Fig. 7) and KIC 4857678, (121 stars, 16%) do not show clear variability with periods in the for instance. expected range for γ Dor and δ Sct stars. Among this group are

A125, page 9 of 70 A&A 534, A125 (2011)

Fig. 6. Similar figure as Fig. 3, but for stars that were not assigned to the groups of δ Sct, γ Dor or hybrid stars. a) KIC 9386259, no clear periodic signal detected; b) KIC 2584202, red giant star; c) KIC 5197256, EB or ellipsoidal variable with a δ Sct component; d) KIC 3230227, EB with a γ Dor component; e) KIC 9851142, EB with most likely a γ Dor component.

75 candidate solar-like oscillators. Our sample has seven B-type the binaries as insufficiently constrained and omitted them. The stars (1%) and 44 stars (6%) are identified as red giant stars. same holds for the B-type stars, which are much hotter than the One Cepheid turned out to be among the sample. About 8% of Teff region shown here. The stars that show no clear periodic the sample shows stellar activity, often manifesting itself by a variability on timescales typical for δ Sct and γ Dor pulsators rotationally modulated signal. (open triangles) and stars that exhibit stellar activity (bullets) At least 5% of the sample stars are identified through the are found along the MS and in more evolved stars. The loca- analysis of their light curve as binary or multiple systems, of tion of the only Cepheid in our sample is marked by a cross. which 3.5% show eclipses. When we also consider the known The candidate red giants (open squares) are all but one found in binaries from the literature (Table 1), we arrive at a binary rate the expected region of the (Teff,logg)-diagram. This implies that of 12% within the sample. The number of binary detections the KIC photometry separates giant from MS stars well. is only a fraction of what is expected. The binary rate among A-F type stars in general and δ Sct stars in particular is estimated 7.1. Characterization of stars that show no clear periodic to be at least 30% (Breger & Rodríguez 2000; Lampens & Boffin variability 2000). Several additional stars are expected to be part of multi- ple systems with possibly much longer periods than the available We now focus on the properties of the 121 stars that show no Kepler time span. The percentage of EBs in our sample is high. clear periodic variability in the γ Dor and δ Sct range of frequen- Prša et al. (2011) reported a 1.2% occurence rate of EBs among cies to understand why no oscillations are detected. Figure 9 the Kepler targets. presents the distribution in Teff (top left), log g (top right), Kp (bottom left), and total time span ΔT, expressed in d, of the Figure 8 shows the stars that are not assigned to one of the Kepler light curves (bottom right). δ Sct, γ Dor or hybrid star groups in a (Teff,logg)-diagram. The The cool boundary of the observational instability strip for solid thick black and light grey lines mark the blue and red edge 4 γ Dor stars is located around Teff = 6900 K. At least 78% of of the observed instability strip of δ Sct and γ Dor stars, respec- the 121 stars have cooler temperatures, and hence no A-F type tively (Rodríguez & Breger 2001; Handler & Shobbrook 2002). variability is expected. About 75 stars are identified as candidate Owing to the possibly incorrect separation of the binary com- 4 ponent’s contribution, we considered the physical parameters of For 11% of the 121 stars we have no information on Teff or log g.

A125, page 10 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

Fig. 7. Similar figure as Fig. 3, but for stars that were not assigned to the groups of δ Sct, γ Dor or hybrid stars. Stellar activity/rotational modula- tion: a) KIC 8748251; b) KIC 8703413 and c) KIC 11498538; no clear classification: d) KIC 12062443; and e) KIC 3348390. solar-like oscillators. However, 10% of the 121 stars that show spans do not show clear variability. Also, the observing mode no clear periodicity are located inside the instability strip of has no obvious influence on the (non-)detection of oscillations. γ Dor or δ Sct stars5 (see also Fig. 8). Additional investigation is Fifty-four percent of the 121 stars have only LC data, while 46% needed to confirm that these stars do not show variability, which have only SC data. would imply that non-variable stars exist in the instability strip. To summarize, stars that show no clear periodic variations Sixty percent (71 stars) of our non-variable stars are fainter are generally the cooler and fainter stars of the sample. We do than Kp = 12 mag, and 18% are fainter than Kp = 14 mag. not find evidence for a bias towards the total time span of the The faintness of the star most likely has an impact on the available light curve or towards the observing mode (LC ver- (non-)detection of periodicities. To quantify this, we counted sus SC). the fraction of apparently non-periodic stars per magnitude bin for the full sample of 750 stars. The number of stars that 7.2. Characterization of δ Sct, γ Dor, and hybrid stars show no clear peridodicity increases dramatically towards faint = stars: the fraction is only 2% for magnitude Kp 9mag,5%for 7.2.1. The (T eff, log g)-diagram Kp = 10 mag, 12% for Kp = 11 mag, 15% for Kp = 12 mag, 41% for Kp = 13 mag, and 68% for Kp > 14 mag. The fainter The current ground-based (GB) view on the positions of the the star, the more difficult it becomes to detect periodicities. Our δ Sct and γ Dor classes in the (Teff,logg)-diagram (parame- 6 analysis results, which were obtained by only considering am- ters are taken from the literature ) is presented in panel (a) of plitudes above 20 ppm, lead us to suspect that the Kepler detec- Fig. 10. A comparison of log g values derived from Geneva pho- tion limit of A-F type low-amplitude oscillations (≤20 ppm) lies tometry and from other sources (photometry and spectroscopy) = around Kp 14 mag (see also Sect. 7.2). 6 ff Rodríguez & Breger (2001); Rodríguez et al. (2000); Henry & Fekel We find no evidence for a selection e ect towards stars with (2005); Poretti et al. (1997); Breger et al. (1997); Zerbi et al. (1997, a short time span in the available Kepler time series. The right 1999); Aerts et al. (1998); Kaye et al. (1999b); Gray & Kaye (1999); panel of Fig. 9 shows that also several time series with long time Eyer & Aerts (2000); Guinan et al. (2001); Aerts (2001); Martín et al. (2003); Mathias et al. (2004); Rowe et al. (2006); Bruntt et al. (2008); 5 As demonstrated in Sect. 7.2, a revision of the current instability strip Cuypers et al. (2009); Uytterhoeven et al. (2008); Catanzaro et al. is required. (2010, 2011).

A125, page 11 of 70 A&A 534, A125 (2011)

present. Kepler δ Sct stars exist beyond the red edge of the insta- bility strip, while Kepler γ Dor pulsations appear in both hotter and cooler stars than previously observed from the ground. The Kepler hybrid stars occupy the entire region between the blue edge of the δ Sct instability strip and the red edge of the γ Dor in- stability strip, and beyond. The position of the Kepler δ Sct and γ Dor stars suggests that the edges of the so far accepted observa- tional instability strips need to be revised. However, we need ac- curate values of Teff and log g for all stars to confirm this finding. Because for most stars in our sample only KIC-based es- timates of Teff and log g are available, we selected the stars that have reliable estimates of these parameters derived from ground- based spectra or multi-colour photometry (see Sect. 3). From this selection, 69 are classified as belonging to one of the three groups. The subsample of 69 stars is plotted in panel (c) of Fig. 10. The position of the stars in the (Teff,logg)-diagram confirms the general findings described for the full sample. Fig. 8. (Teff,logg)-diagram with stars that show no clear periodic vari- ability on timescales typical for δ Sct and γ Dor pulsators (open trian- However, the scatter across the diagram of γ Dor stars is less gles), stars identified as red giants (open squares), stars that exhibit stel- present, but almost all γ Dor candidates lie outside the obser- lar activity (bullet), and a Cepheid (cross). The cross at the right top vational instability strip for γ Dor stars. Ground-based observa- corner represents the typical error bars on the values: 290 K for Teff tions for the derivation of more precise values of Teff and log g and 0.3 dex for log g. The solid thick black and light grey lines mark are needed for all other stars to confirm the exact locations of the blue and red edge of the observed instability strips of δ Sct and the stars. γ Dor stars, as described by Rodríguez & Breger (2001) and Handler & Panel (d) of Fig. 10 shows the Kepler stars assigned to Shobbrook (2002), respectively. In the on-line version of the paper the the three groups that have amplitudes higher than 1000 ppm open squares, open triangles, bullets, and crosses, are red, blue, black, and black, respectively. (see Table 3), which approximately corresponds to amplitudes higher than 1 mmag and hence might be observable from the ground. We notice that the Kepler stars with ground-based ob- servable amplitudes also do not fit within the observational in- stability strips. The left column of Fig. 11 presents an overview of the dis- tribution in Teff for the three groups of A-F type stars. The his- tograms related to δ Sct, hybrid, and γ Dor stars are coloured in dark grey, middle grey, and light grey respectively. The dis- tribution in Teff peaks around 7400 K, 7200 K, and 7000 K for δ Sct, hybrid, and γ Dor pulsators, respectively. Comparing these values with the center of the observed instability strips by Rodríguez & Breger (2001) and Handler & Shobbrook (2002), we find that a large part of the Kepler stars are concentrated near the overlap of the two instability strips, and that many mem- bers of the three groups coincide in the same region in the (Teff,logg)-diagram. It will be interesting to investigate why stars with similar values of Teff and log g in some cases pulsate as a δ Sct star, and in others as a γ Dor star, or as both. Another

Fig. 9. Distribution in Teff (top left), log g (top right), Kepler magni- interesting and puzzling result is that γ Dor and δ Sct pulsations tude Kp (bottom left), and total time span ΔT of the Kepler light curves seem to be excited in a far wider range of temperatures then pre- (bottom right) of the 121 stars that show no clear periodic varibility. The viously expected. number of stars belonging to each bin is given on the Y-axis. The distribution in log g is similar for all classes. Most stars have log g values between 3.5 dex and 4.3 dex, with a peak around log g = 3.9 dex. We point out that the log g values de- indicates a systematic difference of about 0.4 dex for log g val- rived from the KIC for A-F type stars are known to have large ues above 4.35 dex as calculated from the Geneva photometry uncertainties, and only few stars have measurements from other (Cuypers & Hendrix, priv. comm.). Therefore we have corrected sources. Without more stars with accurate values derived from the values based on Geneva photometry. Evidently, the δ Sct and ground-based observations we cannot draw any conclusions. γ Dor stars occupy distinct locations in the (Teff,logg)-diagram, The distribution in Kepler magnitude Kp (bottom left, with a small overlap region. Fig. 2) is representative for the distribution in Kp for γ Dor and Panel (b) of Fig. 10 shows a different picture. Here the δ Sct, δ Sct stars. It illustrates that the cut-off magnitude for the detec- γ Dor, and hybrid stars from the Kepler sample are plotted. We tion of γ Dor and δ Sct type of variations with Kepler lies around used the adopted values of Teff and log g,asgiveninTable2.The Kp = 14 mag. The majority of the sample stars have magnitudes cross in the top right corner of the figure shows typical errors on in the range Kp = 10−12 mag. the values. The stars are scattered in the (Teff,logg)-diagram: the v sin i values are available for 41 stars of the subsam- δ Sct and γ Dor stars are not confined anymore to the two re- ple consisting of δ Sct, γ Dor and hybrid stars (see Table 2). gions that were clearly seen for the ground-based stars. Even Of the five γ Dor stars, four have v sin i values above 90 km s−1, when considering the large error bars on the values, the scatter is and one has v sin i = 15 km s−1. Of the sixteen δ Sct stars,

A125, page 12 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

Fig. 10. a) (Teff ,logg)-diagram of the δ Sct, γ Dor, and hybrid stars detected from the ground (parameters taken from the literature). b) (Teff,logg)-diagram of the Kepler stars we classified as δ Sct, γ Dor, and hybrid stars in this paper. Open squares represent δ Sct stars, as- terisks indicate γ Dor stars, and hybrid stars are marked by bullets. The black cross in the right top corner shows typical errors on the values. c) (Teff,logg)-diagram of the subsample of 69 Kepler stars for which accurate Teff and log g values are available. The colour-codes are the same as for panel b). d) (Teff,logg)-diagram of the subsample of Kepler stars that show pulsations with amplitudes higher than 1000 ppm (>1 mmag). Evolutionary tracks for MS stars with masses 1.4 M,1.7M, and 2.0 M are plotted with grey dotted lines. The evolutionary tracks have been computed using the Code Liégeois d’Évolution Stellaire (CLES, Scuflaire et al. 2008). The input physics included is similar to the one used in Dupret et al. (2005) with the following values for the modelling parameters αMLT = 1.8, αov = 0.2andZ = 0.02. The solid thick black and light grey lines mark the blue and red edge of the observed instability strips of δ Sct and γ Dor stars, as described by Rodríguez & Breger (2001)and Handler & Shobbrook (2002), respectively. In the on-line version of the paper the symbols representing the δ Sct, γ Dor, and hybrid stars are red, blue, and black, respectively.

eight stars have high v sin i values, six have moderate val- commonly seen in space observations because of their higher ues (40

A125, page 13 of 70 A&A 534, A125 (2011)

Fig. 11. Distribution in Teff (left column), number of detected (independent) frequencies (middle column) and highest amplitude (ppm, in logarith- mic scale) (right column), for the three groups of A-F type stars: δ Sct stars (top; dark grey), hybrid stars (middle; middle grey), and γ Dor stars (bottom; light grey). The number of stars belonging to each bin (N) is indicated on the Y-axis. near the centre of the δ Sct instability strip. For the hybrid and and hybrid stars have frequencies up to 80 d−1, and 9% only γ Dor stars most detected frequencies are found towards the red show variations with frequencies lower than 20 d−1. We note that edge of the (overlap in the) instability strip. γ Dor-dominated hybrids that show variations with frequencies The right panel of Fig. 11 shows the distribution of higher than 60 d−1 are rare (three stars in our sample). the highest measured amplitude in ppm logarithmic scale The majority of the hybrid stars detected in the Kepler data (log(Amplitude)) for the different groups using the same colour- show all kinds of periodicities within the γ Dor and δ Sct range code as before. The range in highest amplitude measured is 40 to (see Cols. 6 and 7 in Table 3 which give the frequency range of 155 000 ppm. For about 59% of the stars the highest amplitude the detected frequencies in the γ Dor and δ Sct domains). This is lower than 2000 ppm. Only 16 stars (3.5%) show variability observational fact is interesting because from a theoretical point with highest amplitudes below 100 ppm, while 26 stars (5%) of view no excited modes are expected between about 5 and have amplitudes above 10 000 ppm. In general, higher ampli- 10 d−1, i.e. the so-called “frequency gap” (see, e.g. Grigahcène tudes are detected in δ Sct pulsators than in γ Dor stars. We point et al. 2010). Only for five hybrid stars a “frequency gap” is ob- out that the origin of high peaks detected in γ Dor stars, e.g. the served7. Possible explanations for the absence of gaps, within the amplitude of 23 000 ppm in the star KIC 7304385, is most likely present non-adiabatic theories, are that the frequencies within related to the rotation of the star. It is worth mentioning that the gap are high-degree and/or rotationally split modes (Bouabid amplitudes above 10 000 ppm are also detected in faint targets. et al. 2009). The highest amplitudes are found for stars within the tempera- ture range Teff = 6600−7100 K, which is the cool part of the instability strips. 8. A first step towards understanding the relation We detected δ Sct frequencies between 4 and 80 d−1.We between δ Sct, γ Dor, and hybrid stars found indications that a handful of stars vary with even shorter As presented in the previous section, it is not trivial to distin- periods. However, these short periods need to be confirmed by guish between the three groups of variable A-F type stars de- means of a careful investigation of the specific frequency spec- fined in Sect. 6.1. The relation between the three groups is cur- tra, which is beyond the scope of this paper. rently unclear as well because δ Sct, γ Dor, and hybrid stars When considering the δ Sct stars and hybrid classes, which amount to atotal of 375 stars, we find that 56% shows an upper 7 The six hybrid stars that show a “frequency gap” are: KIC 3851151, − frequency limit between 40 and 70 d 1. Only 10% of the δ Sct KIC 4556345, KIC 7770282, KIC 9052363, and KIC 9775454.

A125, page 14 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. coincide in the (Teff,logg)-diagram (Fig. 10). Driven by the idea to find observables based on physical concepts that allow insight in the different internal physics of the three types of stars, we constructed two new observables that can provide an alterna- tive way to improve our understanding of the relation between the three groups. We point out that several observational pa- rameters can be found that reflect the different inherent prop- erties of the three groups in one way or another. For instance, δ Sct stars pulsate with shorter periods, and are generally hot- ter than γ Dor stars. A combination of these parameters will lead to a differentiation of the groups, such as for instance a(Teff, fmax)-diagram, with fmax the frequency associated to the highest amplitude mode. However, we emphasize that our aim is to find observables that can be directly related to the internal physics of the stars. According to the current instability theories, which need to be revised following the results presented in this work, the main driving process of the oscillations in δ Sct stars is related to the opacity variations in the ionization zones (Unno et al. 1989). These zones are located in the region where the main energy transport mechanism is convection and where a small quantity of energy is transported by radiation. The total amount of driving energy going into the mode is directly related to the radiative lu- minosity in this zone, and this latter quantity is a function of the convective efficiency. Therefore, we expect a relation between the energy of the observed modes and the convective efficiency of the outer convective zone. We searched for this relation and Fig. 12. Distributioninlog(energy)(right), and log(efficiency)(left)for constructed two observables, energy and efficiency,thatarees- the δ Sct (top, dark grey), hybrid (middle, middle grey), and γ Dor (bot- timates of the energy and the convective efficiency, using the tom, light grey) stars. The number of stars belonging to each bin (N)is available observational data. indicated on the Y-axis.

8.1. Energy the predicted dT value of asymptotic g-modes (γ Dorstars)and low-order p-modes (δ Sct stars) is around one order of magni- The kinetic energy of a wave is given by tude or less, where the δ Sct stars have higher values. Therefore, we can directly use the observed magnitude variation as a mea- 1 2 Ekin = f (ρ∗)(Aζ) , (2) surement of the radial amplitude variation. That we are using an 2 approximation does not change the conclusions of the present where f is a function of the stellar density ρ∗, A is the ampli- study, because the observed differences are larger than two or- tude of the oscillation, and ζ is the pulsation frequency. Using ders of magnitude (see Figs. 12 and 13). the available observational data, we construct the following ob- The right column of Fig. 12 shows the distribution in servable that we call energy, which is a first approximation and log(energy)fortheδ Sct (top, dark grey), hybrid (middle, middle estimate of the kinetic energy of the wave: grey), and γ Dor (bottom, light grey) stars. Clearly, the weight of the distribution is located in the region log(energy) > 8forstars ≡ 2 energy (Amaxζmax) , (3) dominated by frequencies in the δ Sct domain, and in the region log(energy) < 8 for stars with dominant γ Dor pulsations. where Amax and ζmax refer to the highest amplitude mode of the star (in ppm), and associated frequency (in d−1). The pulsation amplitude is a function of the observed amplitude and the rela- 8.2. Efficiency tive variation of the flux, and is given by the expression (Moya & Rodríguez-López 2010): In the introduction of this section we pointed out that a relation between the convective efficiency and mode excitation can exist. Δm Recent studies on convective efficiency of the outer convective ΔR/R = − , (4) ln(5 + 10dT) zone of F-G-K stars using 3D models show that the convective efficiency is related to the position of the star in the Hertzsprung- ΔR Δ where R is the relative pulsational amplitude, m the observed Russell (HR-) diagram (Trampedach & Stein 2011). To construct magnitude variation of the mode, and dT is given by an observable related to the convective efficiency that can be described with only variables related with the position in the δT ff ξ dT = e / r , (r = R), (5) HR-diagram, we found inspiration in the analytic description 8 Teff r of the convective energy given by the mixing length theory with ξr the variation in radius of the mode, and dT is evaluated 8 = In analogy to the mean free parameter in gas kinetic theory, the mix- at the surface of the star (r R). ing length is defined as the mean distance over which a fluid bulb con- Non-adiabatic calculations of a representative model of a hy- serves its properties. Generally, the mixing-length is assumed to be pro- brid pulsating A-F type star including time dependent convec- portional to the pressure-scale height by a factor α that is usually called tion (Grigahcène et al. 2005) show that the difference between mixing-length parameter.

A125, page 15 of 70 A&A 534, A125 (2011)

Fig. 13. Observable log(energy) plotted versus log(efficiency)forδ Sct (open squares) and γ Dor (asterisks) stars only (top), and for hybrid stars as well (bullets) (bottom). The left panels include all 480 Kepler stars that are assigned to one of the three groups. The right panels show the 49 stars for which reliable values of Teff and log g are available. In the on-line version of the paper the symbols representing the δ Sct, γ Dor and hybrid stars are red, blue, and black, respectively. The cross in the right bottom corner of the top left panel represents the typical error bars on the values: 0.04 dex and 0.12 dex for log(energy) and log(efficiency), respectively.

(Böhm-Vitense 1958). There, the convective efficiency,Γ,is the quantity is only an approximation. Inspired by these equa- defined as tions, we searched for the combination of temperature and grav-   ity that empirically provided the best means to separate between 2 1/3 γ Dor and δ Sct stars (see statistical test below), and define the Γ= A − ( rad ) , (6) observable efficiency as a0 ffi ≡ 3 −2/3 ∼ Γ e ciency (Teff log g) . (8) with a0 a constant, rad and the radiative and real temperature gradient, respectively, and Because the efficiency of the convective zone is expected to be higher for γ Dor stars than for δ Sct stars, the observable effi- 2 cpκpρcsα A ∼ √ (7) ciency should have a higher value for γ Dor stars than δ Sct stars. 3 9σT g 2Γ1 This behaviour is indeed observed, as illustrated in the left panel of Fig. 12, where the distribution in log(efficiency)isgiven.The (see Cox & Giuli 1968). majority of δ Sct stars have values log(efficiency) < −8.1dex, This quantity, which measures the ratio between the convec- while the histograms for γ Dor pulsators peak in the region tive and radiative conductivity, depends on a large number of log(efficiency) > −8.1dex. physical variables: the specific heat capacity at constant pres- sure cp, the opacity κ, the pressure p, the stellar density ρ,the 8.3. Efficiency versus energy sound velocity cs, the mixing length parameter α, the Stephan- Boltzmann constant σ, the temperature T, the gravity g,andthe When we plot the two new observables, log(energy)versus first adiabatic coefficient Γ1. Because we only have information log(efficiency), the groups of δ Sct and γ Dor stars are fairly on a limited number of observational variables, our estimate of well separated (see top panels Fig. 13). A log(energy)value

A125, page 16 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. of 8 leaves 90% of the δ Sct and γ Dor stars separated. The Grigahcène et al. (2010). The far superior precision of the bottom panel of Fig. 13 shows the same diagram with values Kepler space data opens a new window in detecting low- for the hybrid stars included, using the same colours and sym- amplitude variations. Kepler will be ideal to study hybrid be- bols as before. Typical errors on the values are 0.04 dex and haviour in different types of stars, such as roAp stars (Balona 0.12 dex for log(energy)andlog(efficiency), respectively. The et al. 2011a), sdB stars (Østensen et al. 2010), and B stars hybrid stars are placed in the intermediate region. We observed (Balona et al. 2011b). that δ Sct (γ Dor) dominated hybrids fall in the same region as – We presented a characterization of the stars in terms of num- the δ Sct (γ Dor) stars. ber of detected frequencies, frequency range, and typical We performed a Mann-Whitney U test with an adapted pulsation amplitudes, which provides valuable feedback for p-value (p = 0.0166) according to the closed-test principle de- models and instability studies. This is the first time that this scribed in Horn & Vollandt (1995), to statistically investigate if kind of information is available for a substantial sample of the mean of the distribution in log(energy)andlog(efficiency)is stars. Up to 500 non-combination frequencies are detected in different for the three different groups. The test shows that the the Kepler time series of a single star. The highest pulsation difference in the mean of the distributions in both log(energy) amplitude measured is 58 000 ppm. The shortest detected and log(efficiency) is statistically significant for all groups. δ Sct periods are about 18 min. We find that hybrid stars However, the apparent separation in log(efficiency) becomes less show all kinds of periodicities within the γ Dor and δ Sct evident when we take the considerable error bars into account. range. In particular, the majority of hybrid stars shows fre- We also performed a χ2 test (as described by Press et al. 1992)to quencies between 5 and 10 d−1. From a theoretical point of determine if the distributions themselves were different. All dis- view, this result presents a number of challenges, because the tributions are statistically significant, save for the γ Dor versus currently accepted over-stability mechanisms cannot explain hybrid star efficiencies, where they are marginally similar. This the presence of pulsational modes in the wide frequency conclusion holds even if we vary the Teff and log g values within ranges observed with Kepler. It needs to be investigated if the error ranges and recompute the efficiencies or vary the inputs and to what extent the presence of stochastic modes, high- into the energies. We point out once again that the definition degree, and/or rotationally split modes with high amplitudes, of efficiency is only a rough estimate of the theoretical expres- granulation and effects of convection can explain part of the sion for the convective efficiency, and might – at this stage – not unexpected observed modes. be refined enough to display the separating power between the – The location of γ Dor and δ Sct classes in the (Teff,logg)- groups we expect the convective efficiency to have. In a follow- diagram has been extended (Fig. 10). We find indications that up investigation we will assess the goodness of approximation Kepler δ Sct stars exist beyond the red edge of the observa- of our definition of efficiency by comparison with values of the tional instability strip, while Kepler γ Dor pulsations seem to convective efficiency as given by Eq. (6), calculated for several appear in both hotter and cooler stars than observed so far. model stars, and finetune its definition. The Kepler hybrid stars occupy the entire region between The two new approximate observables energy and efficiency the blue edge of the δ Sct instability strip and the red edge of reflect the different internal physics of oscillators with dominant the γ Dor instability strip and beyond. These results, if con- δ Sct pulsations and oscillators dominated by γ Dor pulsations, firmed by verification of the temperature and log g values and seem to allow us to distinguish between them. However, in a more comprehensive sample, imply that the observa- it needs to be further investigated if the two observables can tional instability strips need to be extended to accommodate be considered as independent parameters. This, together with an the Kepler δ Sct and γ Dor stars. From a theoretical point exploration of the physical mechanisms behind the instability of view, the overall presence of hybrid stars implies an in- of these stars, is the topic of a forthcoming paper. The observ- vestigation of other pulsation mechanisms to supplement the ables energy and efficiency are promising starting points to ex- κ mechanism and convective blocking effect to drive hybrid plore the relation between δ Sct, γ Dor and hybrid stars, but need pulsations. to be refined. – Two new “observables” that reflect the different internal physics of δ Sct and γ Dor pulsators are introduced to in- vestigate the relation between the two types of pulsations 9. Summary, discussion, and future prospects (Fig. 13): (1) efficiency, related to the convective efficiency We analysed the Kepler light curves based on survey phase of the outer convective zone, and a function of Teff and log g; data with time spans between 9 d and 322 d available through and (2) energy, the driving energy of a mode, and a function KASOC and associated frequency spectra of 750 candidate of the highest observed frequency amplitude and the associ- A-F type stars in search for δ Sct, γ Dor, and hybrid pulsators. ated frequency. Both observables are empirical and are con- The main results are: structed using only available measured variables. The im- pact and physical significance of the group separation in the – The Kepler light curves of the sample of 750 candidate (log(efficiency), log(energy))-diagram needs to be investi- A-F type stars show a variety in variability behaviour. gated in more detail. The two new observables are a promis- – Observationally, we propose three main groups to describe ing starting point for further investigations of the relation be- the observed variety: γ Dor, δ Sct, and hybrid stars. The latter tween δ Sct, γ Dor and hybrid stars. group includes both δ Sct-dominated and γ Dor-dominated – Our study indicates that Kp = 14 mag is a cut-off magnitude hybrid stars. About 63% of the sample are unambiguously for detection of variations with amplitudes below 20 ppm in assigned to one of the three groups. A-F type stars with Kepler. – About 23% of the sample are hybrid candidates (171 stars, – Sixteen percent of the sample stars show no clear variabil- or 36% of the stars assigned to the three groups). This ity within the expected range of frequencies for δ Sct and is in strong contrast with the number of hybrid candi- γ Dor stars. Faint and cool stars predominate this sample. dates so far observed from the ground, but compatible Among the stars, we identified 75 candidate solar-like stars. with the first Kepler study of γ Dor and δ Sct variables by No correlation between non-variability and the length of the

A125, page 17 of 70 A&A 534, A125 (2011)

available dataset or the available cadence mode is found. We colour or spectral information. Unfortunately, many of our stars find indications for the presence of constant stars inside the are moderate-to-fast rotators (see Sect. 7.2). Hence, the mode instability strips of A-F type pulsators. identification will be very challenging and will require more – The remaining 21% of sample stars are identified as a investigation. Cepheid, B-type stars, red giant stars, stars that show stellar An individual analysis of the candidate hybrid stars is needed activity, or binaries. At least 12% of the sample are identi- to confirm their hybrid status and to firmly characterize their pul- fied as a binary or multiple system, based on investigation sation properties. The current theoretical instability models for of the Kepler light curve or on input from the literature. hybrid stars need to be revised to be able to accommodate all Many long-period binaries are expected to be among the re- stars that have been proposed as hybrid candidates in this pa- maining stars of the sample. 3.5% of the sample stars shows per. This includes a revision of the mechanisms that allow driv- eclipses. Several of the EBs have variable components, in- ing of p- and g-modes in A-F type stars with a broad range of cluding δ Sct, γ Dor, and hybrid stars. temperatures. Additional processes that can be investigated with possible effect on the driving are stochastic excitation (Houdek Clearly, space missions are changing the landscape of γ Dor and et al. 1999; Samadi et al. 2002), a convective driving mecha- δ Sct pulsators. We aimed at a global analysis of the sample nism similar to g-mode pulsations in white dwarfs (Goldreich & stars. A careful seismic analysis of individual stars is needed Wu 1999), a κ mechanism-related effect presented by Gautschy to confirm their classification, clarify the observed variety in &Löffler (1996)andLöffler (2000), and radiative levitation pulsational behaviour, fully characterize the properties of the (Turcotte et al. 2000). Asteroseismic diagnostics have been stud- δ Sct, γ Dor, and hybrid groups, understand their relationship, ied to find signatures of stochastic mechanisms at the origin of clarify the driving mechanism(s) for each group, and elaborate the instability of γ Dor oscillators (Pereira et al. 2007). In that on the variables energy and efficiency. The observational re- work, this possibility was not discarded, but continuous and pre- sults with Kepler presented here open up several new questions cise space data were not yet available. The Kepler time series of and theoretical challenges for the current models related to pul- the sample of stars studied here will be an ideal new testbed for sational instability, thermodynamics, and stellar structure. We this method. mention here some topics for further investigation. The long, continuous time series that Kepler will deliver dur- To be able to place the stars confidently in the (Teff,logg)- ing its lifetime will unveil a large number of amplitudes at μmag diagram, estimate the projected rotational velocity, and derive level. This precision will open up opportunities to search for accurate abundances, at least one high-resolution spectrum is signatures of granulation in the light (Kallinger & needed for each star. To this end, an observational campaign Matthews 2010). Spectroscopically, convective signatures have is ongoing (Uytterhoeven et al. 2010a,b). Most stars of the been detected in the microturbulence and line broadening of δ Sct, γ Dor, and hybrid stars in our sample with magnitude A-F type stars cooler than Teff = 10 000 K (Landstreet et al. Kp ≤ 10.5 mag have recently been observed or are scheduled to 2009). be observed in the coming months. However, 70% of the stars in Also the theoretical instability strips of the γ Dor and Table 3 are fainter than magnitude Kp = 10.5mag,forwhichit δ Sct pulsators need revision. As shown in Fig. 1, stars exhibiting is time-consuming and less practical to observe them with the purely γ Dor or δ Sct pulsations seem to exist beyond the current available 2-m class telescopes that are equipped with a high- blue and red edge of the respective instability strips. Moreover, it resolution spectrograph. is worth investigating if the evolutionary phase of γ Dor stars can Because the oscillation modes in A-F type stars do not pro- be derived from properties in their frequency spectra, as is re- duce evident frequency patterns in their mode spectra, as is the cently suggested by Bouabid et al. (2011), based on a theoretical case for solar-like oscillators, the identification of pulsation study of seismic properties of MS and pre-MS γ Dor pulsators. modes benefits from high-resolution spectral or multi-colour Another open question is the existence of non-variable time series. Here we encounter limitations owing to the relative A-F type stars inside the instability strips. So far, it is suggested faintness of the Kepler sample too. For instance, it is only fea- (Poretti et al. 2003;Breger2004) that all seemingly constant sible to efficiently spectroscopically monitor the few brightest stars in the instability strip are low-amplitude pulsators. In this (Kp ≤ 9 mag) stars from the ground, while multi-colour pho- study we find indications that non-variability exists within the in- tometry can go a few magnitudes fainter. Moreover, it will be stability strip, but a more in-depth investigation based on a more impossible with the current instrumentation to detect the pulsa- comprehensive sample of stars with precise values of Teff and tion amplitudes of the order of a few μmag from the ground. log g is needed to confirm this. Therefore, only for a limited selection of the stars in Table 3, Furthermore, candidate γ Dor stars with only a few excited i.e. bright stars exhibiting high-amplitude variations, will it be dominant modes deserve to be looked at in more detail. The re- feasible to organize ground-based follow-up campaigns. lation between rotation and pulsations is not yet clear. Moreover, For all other stars, we will have to rely on extracting the differentiation between pulsations and rotational variability information on the pulsation modes directly from frequency proves to be very difficult (Breger 2011; Monnier et al. 2010). patterns observed in the Kepler data. Quasi-periodic patterns In the pilot study by Balona et al. (2011d) it was suggested have been observed before in δ Sct stars (Handler et al. 1997; that pulsation and rotation periods might be very closely related. García Hernández et al. 2009). But in fast rotating stars the It needs to be investigated to which extent the rotation influences rotation destroys regular frequency and period patterns of the excitation of the observed modes. To help this investigation, p- and g-modes, which complicates the mode identification v sin i values are needed. (e.g. Lignières et al. 2006; Ballot et al. 2010). For slowly rotat- Constraints on important physical parameters that are cru- −1 ing g-mode pulsators (Vrot < 70 km s ), a mode-identification cial for seismic modelling, such as stellar radius and mass, can technique has been developed that relies only on accurate values be derived directly for pulsators in binary systems (e.g. Tango of at least three frequencies (Frequency Ratio Method, Moya et al. 2006;Desmetetal.2010). Our sample consists of sev- et al. 2005;Suárezetal.2005), which is ideal to apply to eral binaries and eclipsing systems with (a) pulsating compo- the information extracted from the Kepler white light, without nent(s) (see Table 4). Hence, these targets in particular are very

A125, page 18 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. promising for dedicated ground-based follow-up observations, References and a seismic analysis. Moreover, it will be interesting to in- ff Abt, H. A. 1984, ApJ, 285, 247 vestigate the e ect of tidal interactions on pulsation frequencies Abt, H. A. 2004, ApJS, 155, 175 (e.g. Uytterhoeven et al. 2004; Derekas et al. 2011). Abt, H. A., & Cardona, O. 1984, ApJ, 285, 190 Four of the EBs with a candidate γ Dor, δ Sct, or hybrid com- Aerts, C. 2001, ApJ, 553, 814 Aerts, C., Eyer, L., & Kestens, E. 1998, A&A, 337, 790 ponent in our sample are known as chemically peculiar stars Allende Prieto, C., & Lambert, D. L. 1999, A&A, 352, 555 (see Table 1). Three candidate hybrid stars (out of 61 stars with Antoci, V., Handler, G., Campante, T. L., et al. 2011, Nature, accepted known spectral type), four candidate δ Sct stars (out of 67 stars), Baglin, A., Auvergne, M., Barge, P., et al. 2006, in The CoRoT Mission, Pre- and one candidate γ Dor star (out of 25 stars) are also Ap or Launch Status, Stellar Seismology and Planet Finding, ed. M. Fridlund, A. Baglin, J. Lochard, & L. Conroy, ESA Publications Division, Nordwijk, Am stars. So far, we detected both p- and g-mode pulsators Netherlands, ESA SP-1306, 33 among the chemically peculiar stars. Balona et al. (2011c) stated Ballot, J., Lignières, F., Reese, D. R., & Rieutord, M. 2010, A&A, 518, A30 that the instability strip of pulsating Am type stars and δ Sct stars Balona, L. A., Krisciunas, K., & Cousins, A. W. J. 1994, MNRAS, 270, 905 do not differ much. With the current small number statistics, it is Balona, L. A., Cunha, M. S., Kurtz, D. W., et al. 2011a, MNRAS, 410, 517 not clear whether Ap/Am stars are indeed rare among γ Dor stars Balona, L. A., Pigulski, A., De Cat, P., et al. 2011b, MNRAS, 413, 2403 Balona, L. A., Ripepi, V., Catanzaro, G., et al. 2011c, MNRAS, 414, 792 (Handler & Shobbrook 2002). One of the open questions is if Balona, L. A., Guzik, J., Uytterhoeven, K., et al. 2011d, MNRAS, in press chemical peculiarity is related to hybridity. The first discovered Benko,˝ J. M., Kolenberg, K., Szabó, R., et al. 2010, MNRAS, 409, 1585 hybrid HD 8801 (Henry & Fekel 2005) intruigingly turned out Bidelman, W. P., Ratcliff, S. J., & Svolopoulos, S. 1988, PASP, 100, 828 to be an . In a recent abundance study by Hareter et al. Böhm-Vitense, E. 1958, Zeitschrift für Astrophysik, 46, 108 Borucki, W. J., Koch, D. G., Brown, T. M., et al. 2010, Science, 327, 977 (2011) one of the two studied hybrid stars is also confirmed as Borucki, W. J., Koch, D. G., Basri, G., et al. 2011, ApJ, 728, 117 being a chemically peculiar star. Together with the results of this Bouabid, M.-P., Montalbán, J., Miglio, A., et al. 2009, in Stellar Pulsation: study, this brings the total of known chemically peculiar hybrid Challenges for Theory and Observation, ed. J. A. Guzik, P. A. Bradley stars to five. There is currently no evidence for a direct link be- (Melville, NY: AIP), AIP Conf. Proc., 1170, 477 tween chemical peculiarity and hybrid behaviour, but a careful Bouabid, M.-P., Montalbán, J., Miglio, A., et al. 2011, A&A, 531, A145 Breger, M. 2000, in and Related Stars, ed. M. Breger, & M. H. abundance analysis of a representative sample of hybrid stars is Montgomery, ASP Conf. Ser., 210, 3 needed to confirm this. Breger, M. 2004, in The A-Star Puzzle, ed. J. Zverko, J. Žižnovský, S. J. Many more (candidate) δ Sct, γ Dor, and hybrid stars are ex- Adelman, & W. W. Weiss (Cambridge University Press), Proc. IAU Symp., 224, 335 pected to be among the stars observed by Kepler. Debosscher Breger, M. 2011, Carnegie Observatories Astrophysics Series, 5, in press et al. (2011) reported the discovery of many additional δ Sct [arXiv:1104.4392] and γ Dor candidates in the public Kepler Q1 data. Also, a con- Breger, M., Handler, G., Garrido, R., et al. 1997, A&A, 324, 566 siderable fraction of the host stars of the recently published Breger, M., Lenz, P., Antoci, V., et al. 2005, A&A, 435, 955 1235 Kepler planet candidates (Borucki et al. 2011) turn out Breger, M., Balona, L., Lenz, P., et al. 2011, MNRAS, 414, 1721 Brown, T. M., Latham, D. W., Everett, M. E., & Esquerdo, G. A. 2011, AJ, to be A-F type stars. Hence, we have promising prospects in in press [arXiv:1102.0342] studying and understanding the A-F type star variable behaviour Bruntt, H., De Cat, P., & Aerts, C. 2008, A&A, 478, 487 in detail through a much larger and more complete sample of Cannon, A. J. 1925, Ann. Astron. Obs. Harvard Coll., 100, 17 A-F stars in the Kepler field when longer timestrings of Kepler Carrier, F., North, P., Udry, S., & Babel, J. 2002, A&A, 394, 151 Catanzaro, G., Frasca, A., Molenda-Zakowicz,˙ J., & Marilli, E. 2010, A&A, 517, data will become publicly available. Kepler is definitely opening A3 the window towards the accurate characterization of pulsating Catanzaro, G., Ripepi, V., Bernabei, S., et al. 2011, MNRAS, 411, 1167 A-F stars. Chapellier, E., Rodríguez, E., Auvergne, M., et al. 2011, A&A, 525, A23 Cox, J. P., & Giuli, R. T. 1968, Principles of stellar structure (New York: Gordon and Breach) Cuypers, J., Aerts, C., De Cat, P., et al. 2009, A&A, 499, 967 Acknowledgements. We are grateful to Joanna Molenda-Zakowicz,˙ James Debosscher, J., Sarro, L. M., López, M., et al. 2009, A&A, 506, 519 Nemec and the anonymous referee for their suggestions and comments to Debosscher, J., Blomme, J., Aerts, C., & De Ridder, J. 2011, A&A, 529, A89 improve this paper. Funding for the Kepler mission is provided by NASA’s Derekas, A., Kiss, L. L., Borkovits, T., et al. 2011, Science, 332, 216 Science Mission Directorate. We thank the entire Kepler team for the devel- De Cat, P., Eyer, L., Cuypers, J., et al. 2006, A&A, 449, 281 opment and operations of this outstanding mission. K.U. acknowledges finan- Desmet, M., Frémat, Y., Baudin, F., et al. 2010, MNRAS, 401, 418 cial support by the Deutsche Forschungsgemeinschaft (DFG) in the frame- Dupret, M.-A., Grigahcène, A., Garrido, R., Gabriel, M., & Scuflaire, R. 2004, work of project UY 52/1-1, and by the Spanish National Plan of R&D for A&A, 414, L17 2010, project AYA2010-17803. A.M. acknowledges the funding of AstroMadrid Dupret, M.-A., Grigahcène, A., Garrido, R., Gabriel, M., & Scuflaire, R. 2005, (CAM S2009/ESP-1496). E.N. and A.P. acknowledge the financial support A&A, 435, 927 of the NN 203 405139 and NN 203 302635 grant, respectively, from the Eyer, L., & Aerts, C. 2000, A&A, 361, 201 MNiSW. The work by G.H. and V.A. was supported by the Austrian Fonds zur Floquet, M. 1970, A&AS, 1, 1 Förderung der wissenschaftlichen Forschung under grant P20526-N16. L.F.M. Floquet, M. 1975, A&AS, 21, 25 acknowledge financial support from the UNAM under grant PAPIIT IN114309. García, R. A., Hekker, S., Stello, D., et al. 2011, MNRAS, 414, 6 R.Sz. and L.L.K. have been supported by the “Lendület” program of the García Hernández, A., Moya, A., Michel, E., et al. 2009, A&A, 506, 79 Hungarian Academy of Sciences and the Hungarian OTKA grants K83790 and Gautschy, A., & Löffler, W. 1996, DSSN, 10, 13 MB08C 81013. RSz was supported by the János Bolyai Research Scholarship of Gilliland, R. L., Brown, T. M., Christensen-Dalsgaard, J., et al. 2010a, PASP, the Hungarian Academy of Sciences. SH acknowledges financial support from 122, 131 the Netherlands Organisation for Scientific Research (NWO). This research has Gilliland, R. L., Jenkins, J. M., Borucki, W. J., et al. 2010b, ApJ, 713, 160 been funded by the Spanish grants ESP2007-65475-C02-02, AYA 2010-21161- Glebocki, R., & Stawikowski, A. 2000, AcA, 50, 509 C02-02 and CSD2006-00070. The research leading to these results has received Goldreich, P., & Wu, Y. 1999, ApJ, 511, 904 funding from the European Community’s Seventh Framework Programme Grenier, S., Baylac, M.-O., Rolland, L., et al. 1999, A&AS, 137, 451 (FP7/2007-2013) under grant agreement No. 269194. This research has made Grigahcène, A., Dupret, M.-A., Gabriel, M., Garrido, R., & Scuflaire, R. 2005, use of the SIMBAD database, operated at CDS, Strasbourg, France, and is partly A&A, 434, 1055 based on observations obtained at the Observatorio Astrónomico Nacional-San Grigahcène, A., Antoci, V., Balona, L., et al. 2010, ApJ, 713, L192 Pedro Mártir (OAN-SPM), Baja California, Mexico, at the Observatoire de Gray, R. O., & Kaye, A. B. 1999, AJ, 118, 2993 Haute Provence, France, and at the Thüringer Landessternwarte Tautenburg, Guetter, H. H. 1968, PASP, 80, 197 Germany. We acknowledge with thanks the variable star observations from the Guinan, E. F., Bochanski, J. J., Depasquale, J. M., Ribas, I., & McCook, G. P. AAVSO International Database contributed by observers worldwide and used in 2001, IAU Inform. Bull. Var. Stars, 5062, 1 this research.

A125, page 19 of 70 A&A 534, A125 (2011)

Guzik, J. A., Kaye, A. B., Bradley, P. A., Cox, A. N., & Neuforge, C. 2000, AJ, Poretti, E., Michel, E., Garrido, R., et al. 2009, A&A, 506, 85 542, 57 Press, W. H., Teukolsky, S. A., Vettering, W. T., & Flannery, B. P. 1992, Handler, G. 1999, MNRAS, 309, L19 Numerical Recipes, 2nd edn. (New York: Cambridge University Press) Handler, G. 2009a, AIPC, 1170, 403 Prša, A., Batalha, N. M., Slawson, R. W., et al. 2011, AJ, 141, 83 Handler, G. 2009b, MNRAS, 398, 1339 Reegen, P. 2007, A&A, 467, 1353 Handler, G., & Shobbrook, R. R. 2002, MNRAS, 333, 251 Reegen, P. 2011, CoAst, in press [arXiv:1006.5081] Handler, G., Pikall, H., O’Donoghue, D., et al. 1997, MNRAS, 286, 303 Rodríguez, E., & Breger, M. 2001, A&A, 366, 178 Hareter, M., Reegen, P., Miglio, A., et al. 2010, AN, P49 [arXiv:1007.3176] Rodríguez, E., López-González, M. J., & López de Coca, P. 2000, A&AS, 144, Hareter, M., Fossati, L., Weiss, W., et al. 2011, ApJ, submitted 469 Hartman, J. D., Bakos, G., Stanek, K. Z., & Noyes, R. W. 2004, AJ, 128, 1761 Rowe, J. F., Matthews, J. M., Cameron, C., et al. 2006, CoAst, 148, 34 Hauck, B., & Mermilliod, M. 1998, A&AS, 129, 431 Samadi, R., Goupil, M.-J., & Houdek, G. 2002, A&A, 395, 563 Henry, G. W., & Fekel, F. C. 2005, AJ, 129, 2026 Sato, K., & Kuji, S. 1990, A&AS, 85, 1069 Henry, G. W., Fekel, F. C., Kaye, A. B., & Kaul, A. 2001, AJ, 122, 3383 Scargle, J. D. 1982, ApJ, 263, 835 Henry, G. W., Fekel, F. C., & Henry, S. M. 2005, AJ, 129, 2815 Scuflaire, R., Théado, S., Montalbán, J., et al. 2008, A&AS, 316, 83 Henry, G. W., Fekel, F. C., & Henry, S. M. 2011, AJ, 142, 39 Shulyak, D., Tsymbal, V., Ryabchikova, T., Stütz, Ch., & Weiss, W. W. 2004, Hill, P. W., & Lynas-Gray, A. E. 1977, MNRAS, 180, 691 A&A, 428, 993 Hill, S. J., & Schilt, J. 1952, Contributions from the Rutherford Observatory of Skiff, B. A. 2007, Vizier On-line Data Catalog, 1, 2023 Columbia University New York, 32, 1 Slawson, R. W., Prša, A., Welsh, W. F., et al. 2011, AJ, in press Hoffleit, D. 1951, Harvard College Observatory Bulletin, 920, 32 [arXiv:1103.1659] Horn, M., & Vollandt, R. 1995, in Multiple Tests und Auswahlverfahren Smalley, B., & Kupka, F. 1997, A&A, 328, 349 (Stuttgart: Gustav Fischer Verlag) Soubiran, C., Le Campion, J.-F., Cayrel de Strobel, G., & Caillo, A. 2010, A&A, Houdek, G., Balmforth, N. J., Christensen-Dalsgaard, J., & Gough, D. O. 1999, 515, A111 A&A, 351, 582 Stephenson, C. B. 1986, ApJ, 301, 927 Jenkins, J. M., Caldwell, D. A., Chandrasekaran, H., et al. 2010a, ApJ, 713, L120 Strömgren, B. 1966, &A, 4, 433 Jenkins, J. M., Caldwell, D. A., Chandrasekaran, H., et al. 2010b, ApJ, 713, L87 Suárez, J. C., Moya, A., Martín-Ruíz, S., et al. 2005, A&A, 443, 271 Kallinger, T., & Matthews, J. M. 2010, ApJ, 711, L35 Szabó, R., Szabados, L., Ngeow, C.-C., et al. 2011, MNRAS, 413, 2709 Kaye, A. B., Handler, G., Krisciunas, K., Poretti, E., & Zerbi, F. M. 1999a, PASP, Tango, W. J., Davis, J., Ireland, M., et al. 2006, MNRAS, 370, 884 111, 840 Trampedach, R., & Stein, R. F. 2011, ApJ, 731, A78 Kaye, A. B., Henry, G. W., Fekel, F. C., & Hall, D. S. 1999b, MNRAS, 308, Tsymbal, V. 1996, ASPC, 108, 198 1081 Turcotte, S., Richer, J., Michaud, G., & Christensen-Dalsgaard, J. 2000, A&A, Keiner, J., Kunis, S., & Potts, D. 2009, in Using NFFT 3 – a software library for 360, 603 various nonequispaced fast Fourier transforms ACM Trans. Math. Software, Unno, W., Osaki, Y., Ando, H., Saio, H., & Shibahashi, H. 1989, Nonradial os- 36, 4 cillations of stars (Tokyo: University of Tokyo Press) Kharchenko, N. V., & Roeser, S. 2009, VizieR On-line Data Catalog: I/280B Uytterhoeven, K., Telting, J. H., Aerts, C., & Willems, B. 2004, A&A, 427, 593 King, H., Matthews, J. M., Rowe, J. F., et al. 2006, CoAst, 148, 28 Uytterhoeven, K., Mathias, P., Poretti, E., et al. 2008, A&A, 489, 2213 Koch, D. J., Borucki, W. J., Basri, G., et al. 2010, ApJ, 713, L79 Uytterhoeven, K., Szabo, R., Southworth, J., et al. 2010a, AN, 331, P30 Kolenberg, K., Szabó, R., Kurtz, D., et al. 2010, ApJ, 713, L198 [arXiv:1003.6089] Kurucz, R. L. 1993, Kurucz CD-ROM 13 (Cambridge, USA: Smithonian Uytterhoeven, K., Briquet, M., Bruntt, H., et al. 2010b, AN, 331, 993 Astrophysical Observatory) Vyssotsky, A. N. 1958, Publications of the Leander Mc Cormik Observatory of Lafrasse, S., Mella, G., Bonneau, D., et al. 2010, in Optical and Infrared the University of Virginia, Charlottesville, 13, V Interferometry II., ed. W. C. Danchi, F. Delplancke, & J. K. Rajagopal, Proc. Walker, G., Matthews, J., Kuschnig, R., et al. 2003, PASP, 115, 1023 SPIE, 7734, 140 Watson, C. L. 2006, SASS, 25, 47, AAVSO International Variable Star Index Lampens, P., & Boffin, H. M. J. 2000, in Delta Scuti and Related Stars, ed. M. VSX, Watson+, 2006−2010 Breger, & M. H. Montgomery, ASP Conf. Ser., 210, 309 Worley, C. E., & Douglass, G. G. 1997, A&AS, 125, 523 Landstreet, J. D., Kupka, F., Ford, H. A., et al. 2009, A&A, 503, 973 Wright, C. O., Egan, M. P., Kraemer, K. E., & Price, S. D. 2003, AJ, 125, 359 Latham, D. W., Brown, T. M., Monet, D. G., et al. 2005, BAAS, 37, 1340 Zechmeister, M., & Kürster, M. 2009, A&A, 496, 577 Lehmann, H., Tkachenko, A., Semaan, T., et al. 2011, A&A, 526, A124 Zerbi, F. M., Rodríguez, E., Garrido, R., et al. 1997, MNRAS, 292, 43 Lenz, P., & Breger, M. 2005, CoAst, 146, 53 Zerbi, F. M., Rodríguez, E., Garrido, R., et al. 1999, MNRAS, 303, 275 Lignières, F., Rieutord, M., & Reese, D. 2006, A&A, 455, 607 Lindoff, U. 1972, A&A, 16, 315 ffl Lö er, W. 2000, in The Impact of Large-Scale Surveys on Pulsating Star 1 Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot; Research, ed. L. Szabados, & D. Kurtz, ASP Conf. Ser., 203, 447 CEA, IRFU, SAp, Centre de Saclay, 91191, Gif-sur-Yvette, France Macrae, D. A. 1952, ApJ, 116, 592 2 Magalashvili, N. L., & Kumishvili, J. I. 1976, IAU Inform. Bull. Var. Stars, 1167, Kiepenheuer-Institut für Sonnenphysik, Schöneckstraße 6, 79104 1 Freiburg im Breisgau, Germany 3 Malkov, O. Y., Oblak, E., Snegireva, E. A., & Torra, J. 2006, A&A, 446, 785 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Martín, S., Bossi, M., & Zerbi, F. M. 2003, A&A, 401, 1077 Spain; Departamento de Astrofísica, Universidad de La Laguna, Masana, E., Jordi, C., & Ribas, I. 2006, A&A, 450, 735 38205 La Laguna, Tenerife, Spain Mason, B. D., Wycoff, G. L., Hartkopf, W. I., Douglass, G. G., & Worley, C. E. e-mail: [email protected] 2001, AJ, 122, 3466 4 Laboratorio de Astrofísica Estelar y Exoplanetas, LAEX-CAB Mathias, P., Le Contel, J.-M., Chapellier, E., et al. 2004, A&A, 417, 189 (INTA-CSIC), PO BOX 78, 28691 Villanueva de la Cañada, Madrid, Molenda-Zakowicz,˙ J., Frasca, A., & Latham, D. W. 2008, AcA, 58, 419 ˙ Spain Molenda-Zakowicz, J., Latham, D. W., Catanzaro, G., Frasca, A., & Quinn, S. N. 5 2011, MNRAS, 412, 1210 Centro de Astrofísica, Faculdade de Ciências, Universidade do Monnier, J. D., Townsend, R. H. D., Che, X., et al. 2010, ApJ, 725, 1192 Porto, Rua das Estrelas, 4150-762 Porto, Portugal 6 Moon, T. T. 1985, Comm. from the Univ. of London Obs., 78 Los Alamos National Laboratory, XTD-2, Los Alamos, NM 87545- Moore, J. H. & Paddock, G. F. 1950, ApJ, 112, 48 2345, USA Moya, A., & Rodríguez-López, C. 2010, ApJ, 710, L7 7 Instituto de Astrofísica de Andalucía (CSIC), Apartado 3004, 18080 Moya, A., Suárez, J. C., Amado, P. J., et al. 2005, A&A, 432, 289 Granada, Spain Niemczura, E., Morel, T., & Aerts, C. 2009, A&A, 506, 213 8 LESIA, Observatoire de Paris, CNRS, UPMC, Université Paris- Nordström, B., Mayor, M., Andersen, J., et al. 2004, A&A, 418, 989 Diderot, 92195 Meudon, France Otero, S. 2007, Open European Journal on Variable stars, 72, 10 9 Valentian International University, Prolongación C/ José Pradas Østensen, R. H., Silvotti, R., Charpinet, S., et al. 2010, MNRAS, 409, 1470 / Pereira, T. M. D., Suárez, J. C., Lopes, I., et al. 2007, A&A, 464, 659 Gallen, s n 12006 Castellón de la Plana, Spain 10 Perryman, M. A. C., Lindegren, L., Kovalevsky, J., et al. 1997, A&A, 323, L49 Astrophysics Group, Keele University, Staffordshire, ST5 5BG, UK Pigulski, A., Pojmanski,´ G., Pilecki, B., & Szczygieł, D. M. 2009, AcA, 59, 33 11 Institut für Astronomie, Türkenschanzstraße 17, 1180 Wien, Austria Poretti, E., Koen, C., Martinez, P., et al. 1997, MNRAS, 292, 621 12 Nicolaus Copernicus Astronomical Center, Bartycka 18, 00-716 Poretti, E., Garido, R., Amado, P. J., et al. 2003, A&A, 406, 203 Warsaw, Poland

A125, page 20 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I.

13 South African Astronomical Observatory, PO Box 9, Observatory 26 University of Birmingham, School of Physics and Astronomy, 7935, South Africa Edgbaston, Birmingham B15 2TT, UK 14 Instytut Astronomiczny, Uniwersytet Wrocławski, Kopernika 11, 27 Department of Astronomy and Physics, Saint Marys University, 51-622 Wrocław, Poland Halifax, NS B3H 3C3, Canada 15 Observatorio Astronómico Nacional, Instituto de Astronomía, 28 Observatoire de Genève, Université de Genève, 51 Ch. des UNAM, Ensenada B.C., Apdo. Postal 877, Mexico Maillettes, 1290 Sauverny, Switzerland 16 CISAS, Padova University, via Venezia 15, 35131 Padova, Italy 29 Los Alamos National Laboratory, XCP-6, MS T-087, Los Alamos, 17 INAF - Astronomical Observatory of Padova, Vicolo Osservatorio NM 87545-2345, USA 5, 35122 Padova, Italy 30 Jeremiah Horrocks Institute of Astrophysics, University of Central 18 UMR 6525 H. Fizeau, UNS, CNRS, OCA, Campus Valrose, 06108 Lancashire, Preston PR1 2HE, UK Nice Cedex 2, France 31 Royal Observatory of Belgium, Ringlaan 3, 1180 Brussel, Belgium 19 Instituut voor Sterrenkunde, K.U.Leuven, Celestijnenlaan 200D, 32 Department of Physics and Astronomy, University of Aarhus, bygn. 3001 Leuven, Belgium 1520, Ny Munkegade, 8000 Aarhus C., Denmark 20 Konkoly Observatory of the Hungarian Academy of Sciences, 1525 33 Department of Astronomy, University of Texas, Austin, TX 78712, Budapest PO Box 67, Hungary USA 21 INAF - Osservatorio Astronomico di Capodimonte, via Moiariello 34 Sydney Institute for Astronomy, School of Physics, A28, The 16, 80131 Napoli, Italy University of Sydney, NSW, 2006, Australia 22 Lab. d’Astrophysique de Toulouse-Tarbes, Université de Toulouse, 35 Bay Area Environmental Research Inst./NASA Ames Research CNRS, 57 avenue d’Azereix, 65000 Tarbes, France Center, Moffett Field, CA 94035, USA 23 Thüringer Landessternwarte Tautenburg, 07778 Tautenburg, 36 SETI Institute/NASA Ames Research Center, Moffett Field, CA Germany 94035, USA 24 Department of Astronomy, New Mexico State University, Las Cruces, NM 88001, USA 25 Astronomical Institute “Anton Pannekoek”, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

A125, page 21 of 70 A&A 534, A125 (2011) Quarters LC Quarters SC T δ T (d) (d) Δ 460 9.5 0.0 Q0 . . . 41 318 79.6 4.543 716 Q0–Q1 79.6 Q2.1 4.5 Q0–Q1 Q2.1 38 573 79.6 4.5 Q0–Q138 098 Q2.1 292.5 219.3 Q0–Q1 Q4.2 1 38 38 36 38 36 355436 3535 binary binary 15 85637 3464 43 05737 44.4 3490 binary 1.2 79.6 5.1 . . . Q1 Q0–Q1 39 459 Q0 Q2.1 137.7 66.5 Q0–Q1 Q2.3 37 3452 binary 1 999 44.2 2.7 Q0–Q1 . . . 37 3418a . . . 59 804 321.4 4.9 Q0–Q4 Q4.1 + + + + + + HD 182271 . . . 40 134 228.8 158.5 Q0–Q1 Q3.3 BD BD BD BD BD 35 35 35 35 35 35 36 53 13.636 58 16.6 11.2 9.1 . . . A2 . . . binary 44 232 321.5 248.4 Q0–Q1 Q4.3 37 48 57.2 11.5 ...... binary 37 49 25.2 10.9 F0 37 53 02.9 13.3 ...... 2 073 44.2 1.2 Q0–Q1 . . . 37 30 35.8 9.5 F0 37 52 27.4 11.337 53 08.4 8.7 . . . A0 37 BD 59 54.037 55 51.5 11.237 59 09.0 13.438 04 32.4 11.438 00 26.4 12.5 . . .38 02 05.2 12.6 . . .38 01 40.7 11.0 . . .38 03 36.6 10.3 . . .38 11 27.8 13.7 . . . TYC 11.9 . 3134-833-1 ...... TYC 3134-92-1 . . . TYC 3134-10-1 . . . 43 921 ...... 79.6 ...... 4.5 . . . 44 400 464 462 Q0–Q1 44 183 321.5 . . . 461 . . 248.3 . 2 070 321.5 9.5 9.5 Q2.1 248.4 Q0–Q1 9.5 0.0 0.0 44.2 463 Q0–Q1 460 0.0 1.4 Q4.3 Q0 Q0 9.5 Q4.3 Q0–Q1 9.5 Q0 0.0 0.0 ...... Q0 . . . Q0 ...... 37 09 54.8 9.3 F0 37 34 46.3 13.4 ...... 37 53 38.9 11.3 .37 . 50 . 13.8 10.6 . . . 461 . . . 9.537 Cl*NGC 6791 54 SBG 34.8 5986 10.4 NGC 6791 . 0.0 . . 39 847 . . . Q0 228.8 158.6 . . . TYC 3120-1608-1 . . Q0–Q1 . 38 464 . . . Q3.3 292.5 219.4 40 233 Q0–Q1 137.7 66.4 Q4.2 Q0–Q1 Q2.3 37 06 21.237 16 21.3 12.837 29 48.7 10.437 27 26.9 12.237 33 24.6 12.1 . . . . . 9.6 ...... 37 39 59.5 F2 37 41 00.0 11.137 36 41.4 TYC 11.1 2666-751-137 41 19.2 12.637 . . 40 . 21.6 12.0 . . .37 39 41.6 10.8 . . .37 . . 46 . 42.6 11.9 ...... 37 . . 43 . 23.2 13.0 . . .37 46 05.9 11.6 . . .37 44 TYC3134-1646-1 14.9 13.4 . . .37 50 27.9 TYC 12.3 . 3134-205-1 . 40 . .37 062 . 53 . 10.6 12.5 . . .37 49 16.3 11.1 ...... 137.7 . . 12.6 ...... 66.5 ...... 460 ...... Q0–Q1 . 49 244 461 . . . 457 43 9.5 . 946 . . . . 44.2 . Q2.3 . 9.5 .37 0.0 . . . 51 . 32.0 79.6 . 9.5 .37 1.2 . . . 48 . 57.9 12.6 . .37 0.0 . . . . 50 41.7 4.5 11.8 . . 0.0 . . . . Q0 10.8 . . . Q0 Q0–Q1 462 . . . . . Q0–Q1 . Q0–Q1 461 ...... 460 ...... 461 . . 9.5 . . . . . Q2.1 . 462 . . Q1 binary 9.5 . 40 . 046 . . . 9.5 0.0 462 9.5 0.0 2 070 228.8 9.5 . 0.0 . . 460 158.5 . 0.0 . 2 . Q0 086 9.5 . 0.0 . 44.2 . Q0 Q0–Q1 Q0 9.5 0.0 1.6 44.2 Q0 Q0–Q1 . 0.0 . 1.2 . Q3.3 Q0–Q1 ...... Q0 . . binary ...... Q0–Q1 . . . Q0 . . . 463 . . . 2 . 065 . . . . . 9.5 44.2 0.0 1.2 Q0–Q1 Q0 ...... 37 05 57.0 11.237 06 34.5 11.2 ...... TYC2666-352-137 35 36.2 TYC 10.1 2666-579-1 binary ...... TYC 3135-203-1 44 418 321.5 248.3 . . . Q0–Q1 15 857 Q4.3 44.437 49 54.1 1.2 11.7 . . Q1 . Q0 ...... 2 021 44.2 2.3 Q0–Q1 . . . + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + A-F type stars. (J2000) (J2000) Kepler 01294756 19 25 41.35 KIC ID01162150 19 24 53.76 RA Dec Kp Spectral type Name Variable N Datapoints 02557430 19 07 22.87 02575161 19 25 17.66 02572386 19 22 45.89 0271859602720582 19 30 35.78 02834796 19 32 21.19 02835795 19 06 47.62 02853280 19 08 06.53 02855687 19 26 27.98 02860123 19 28 31.20 02969151 19 32 16.42 19 02 17.76 02166218 19 30 57.05 02568519 19 20 03.94 02571868 19 22 17.62 02707479 19 20 33.10 01571152 19 23 40.56 02163434 19 28 33.84 02558273 19 08 24.84 02569639 19 20 46.80 02694337 19 05 08.62 0171859401995489 19 23 19.37 02020966 19 04 33.82 02162283 19 31 26.64 19 27 34.03 0230336502306469 19 26 08.76 02306716 19 28 52.06 02310479 19 29 03.79 02311130 19 32 24.58 02423932 19 33 00.07 02439660 19 05 59.69 02443055 19 22 17.76 02444598 19 25 31.08 02556297 19 26 53.83 02556387 19 05 53.09 02557115 19 06 01.30 19 06 59.52 0258420202584908 19 33 03.19 19 33 41.47 01573064 19 25 24.07 02300165 19 23 16.78 02583658 19 32 34.58 01432149 19 25 29.23 01571717 19 24 10.54 02168333 19 32 44.59 02578251 19 27 51.65 Database of 750 Table 1.

A125, page 22 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. Quarters LC Quarters SC T δ T (d) (d) Δ 45 196 169.8 95.2 Q0–Q140 426 Q3.1 137.7 66.348 466 Q0–Q1 44.2 1.2 Q2.3 44 399 321.5 Q0 248.340 286 Q0–Q1 137.7 Q1 66.3 Q4.3 Q0–Q1 Q2.3 3 ◦  38 2 Sct δ 37 3324 binary38 3415 45 378 binary 109.5 35.3 Q0–Q1 Q2.2 38 3391 . . .38 3666 40 427 137.7 66.3 . . . Q0–Q1 40 408 Q2.3 137.7 66.3 Q0–Q1 Q2.3 + + + + HD 182634 HD 178306HD 181850 . . . binary 58 430HD 184105 321.4 32.9 . . . Q0–Q4HD 178875 Q3.2 HD 181569 45 121 binary, Am star 109.0 14 006 35.4 . . . 310.5 Q0–Q1 4.5 58 013 Q2.2 Q1–Q4 321.4 32.9 . . . Q0–Q4 Q3.2 BD BD BD BD 18 35 35 35 35 35 35 35 35 35 ,A3 16 38 08 59.338 08 56.6 13.538 06 51.7 12.6 8.0 . . . . . F2 ...... 460 2 090 9.5 44.2 0.0 1.2 Q0–Q1 Q0 ...... 38 08 14.2 12.5 ...... 463 9.5 0.0 Q0 . . . 38 21 19.938 23 59.5 11.1 9.0 . . . A5 TYC 3121-1831-1 . . . 2 06338 30 44.2 34.638 34 50.6 12.738 34 1.2 54.4 13.4 9.6 Q0–Q1 ...... A5 ...... 2 062 2 034 44.2 44.2 1.2 1.9 Q0–Q1 Q0–Q1 ...... 38 19 32.8 13.6 . . .38 24 . 18.0 . . 11.4 ...... 38 31 49.4 TYC 3135-135-138 30 32.6 8.5 10.5 pulsating 460 F0 . . . 9.5 TYC 0.0 3134-632-1 Q0 ...... 45 140 169.8 95.2 Q0–Q1 Q3.1 38 16 09.438 16 47.1 10.738 18 24.3 11.038 21 28.8 13.2 9.6 ...... A5 TYC 3134-70-1 ...... 47 547 ...... 262.8 187.338 35 24.438 32 46.6 13.4 Q0–Q138 2 30 090 31.8 13.6 2 070 7.7 . . 44.2 . kF2hA9mF3 Q4.1 . . 44.2 . 1.2 1.638 33 25.9 Q0–Q138 35 51.6 Q0–Q1 11.738 40 . 26.4 . . 12.838 38 . 56.5 . . 12.938 39 . . 04.9 . 13.5 .38 . 38 . . . 19.2 . 11.4 .38 . 38 . 05.1 10.9 . . . 11.3 ...... TYC 3121-379-1 . . . . 460 . . TYC 3135-189-1 462 ...... 9.5 . . . . 9.5 . . . . . 0.0 . . . 0.0 . . . 39 889 . . 2 . Q0 086 43 958 2 Q0 137.7 090 462 66.3 44.2 310.5 461 44.2 248.3 . . Q0–Q1 . 1.2 462 . 9.5 . . 1.2 9.5 Q1 Q0–Q1 0.0 Q2.3 Q0–Q1 9.5 0.0 0.0 Q0 . Q4.3 . . Q0 . . . Q0 ...... 38 15 08.2 13.5 ...... 38 34 04.0 463 11.2 9.5 . . . 0.0 TYC 3120-1011-138 32 18.4 Q0 12.4 ...... 43 321 79.6 . . . 4.5 Q0–Q1 . . . Q2.1 462 9.5 0.0 Q0 . . . 38 11 41.638 08 35.9 13.238 12 08.2 13.2 9.4 ...... A5 38 21 13.9 8.3 ...... 38 A3 18 46.438 18 21.2 10.338 21 04.1 10.638 29 02.3 12.3 . . . 11.3 . .38 . . . 24 . 41.0 .38 . 24 . 02.9 10.8 . . . 8.0 . . . TYC38 3135-607-1 25 464 24.9 TYC . 3135-396-138 . 2 . 30 062 20.2 13.6 A2 TYC 3120-1051-1 9.6 . 9.5 . . 44.2 . . TYC . . 3134-2162-1 . . . . . binary 0.0 1.2 A5 binary Q0–Q1 45 394 Q0 40 135 . . . 109.5 . . 38 . 681 228.8 . . . 35.3 158.5 . . . 292.5 Q0–Q1 219.3 Q0–Q1 463 Q0–Q1 . . . Q2.2 Q3.3 9.5 Q4.2 0.0 464 Q0 9.5 0.0 . . . Q0 . . . 38 09 13.6 13.2 . . .38 20 07.4 10.6 . . . .38 . . 18 53.3 10.5 TYC . 3120-564-1 . . .38 . 27 . 34.3 10.1 . . . TYC 3134-1188-138 2 27 078 51.8 . . . 12.1 44.2 . . . 40 072 TYC 3121-1178-1 . 1.2 . . 228.8 158.5 Q0–Q1 . 45 . 158 . Q0–Q1 169.8 ...... 95.2 Q3.3 15 791 Q0–Q1 44.4 1.2 . Q3.1 . . Q1 461 Q0 9.5 0.0 Q0 . . . + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + (J2000) (J2000) 0297583202987660 19 11 01.99 19 23 57.46 02972401 19 06 35.86 KIC ID02970244 19 03 42.34 RA Dec Kp Spectral type Name Variable N Datapoints 03230227 19 20 27.02 0344962503453494 19 31 49.30 19 35 31.73 03222364 19 10 59.54 03449373 19 31 35.98 03220783 19 08 43.49 03348390 19 32 00.62 0343794003440495 19 19 22.01 19 22 12.36 0311982503215800 19 28 42.19 03217554 19 01 03.65 19 03 51.02 0342736503429637 19 05 12.86 19 08 38.04 0345831803525951 19 40 03.91 03528578 19 00 34.73 03539153 19 04 56.78 03546061 19 19 32.71 03558145 19 27 13.94 19 39 13.06 03119604 19 28 30.50 03427144 19 04 53.21 03458097 19 39 53.33 03111451 19 20 37.54 03425802 19 02 50.26 03457434 19 39 18.86 0299780203097912 19 32 48.14 19 03 36.72 0324542003248627 19 35 58.61 03327681 19 38 54.29 19 08 12.48 03347643 19 31 16.22 03424493 19 00 37.54 02995525 19 30 50.23 03219256 19 06 27.53 03240556 19 31 15.98 03337002 19 20 04.25 03355066 19 38 29.66 02989746 19 25 49.34 03218637 19 05 31.68 03231406 19 21 43.73 03331147 19 13 07.75 03354022 19 37 33.10 continued. Table 1.

A125, page 23 of 70 A&A 534, A125 (2011) Quarters LC Quarters SC T δ T (d) (d) Δ 2 067 44.2 1.6 Q0–Q1 . . . 43 160 109.4 35.3 Q0–Q1 Q2.2 14 474 321.5 4.5 Q0–Q4 . . . 38 , 4  38 39 3858 variable 38 3594 . . .38 3465 15 77138 3512 44.4 . . . binary 1.4 15 856 45 465 Q1 44.4 109.5 35.3 1.2 Q0 Q0–Q1 Q1 Q2.2 Q0 ...... binary 39 583 . . . 126.8 66.5. . . 43 905 Q1 79.6 binary 4.5 Q2.3 Q0–Q1 39 692 126.8 Q2.1 66.3 Q1 Q2.3 + + + + HD 178971 .HD . 185894 .HD 225341 . . 57 . 376 .HD . 225504 . 321.4 35.3 464 . . 15 . 851 Q0–Q4 44.4 9.5 44 909 1.2 Q2.2 0.0HD 225644 169.8 Q1 95.3 Q0HD 181469 . . . Q0–Q1 binary Q0 . . . Q3.1 HD 225718 2 070HD 225569 44.2 .HD . 225535 . 1.6HD 225479 . . . Q0–Q1 . . 15 . 829 . . . 44.4 45 460 . . . 49 453 1.2 109.5 45 390 44.2 35.3 Q1 109.5 1.2 Q0–Q1 35.3 Q0 Q0–Q1 Q0 Q2.2 Q2.2 Q1 BD BD BD TYC 3135-77-1 . . . 45 382 109.5 35.3 Q0–Q1 Q2.2 35 17 35 35 18 35 18 35 35 35 18 18 18 18 ,A2 35 18 35 17 38 43 48.438 43 34.1 12.638 47 30.2 11.238 43 01.1 12.938 47 03.7 10.9 . . .38 44 45.3 10.5 . . .38 43 05.7 11.4 . . . 13.2 ...... TYC . 3134-1328-1 . . . TYC 3135-142-1 ...... 38 681 . . . 2 090 292.5 463 . binary . 43 . 219.3 854 44.2 463 Q0–Q1 79.6 1.2 9.5 43 807 4.5 9.5 0.0 Q0–Q1 Q4.2 321.5 0.0 Q0–Q1 248.3 Q0 . . . Q0–Q1 Q0 Q2.1 . . . Q4.3 . . . 38 42 20.2 13.5 ...... 459 9.5 0.0 Q0 . . . 38 51 32.5 10.7 G0 38 58 32.738 56 16.7 10.0 9.839 04 16.9 . . .39 04 58.9 10.8 A2 39 00 46.8 11.239 10 56.7 11.539 10 15.3 10.0 . TYC . 3134-3-1 . . . 9.8 ...... TYC . 3121-719-1 . A2 TYC 3136-1008-1 TYC . 3119-347-1 . . . . . 15 860 ...... 44.4 38 658 1.2 45 175 . . .39 292.5 22 15 23.8 842 219.3 169.8 10.9 Q1 95.2 44.4 Q0–Q1 45 19639 A8II 33 40.4 1.2 Q0–Q1 10.339 109.5 36 56.9 Q4.2 Q0 39 36 36.4 35.3 10.539 37 A3 Q1 43.0 10.8 Q3.1 9.8 Q0–Q1 ...... Q0 . . Q2.2 . TYC 3125-3570-1 TYC 3138-1615-1 . . . BD . . . 40 112 47 527 228.8 262.8 158.5 187.3 Q0–Q1 Q0–Q1 Q3.3 Q4.1 38 51 20.4 11.838 51 59.9 . . .38 54 42.7 11.0 12.5 TYC A0 3135-360-139 02 45.6 . . . 10.3 ...... 2 . 061 . . TYC 3120-867-1 44.239 11 26.0 . . 1.6 . 9.7 . . . Q0–Q1 F0 45 449 2 089 . .39 109.5 . 20 07.2 35.3 10.9 44.239 24 24.0 1.2 Q0–Q139 34 57.8 . 11.0 . . 11.539 32 Q0–Q1 15.3 Q2.2 A3 11.4 TYC 3121-1037-1 ...... TYC 3140-568-1 . . 38 . 629 . . 292.5 . 219.3 . . . Q0–Q1 40 338 137.7 Q4.2 45 434 66.3 109.5 Q0–Q1 35.3 Q0–Q1 Q2.3 Q2.2 38 53 47.9 8.8 A1V 38 52 43.6 10.6 . . . TYC 3135-708-1 . . . 46 068 200.7 126.4 Q0–Q1 Q3.2 39 16 01.4 7.9 A5V 39 10 28.7 9.539 12 18.0 A5 12.3 . . .39 20 47.4 . 9.4 . . A2 . . . 2 075 44.2 1.2 Q0–Q1 . . . 39 08 48.5 12.5 F0 38 56 49.9 10.4 A0 39 10 30.1 11.639 08 25.2 11.2 A5 . . . TYC 3135-485-1 . . . 44 118 321.5 248.3 Q0–Q1 Q4.3 39 14 26.539 15 17.9 11.439 14 18.7 10.339 12 19.7 10.8 10.1 ...... A7 TYC 3135-437-1 TYC 3135-641-1 ...... 40 . 321 . . 38 628 137.7 292.5 66.3 40 285 219.3 Q0–Q1 137.7 Q0–Q1 66.3 Q2.3 Q4.2 Q0–Q1 Q2.3 39 13 17.6 10.2 . . . TYC 3134-81-1 . . . 45 235 109.5 35.4 Q0–Q1 Q2.2 38 53 59.6 8.4 F5 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + (J2000) (J2000) 0363438403643717 19 12 20.28 03644116 19 23 43.75 03655513 19 24 10.73 03655608 19 35 53.30 03663141 19 35 59.16 19 42 39.17 03633693 19 11 21.65 KIC ID03629080 19 04 07.22 RA Dec Kp Spectral type Name Variable N Datapoints 03851151 19 26 47.54 0396635703970729 19 38 24.10 04035667 19 42 18.60 04044353 18 58 29.57 19 11 00.82 0455634504570326 19 20 28.85 19 36 09.02 03759814 19 38 46.25 03850810 19 26 24.72 03942911 19 12 16.27 04269337 19 33 12.96 04480321 19 42 38.38 04550962 19 14 05.11 03758717 19 37 42.14 0376164103836911 19 40 30.24 19 08 30.05 03941283 19 09 43.68 04077032 19 45 03.17 04252757 19 15 35.28 0438311704476836 19 43 34.10 19 39 31.42 04488840 19 49 27.58 03760826 19 39 48.22 03760002 19 38 58.01 04150611 19 18 58.20 04048494 19 16 33.07 04144300 19 11 26.11 04281581 19 43 57.00 04075519 19 43 50.02 03868032 19 43 07.58 04048488 19 16 32.78 04069477 19 38 38.52 0416857404170631 19 36 41.02 04180199 19 38 33.07 19 46 02.35 04164363 19 32 50.54 04160876 19 29 29.16 03733735 19 09 01.92 continued. Table 1.

A125, page 24 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. Quarters LC Quarters SC T δ T (d) (d) Δ 40 304 137.7 66.3 Q0–Q141 302 Q2.3 79.6 5.128 Q0–Q1 722 321.9 Q2.1 75.3 Q0–Q4 Q0 38 , 5  38 39 3732 . . . 45 459 109.5 35.339 3745 Q0–Q1 . . . Q2.2 49 47940 3547 44.2 1.2 . . . Q0 41 935 Q1 79.6 5.0 Q0–Q1 Q2.1 40 3811 . . . 45 893 200.7 126.4 Q0–Q1 Q3.2 ...... 48950 33.4 0.0 ... Q1 + + + + HD 226196HD 225544 .HD . 225950 .HD 225906 . . . .HD . 186505 43 . 254 .HD . 187523 . 310.5HD 226381 54 194 248.4 . . 40 . 407 137.9 . . 40 . 676 137.7 Q1 . 66.3 . . 66.3 451 79.6HD 175841 14 Q1 420 Q0–Q1 5.1 Q4.3 49 510 9.5 321.5 . . . Q0–Q1 Q0,Q2.3 Q2.3 44.2 0.0 4.7 1.2 Q2.1 Q0–Q4HD 180099 37 933 Q0 Q0 25.9 binary . .HD . 225447 0.0 .HD . 175537 . Q1 ...... HD . 225410 . .HD 226009HD binary 188891 43 613 Q3.3 HD 226766 14 422 79.6 .HD . 225808 . binary 321.5 binary 4.5HD 181680 4.6 42 261 .HD . 45 226570 . Q0–Q1 346 49 385 Q0–Q4 binary 28.9 109.5 44.2 Q2.1 . 35.3 47 0.0 . 206 . . 45 . 292 . 1.2 Q0–Q1 262.8 189.7 . . . 187.3 45 126.4 456 Q0 Q2.2 Q0–Q1 109.5 Q1 Q4.3 35.3 Q1 Q4.1 Q0–Q1 Q3.2 Q2.2 BD BD BD BD 23 21 35 20 ,A5 18 35 18 18 18 35 18 39 35 39 35 39 35 35 35 35 39 18 35 ,B2II 19 22 ,kA2hA8mA8 39 39 41 37.5 10.9 A0 39 47 01.5 9.439 52 58.0 11.239 A2 59 49.6 7.039 54 60.0 7.0 A F0IV 40 03 17.140 03 47.2 10.7 11.1 F0 40 . . 10 . 34.8 F0 40 06 04.0 13.740 10 51.9 14.840 11 41.8 11.140 10 56.0 11.240 12 TYC 54.8 3138-36-1 11.4 . . . 9.5 ...... F8 NGC 6819 609 NGC 6819 47 960 37040 19 NGC 25.7 6819 NGC 550 681940 22 NGC 03.1 6819 11.0 NGC 975 681940 23 262.8 31.7 14.8 NGC 6819 48 970 187.3 NGC 6819 9.2 48 955 . . . 13 835 Q0–Q1 33.4 . . 10 . 327 33.4 . . . 309.7 0.040 A0 28 02.4 228.7 0.0 Q4.1 4.9 10.5 . 4.5 . . TYC 3139-1882-1 . . . Q1–Q4 . . . Q0–Q3 binary F2 44 . 407 . . . . . Q1 44 430 . . . 321.5 Q1 248.3 321.5 248.3 . Q0–Q1 . . Q0–Q1 Q4.3 48 927 Q4.3 33.4 0.0 . . . Q1 39 42 26.7 10.839 47 32.539 48 04.6 10.2 11.1 .39 . 58 . 45.3 9.639 58 56.3 A0 11.4 .39 . 56 . 48.3 TYC40 3125-307-1 04 06.0 11.1 . . 10.7 ...... TYC 3139-1185-1 A0 40 . . TYC 10 . 3139-1403-1 19.6 . . . 45 196 13.2 . . . 109.5 . . . 47 TYC 354 3124-2306-1 35.4 . . . binary 40 262.8 137 Q0–Q1 187.3 228.8 47 . 579 . . Q0–Q1 Q2.2 158.540 19 25.6 262.840 Q0–Q1 19 18.7 . . . 7.8 187.3 Q4.1 40 317 10.2 Q0–Q1 Q3.3 137.7 F2IV 66.3 .40 . 23 . . . 30.3 Q4.1 .40 22 50.5 Q0–Q1 7.440 24 27.6 9.2 10.440 24 A2 36.6 48 B1V 935 TYC Q2.3 3125-269-1 12.340 35 38.4 33.4 10.5 . .40 . . . 37 . 47.4 0.0 10.5 . . . F 44 855 . . . TYC 3138-994-1 . . . 109.5 HAT 199-27597 . 35.4 . . variable Q1 Q0–Q1 TYC 3123-1722-1 45 175 . . Q2.2 . 169.8 95.2 46 080 Q0–Q1 200.7 126.4 Q3.1 Q0–Q1 Q3.2 40 21 13.2 11.3 A2 40 04 54.840 10 37.7 13.5 6.9 . . . A2 ...... 10 188 228.7 4.9 Q0–Q3 . . . 39 45 33.1 10.0 A7 40 02 28.9 13.1 . . .40 14 32.1 8.7 . . . F5 . . . 49 504 44.2 1.240 33 12.8 10.2 Q0 A7 Q1 40 12 35.540 13 15.5 11.540 17 46.0 13.2 9.1 ...... A3 NGC 6819 972 NGC 6819 995 NGC 6819 NGC 6819 14 461 48 925 321.5 33.4 4.5 0.0 Q0–Q4 ...... Q1 40 17 36.6 11.4 . . .40 18 02.8 13.6 TYC 3139-2577-1 . . . A3 40 35 07.3 40 8.1 240 137.7 66.3 A0 Q0–Q1 Q2.3 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + (J2000) (J2000) KIC ID04588487 19 RA 51 21.82 Dec Kp Spectral type Name Variable N Datapoints 04920125 19 22 35.04 0502445505024456 19 41 17.02 05024750 19 41 17.04 05038228 19 41 26.59 05080290 19 52 43.85 18 59 19.10 0519946405200084 19 40 45.48 19 41 20.66 04649476 19 20 35.90 04768677 19 48 23.95 04850899 19 43 04.49 04857678 19 48 44.06 04919818 19 22 10.66 05024454 19 41 17.02 05197256 19 38 33.82 05294571 19 47 12.53 04647763 19 18 41.14 0467768404758316 19 48 44.71 19 39 41.69 04840675 19 32 57.94 04856630 19 47 46.58 0486307704909697 19 53 13.85 19 08 48.00 05024150 19 41 06.58 0516476705180796 18 53 54.19 19 19 49.58 0521773305219533 19 55 44.76 05272673 19 57 09.91 19 24 19.87 05296877 19 49 04.75 05371747 19 37 43.49 05428254 18 56 52.80 05209712 19 49 21.98 04989900 18 55 25.66 04937257 19 41 27.31 04671225 19 43 40.08 04936524 19 40 48.31 05088308 19 13 27.19 05391416 19 55 14.78 0511293205113797 19 41 28.99 19 42 12.62 05112786 19 41 23.69 05105754 19 34 31.15 05201088 19 42 12.05 05356349 19 19 36.10 continued. Table 1.

A125, page 25 of 70 A&A 534, A125 (2011) Quarters LC Quarters SC T δ T (d) (d) Δ 45 178 109.5 113.0 Q0–Q115 856 Q2.2 44.4 1.245 383 109.5 Q1 35.324 079 Q0–Q1 Q0 228.5 4.5 Q2.2 Q0–Q340 021 228.8 Q0 158.5 Q0–Q1 Q3.3 6   38 38 40 3704 binary 43 937 79.6 4.5 Q0–Q1 Q2.1 41 318540 3786 . . . variable 40 102 228.8 158.5 Q0–Q141 3389 Q3.3 . . .41 3395 45 438 109.5 . . . 35.3 Q0–Q1 15 813 Q2.2 44.4 1.2 Q1 Q0 + + + + + HD 179618HD 179936HD 226284 ...... HD 226528 . . . 49 499 46 078 . . .HD 225391 44.2 15 859 200.7HD 226029 1.2 126.4 42 944 44.4 . . . Q0–Q1 . . .HD 1.2 187234 79.6 Q0HD 225842 4.6 15 846 Q3.2 Q1 40 . 404 binary . . Q0–Q1 Q1 HD 181902 44.4 137.7 1.2 66.3 57 568 Q0 HD Q2.1 184380 . . . Q0–Q1 321.5HD 181654 Q1 4.5 . . .HD 225912 43 397HD Q2.3 188774 . . .HD Q0–Q4 180349 Q0 binaryHD 79.6 226443 49 507HD 183281 . . . 4.5 57 Q3.1 187 . . 43 . 796 44.2 . . . binary Q0–Q1 321.5 1.2 10 79.0 332 35.3 46 077 40HD 431 181877 5.0 43 924 Q2.1 321.5 Q0 Q0–Q4 200.7 93.4 137.7 Q0–Q1HD 187141 126.4 79.6 . . 66.3 .HD 179837 Q0–Q4 Q2.2 4.5 Q0–Q1 Q1 Q0–Q1 Q2.1 . . . Q0–Q1 2 . . 087 . . . Q3.2 . Q2.3 39 44.2 980 Q2.1 46 058 1.2 228.8 200.7 158.5 Q0–Q1 126.4 Q0–Q1 Q0–Q1 . . . Q3.3 Q3.2 BD BD BD BD 35 35 39 39 35 39 35 35 37 39 35 35 35 39 35 35 35 39 37 35 35 35 39 40 41 26.6 9.0 A2 40 36 55.2 10.240 42 53.0 11.6 A3 . . .40 56 41.940 56 10.0 11.240 TYC 59 3123-2012-1 39.6 11.4 binary 7.9 ...... A5 TYC 3140-925-1 ...... 47 575 . . 262.8 . 187.341 26 Q0–Q1 58.9 44 067 10.6 321.5 Q4.1 248.4 . . . Q0–Q1 TYC 3144-608-141 binary Q4.3 49 39.941 53 32.3 11.241 53 03.1 11.3 10.0 ...... A2 TYC 3142-1661-1 TYC 3143-1362-1 ...... 45 463 44 431 109.5 321.5 35.3 248.3 Q0–Q1 Q0–Q1 Q2.2 Q4.3 40 37 57.140 38 58.8 8.440 41 10.1 9.740 39 12.9 9.0 11.4 A2 40 39 20.7 . . . 11.5 A2 ...... 40 53 BD 49.840 TYC 3141-2904-1 54 03.0 10.4 11.3 . . . F0 40 54 41.5 ...... 10.9 44 428 TYC A7 3139-826-1 321.541 01 32.5 248.3 . . . 11.6 . . .41 Q0–Q1 15 40.5 . 10.5 . . 4141 682 15 03.3 45 456 Q4.3 9.241 17 F0 10.1 68.641 109.5 18 26.4 8.941 23 5.1 33.4 35.3 F2 8.741 29 09.1 . 10.2 . .41 28 33.6 F0 Q0–Q1 8.7 11.1 A2 Q1 A3 F0 binary Q2.2 . . . Q2.1 41 39 13.4 9.4 HAT 199-0486641 50 15.341 53 variable 24.0 A2 8.2 10.6 44 408 F0 . . . 321.5 248.3 TYC 3142-1367-1 Q0–Q1 . . . Q4.3 45 857 200.7 126.4 Q0–Q1 Q3.2 40 53 58.940 53 17.4 10.5 10.9 . . . A TYC 3139-1246-141 00 54.341 01 49.6 . . 10.6 .41 04 48.4 11.0 9.0 . . .41 08 40 09.2 134 . . . A2 8.8 228.8 TYC 158.5 3124-2058-1 A0 . . . Q0–Q1 . . . Q3.3 44 425 binary41 35 19.5 321.541 36 37 713 11.4 10.9 248.341 39 39.9 11.2 292.5 8.9 Q0–Q1 . . . 219.9 . . . F0 Q0–Q1 Q4.3 TYC 3142-175-1 TYC 3128-2125-1 Q4.2 ...... 15 820 45 464 44.4 109.5 35.3 1.2 Q0–Q1 Q1 Q2.2 Q0 40 48 17.2 11.2 . . . TYC 3124-1423-141 05 27.7 . . 10.8 . . . .41 09 44 56.0 428 11.2 321.5 TYC 3123-19-1 248.3 . . .41 16 51.3 Q0–Q1 . . . 10.1 TYC 3123-742-1 F0 Q4.3 45 448 . . .41 30 26.9 109.5 11.5 35.3 38 656 Q0–Q1 . . . 292.5 219.3 Q2.2 TYC 3128-1790-1 Q0–Q1 . . . Q4.2 45 465 109.5 35.3 Q0–Q1 Q2.2 41 44 16.9 8.7 A0 41 13 25.6 8.2 F0 41 37 54.0 10.9 . . . TYC 3144-787-1 . . . 45 248 109.5 35.4 Q0–Q1 Q2.2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + (J2000) (J2000) KIC ID05436432 19 RA 11 27.91 Dec Kp Spectral type Name Variable N Datapoints 0572404805724440 19 47 00.46 19 47 19.78 0644695106448112 19 32 35.93 19 34 02.57 05476495 19 54 53.11 05513861 18 57 24.53 05722346 19 45 32.76 06142919 19 47 55.85 06443122 19 27 36.34 0543720605446068 19 12 43.56 05473171 19 24 18.10 05474427 19 52 17.88 19 53 21.14 05476864 19 55 09.22 0564171105709664 19 49 38.38 19 32 25.58 05724810 19 47 39.24 05810113 19 47 39.34 05940273 18 55 48.17 05965837 19 34 06.50 0598814006032730 19 55 10.03 06067817 19 14 22.30 06123324 19 53 54.89 06141372 19 27 01.51 19 46 37.94 06289468 19 33 00.60 0643205406440930 19 12 09.53 19 24 33.79 05632093 19 41 04.78 0577455705785707 19 04 01.78 19 20 31.70 0626889006279848 19 02 28.39 19 20 19.44 05630362 19 39 19.25 05772411 18 59 59.59 05880360 19 32 23.26 06199731 19 20 31.94 05603049 19 03 43.90 05768203 18 51 36.46 05857714 18 58 46.37 05980337 19 48 24.29 06187665 19 01 38.06 06381306 19 46 36.34 05954264 19 19 27.19 06301745 19 45 51.36 continued. Table 1.

A125, page 26 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. Quarters LC Quarters SC T δ T (d) (d) Δ 40 121 228.8 158.5 Q0–Q1 Q3.3 43 945 79.6 4.5 Q0–Q1 Q2.1 7  41 324841 3207 ...... 15 85941 3195 44.4 15 844 1.2 . . . 44.442 3197 1.2 Q1 43 924 . . . Q1 79.6 Q0 43 844 4.542 3278 Q0 79.6 Q0–Q142 3370 . . . 4.542 3446 Q2.1 . Q0–Q1 . . binary 15 860 43 926 Q2.1 44.4 15 807 1.2 79.6 44.4 4.5 1.2 Q1 Q0–Q1 Q1 Q0 Q2.1 Q0 + + + + + + + HD 226135HD 175536 ...... HD 175939 15 861 46 078 . . .HD 226454 44.4 200.7 1.2 126.4 15 variable 860 Q0–Q1 44.4 Q1 1.2 Q3.2 Q0 Q1HD 183787 Q0 . . . 14 473 321.5 4.5 Q0–Q4 . . . BD BD BD BD BD BD BD 35 35 35 35 35 35 35 35 35 39 35 35 41 49 49.341 59 16.9 10.741 56 59.8 10.8 10.0 ...... A2 TYC 3144-646-1 TYC 3127-1666-1 ...... 40 066 38 671 228.8 292.5 158.5 219.3 Q0–Q1 Q0–Q1 Q3.3 Q4.2 42 42 21.542 47 02.9 10.842 47 05.6 11.042 45 09.5 10.942 45 23.1 10.5 . .42 . 44 36.9 10.6 . .42 . 49 54.6 11.5 . .42 . 50 11.3 11.5 . .42 . 52 TYC 02.0 3143-261-1 10.7 . .42 . TYC 48 3144-1426-1 06.0 10.5 . .42 . TYC 55 3144-2042-1 05.4 10.0 . .42 . . TYC 54 . 3144-1656-1 . 38.6 . 11.1 . . . . . TYC 3144-856-1 . 11.3 ...... 47 . . 584 TYC . 3143-1359-1 . 49 467 . . . . . TYC . 3144-1600-1 38 635 . . . TYC 47 262.8 3145-901-1 . 487 . . TYC 44.2 3126-3094-1 . 187.3 . . 49 292.5 511 262.8 . 1.2 . 219.3 . . . Q0–Q1 . 187.3 . . 47 . 575 44.2 . . . . Q0–Q1 . 46 . 064 Q0–Q1 Q0 1.2 10 262.8 289 Q4.1 48 494 200.7 44 187.3 194 Q4.2 40 126.4 413 228.7 Q4.1 Q0 44.2 . Q0–Q1 . . 321.5 Q1 4.5 Q0–Q1 137.7 248.4 1.8 66.3 Q0–Q3 Q4.1 Q0–Q1 45 279 Q1 Q3.2 Q0 Q0–Q1 109.5 . Q4.3 . . 35.3 Q2.3 Q1 Q0–Q1 Q2.2 42 10 15.842 07 37.5 8.6 9.3 A2 42 13 34.7 A5 9.3 F0 42 38 26.9 10.9 . . . TYC 3143-1631-1 . . . 15 833 44.4 1.2 Q1 Q0 42 24 02.542 26 27.6 10.442 29 58.4 11.3 9.8 ...... A2 TYC 3126-780-1 TYC 3126-1059-142 38 11.7 .42 . 38 . 29.1 . . 10.6 . 8.5 . 45 . . 167 44 223 A3 169.8 321.5 TYC 3129-2517-1 95.2 248.4 . . . Q0–Q1 Q0–Q1 46 064 Q3.1 Q4.3 200.7 126.4 Q0–Q1 Q3.2 42 23 25.4 9.8 . . . TYC 3142-1206-142 38 40.5 . . . 10.5 . 15 . . 858 44.4 TYC 3129-2589-1 1.2 . . . Q1 44 969 169.8 Q0 95.3 Q0–Q1 Q3.1 42 01 05.742 02 23.9 11.3 9.842 00 31.042 04 26.8 11.1 . . .42 01 23.2 11.4 A0 10.1 ...... 42 10 F0 11.242 12 37.9 10.4 . . . TYC 3142-717-1 8.742 16 45.3 . . . .42 . . 12 11.1 10.9 . A2 . .42 17 29.9 10.5 . . . 10.6 . 47 . 569 . . . . A . . 45 . . 465 . 262.7 .42 25 TYC 13.3 3142-511-1 187.342 TYC 3144-1756-1 29 53.2 109.5 11.3 Q0–Q1 9.7 35.3 40 . 405 . . . binary . .42 40 22.6 . . . Q0–Q1 137.7 11.4 A5 Q4.1 45 188 44 66.3 411 46 068 TYC 3142-1168-1 Q2.2 . . 169.8 . Q0–Q1 321.5 200.7 95.2 . 248.3 . . 126.4 TYC 3129-879-1 Q0–Q1 Q2.3 Q0–Q1 Q0–Q1 binary 45 456 Q4.3 Q3.1 Q3.2 109.5 35.3 Q0–Q1 Q2.2 41 56 54.4 10.542 02 14.5 10.6 ...... TYC 3142-733-142 06 40.7 10.8 . TYC . 3128-2036-1 .42 13 . 18.7 . . . . . 10.3 44 879 169.8 TYC 40 3129-800-1 133 . . . 95.2 228.8 . . .42 Q0–Q1 158.5 TYC 26 3128-1341-1 19.2 10.1 Q0–Q1 . . 37 . 91842 29 Q3.1 34.442 31 05.7 . 10.1 . . 292.5 Q3.3 11.2 45 219.4 451 A5 TYC 3129-2577-1 Q0–Q1 . . 109.5 . 35.3 . . . Q4.2 TYC 3126-2522-1 Q0–Q1 42 750 . . . Q2.2 79.6 38 311 4.5 292.5 Q0–Q1 219.3 Q0–Q1 Q2.1 Q4.2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + (J2000) (J2000) 0650057806509175 18 53 24.94 19 09 08.64 KIC ID06462033 19 48 33.72 RA Dec Kp Spectral type Name Variable N Datapoints 0721175907212040 19 40 30.77 07215607 19 40 49.03 07217483 19 44 11.64 07220356 19 45 57.86 07265427 19 48 28.15 07287118 19 03 27.89 07300387 19 33 31.34 07304385 19 47 19.51 07338125 19 50 51.55 07350486 18 48 49.75 19 10 48.22 07204237 19 32 01.34 0666872906670742 18 53 50.62 18 57 19.82 06756481 18 56 01.87 07122746 19 33 10.10 0692342406937758 18 47 49.73 19 13 01.18 07119530 19 29 19.03 06922690 18 46 11.06 07109598 19 16 56.81 06865077 19 29 39.38 07106648 19 12 39.79 06587551 19 00 54.70 0661416806629106 19 36 27.50 19 50 38.40 06756386 18 55 54.24 0679033506804821 19 41 30.74 19 54 04.99 06951642 19 31 05.93 06586052 18 58 02.14 06606229 19 27 25.34 06694649 19 31 01.20 06776331 19 25 59.47 06947064 19 25 17.66 07106205 19 11 57.48 06519869 19 24 03.26 06590403 19 05 53.35 06678614 19 10 46.30 06761539 19 05 03.58 06939291 19 15 18.79 0696578907007103 19 45 41.30 18 43 57.19 continued. Table 1.

A125, page 27 of 70 A&A 534, A125 (2011) Quarters LC Quarters SC T δ T (d) (d) Δ 42 442 109.5 35.363 501 Q0–Q1 321.5 319.7 Q2.2 Q0–Q4 Q1 43 088 30.3 0.738 034 281.5 . . . 219.3 Q1 Q3.1 Q4.2 8 9  38 42 3380 . . .43 3078 45 19243 3097 . . . 169.8 95.2 . . . 40 086 Q0–Q1 15 812 228.8 Q3.1 158.5 44.4 Q0–Q1 1.243 3370 Q3.3 Q1 . . . 15 796 Q0 43 3384 44.4 . . . 1.243 3245 Q1 15 840 . . . 44.4 Q0 1.2 15 836 Q1 44.4 1.2 Q0 Q1 Q0 + + + + + + HD 187547 . . .HD 178120HD 178615 46 077 ...... 200.7 126.4 43 532HD 181985 Q0–Q1 10 175HD 184449HD 186995 79.6 228.7 . Q3.2 . . 4.5 . 4.7 . . binary Q0–Q1HD 173109 Q0–Q3 40 114HD 184695 2 069 49 461 137.7 Q2.1 variable . . . . 44.2 . 44.2 . 66.5 1.2 1.2 Q0–Q1 57 256 Q0–Q1 Q0 321.5 Q2.3 35.3HD 189210 . . . Q0–Q4 Q1 . . . Q2.2 55 936 321.5 4.5 Q0–Q4 Q2.1 V1154 Cyg Cepheid BD BD BD BD BD BD 41 20 35 35 35 35 35 35 35 35 35 35 35 35 35 35 ,G2Ib 24 42 55 27.742 59 45.9 11.1 11.5 ...... TYC 3129-2485-1 TYC 3145-171-1 . . . binary 49 484 44.2 1.2 Q0 Q1 42 57 28.8 10.6 . . . TYC 3129-1319-1 . . . 38 650 292.5 219.3 Q0–Q1 Q4.2 43 17 04.7 9.7 A0 43 22 36.043 20 19.4 11.043 19 03.0 10.543 28 12.1 11.443 24 24.8 10.8 . . .43 29 03.7 11.3 . . . . . 9.5 . . . . TYC 3148-1808-1 . . . TYC 3148-431-1 A5 . . . TYC 3130-150-1 . TYC . 3133-2367-1 ...... 49 . 510 . . 40 113 44.2 38 452 . . 44 228.8 . 582 1.2 158.5 292.5 109.5 219.4 Q0–Q1 40 368 35.3 Q0 Q0–Q1 137.7 Q0–Q1 Q3.3 43 66.3 50 27.8 Q1 43 Q4.2 49 27.0 10.743 Q2.2 55 Q0–Q1 08.0 11.343 55 56.5 11.5 11.5 . . . . . Q2.3 ...... TYC 3148-1402-1 ...... 45 467 109.5 . . . 112.9 ...... Q0–Q1 39 284 45 192 44 217 137.7 Q2.2 169.8 66.5 321.5 95.2 248.3 Q0–Q1 Q0–Q1 Q0–Q1 Q2.3 Q3.1 Q4.3 43 06 00.1 11.3 . . .43 18 55.243 23 37.4 7.4 10.8 F2III ...... 43 26 11.243 TYC 3148-1126-1 29 43.0 9.043 27 04.2 9.3 ...... 9.7 A0 A5 F0 43 44 428 31 38 02.2 456 8.0 321.5 292.5 248.3 219.4 A2 Q0–Q1 Q0–Q1 Q4.3 Q4.2 43 52 16.0 11.0 . . . TYC 3146-1256-1 . . . 49 145 44.2 1.2 Q0 Q1 43 07 03.543 07 36.8 10.4 8.8 G2 . . .43 18 13.6 10.0 TYC 3143-1179-1 F0 . . . 40 429 137.7 66.343 27 43.0 Q0–Q143 29 47.9 10.943 32 58.9 10.7 7.9 Q2.3 ...... F0 43 TYC 3149-1852-1 30 14.8 10.8 ...... 43 45 08.3 46 078 9.8 TYC 3149-2143-1 200.7 . . . binary 126.4 G5 Q0–Q1 47 583 262.8 Q3.2 187.3 Q0–Q1 Q4.1 43 07 06.6 11.3 . . .43 13 07.8 11.3 TYC43 3126-2023-1 20 05.6 9.3 ...... A2 44 216 . . 321.5 . 248.343 Q0–Q1 29 05.9 11.1 . . . Q4.3 . . . 44 41943 TYC 3149-1784-1 31 10.1 321.5 11.1 248.3 . . . Q0–Q1 . . .43 46 28.6 49 327 Q4.3 11.5 TYC 3149-1211-1 44.2 ...... 1.2 TYC Q0 3148-597-1 43 215 . . 79.6 . Q1 4.9 46 074 Q0–Q1 200.7 126.4 Q2.1 Q0–Q1 Q3.2 43 05 49.2 10.4 A5 43 35 32.843 30 41.8 10.3 9.9 . . .43 41 45.3 A2 43 41 22.8 11.343 44 40.1 11.2 TYC 3148-2091-1 9.8 ...... A2 TYC 3147-12-1 TYC 3148-660-1 40 432 . . . . 137.7 . . 66.3 38 681 Q0–Q1 45 163 292.5 109.5 219.3 Q2.3 35.4 Q0–Q1 Q0–Q1 Q4.2 Q2.2 43 01 26.7 11.4 . . .43 06 32.0 8.4 A3 ...... 40 402 137.7 66.3 Q0–Q143 35 03.4 11.3 Q2.3 . . .43 40 53.8 11.3 TYC 3147-982-1 ...... TYC 3146-1192-1 44 562 . . . 98.6 35.3 45 435 109.5 Q1 35.3 Q0–Q1 Q2.2 Q2.2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + (J2000) (J2000) 07385478 19 50 57.86 07352776 19 14 23.02 KIC ID07352425 19 13 48.70 RA Dec Kp Spectral type Name Variable N Datapoints 0769905607702705 19 47 39.43 07732458 19 50 55.42 07742739 18 49 27.38 07748238 19 11 16.92 19 20 38.21 0805414608103917 19 56 53.35 08104589 19 36 07.25 19 37 00.82 07583939 18 47 32.06 07697795 19 46 20.83 08043961 19 46 55.49 07553237 19 52 43.10 0766984807694191 19 07 19.99 19 42 09.29 0775685307767565 19 32 39.12 07770282 19 45 39.00 19 48 33.12 07827131 19 33 47.14 08029546 19 28 22.46 07548061 19 48 15.46 0777743507798339 19 55 24.38 18 41 34.99 07533694 19 34 12.91 07662076 18 50 56.93 07773133 19 51 13.75 07848288 19 56 52.27 07985370 19 56 59.74 07502559 18 48 17.69 07596250 19 11 03.60 07668791 19 05 23.64 07771991 19 50 06.55 07842621 19 51 35.69 07977996 19 49 50.50 07842286 19 51 14.45 0790863307959867 19 49 06.89 19 26 58.34 07450284 19 33 37.68 07834612 19 43 04.87 07900367 19 39 44.95 07436266 19 16 34.20 07548479 19 48 36.50 07831302 19 39 00.86 07890526 19 26 27.53 continued. Table 1.

A125, page 28 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. Quarters LC Quarters SC T δ T (d) (d) Δ 49 023 44.2 1.2 Q0 Q1 10 44 3072 binary 57 395 321.5 35.3 Q0–Q4 Q2.2 ...... 52 274 321.5 4.5. . . Q0–Q4 Q2.3 . . . 39 147 79.6 6.0 Q0–Q1 Q2.1 43 3473s NGC 6866 + + HD 173978HD 179336 binary . . . 56 868 310.5 2 080 4.9 Q1–Q4 44.2 1.2 Q3.1 Q0–Q1 . . . BD BD TYC 3146-1037-1 . . . 15 850 44.4 1.2 Q1 Q0 35 26 25 35 ,F2 35 25 25 25 43 55 31.744 00 13.4 11.044 00 12.4 13.844 03 16.7 11.644 02 41.5 14.8 . .44 . 01 12.6 10.9 . . .44 04 16.0 13.8 . . . 10.7 . . . TYC 3149-534-1 ...... TYC 3130-1700-1 F2 . . . . . TYC . 3131-1906-1 ...... 86 902 39 858 . . . 321.5 46 057 . 248.3 . . 228.8 158.6 . . Q0–Q1 . 200.7 13 373 126.4 Q0–Q1 14 007 310.5 Q4.3 Q0–Q1 12 238 6.0 310.5 Q3.3 325.1 310.5 Q3.2 Q1–Q4 Q1–Q4 7.3 . . Q1–Q4 ...... 44 06 19.544 07 59.0 11.244 09 19.2 11.244 07 55.2 13.544 09 23.3 13.7 . .44 . 09 25.7 13.8 . .44 . 09 50.3 12.2 . .44 . 09 33.6 13.4 . .44 . TYC 08 3148-1360-1 37.5 11.3 . .44 . 10 TYC 25.8 3148-484-1 10.7 . .44 . 11 55.4 13.9 . .44 . 10 . . 20.5 . 11.2 . .44 . 16 40.3 12.4 . . . . .44 . . . . 14 36.1 14.5 . . . .44 . . 14 32.9 13.4 . . . NGC . . 6866 . 17 . 40 . . 9.7 134 . . . HIP 98797 . . . 44 407 NGC . NGC 6866 kA2mF0 . 6866 . 228.8 NGC 6866 . . . 158.5 NGC NGC 6866 6866 321.5 . . . 44 49 NGC 106 495 6866 . 248.3 . . 39 585 Q0–Q1 . . . 45 39 272 285 . . Q0–Q1 . 98.6 44.2 45 NGC 464 6866 . . 126.8 . NGC 6866 35.3 109.5 126.8 Q3.3 1.2 66.3 109.5 35.3 66.5 49 Q4.3 512 . . . 35.3 44 828 . Q1 . . Q0 Q1 Q0–Q1 . . . 44.2 Q1 Q0–Q1 . . . 98.1 1.2 42 120 35.3 Q2.2 Q2.2 44 937 Q2.3 Q1 Q2.2 13 965 Q2.3 79.6 13 Q0 721 Q1 98.6 310.5 5.1 35.3 321.3 69.8 6.9 Q0–Q1 Q1 Q2.2 Q1–Q4 Q1 Q0–Q4 Q2.1 . . . Q2.2 . . . 44 08 18.5 8.9 F0V 44 08 29.0 11.944 08 49.9 11.5 . . . F2 ...... 14 436 321.5 4.5 Q0–Q4 . . . 44 06 16.2 10.9 F0 44 14 50.144 14 09.7 13.544 12 04.6 14.944 21 44.7 13.444 22 29.9 12.6 . . . 10.3 ...... F0III ...... 43 475 37 687 41 890 68.6 40 433 281.5 4.5 219.3 79.6 137.7 4.5 66.3 Q1 Q1 Q0–Q1 Q0–Q1 Q4.2 Q2.1 Q2.1 Q2.3 44 06 18.9 14.2 ...... 44 . . 12 06.5 13.8 5 . 678 . . 310.5 187.5 . Q1,Q4 ...... 39 755 126.8 66.3 Q1 Q2.3 44 20 09.844 27 48.5 11.144 26 26.3 10.744 24 12.6 10.544 25 54.7 11.1 . .44 . 24 51.1 11.5 . .44 . 29 31.3 11.1 . .44 . 24 54.1 13.7 . .44 . 33 02.1 11.2 . .44 . TYC 35 3132-1272-1 20.1 14.9 . . . TYC 3146-1441-1 14.1 ...... TYC 3148-665-1 . . . . TYC . 3149-213-1 . . . . TYC . 3162-1077-1 ...... 46 . 040 . . . . . 46 . 052 . . . . . 49 200.7 502 . . . 40 200.7 298 126.4 43 947 49 126.4 505 44.2 Q0–Q1 137.7 . . . 79.6 Q0–Q1 1.2 . . 66.3 . 44.2 . . . 4.5 . . Q3.2 1.2 . Q0–Q1 Q3.2 Q0 43 968 Q0–Q1 38 282 13 Q0 570 Q2.3 98.6 13 467 292.5 Q2.1 Q1 35.9 310.5 219.3 310.5 324.9 Q1 Q0–Q1 5.4 Q1 Q1–Q4 Q1–Q4 Q4.2 . Q2.2 . . . . . 44 22 46.7 13.3 ...... 13 332 310.5 6.2 Q1–Q4 . . . 44 08 08.3 8.1 A5 44 05 33.3 13.0 ...... 45 246 109.5 35.3 Q0–Q1 Q2.2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + (J2000) (J2000) KIC ID0812312708143903 19 57 04.13 RA08144674 18 46 15.74 08145477 18 48 20.42 08149341 18 50 15.98 08159135 18 58 28.85 Dec08197761 19 17 59.83 20 04 09.31 Kp Spectral type Name Variable N Datapoints 0824863008264061 19 47 23.30 08264075 20 03 27.94 08264274 20 03 28.34 08264404 20 03 39.67 08264546 20 03 47.14 08264583 20 03 54.84 08264588 20 03 57.36 08264617 20 03 57.62 08264674 20 03 59.35 08264698 20 04 02.86 08283796 20 04 03.96 08293302 18 58 53.09 08323104 19 18 03.67 19 55 37.82 08245366 19 43 33.91 08222685 19 10 07.49 08218419 19 00 34.61 08223568 19 11 56.54 0833046308330778 20 03 58.63 08352420 20 04 16.18 08355130 19 04 11.40 19 10 01.61 08230025 19 22 29.45 08330092 20 03 34.92 08223987 19 12 46.30 08330056 20 03 33.05 0841575208429756 19 00 00.02 08446738 19 25 43.13 08454553 19 48 49.37 08459354 19 56 37.15 08460025 20 01 37.63 08460993 20 02 22.08 08479107 20 03 41.30 08482540 18 56 30.14 19 04 31.01 08397426 20 05 34.30 08355837 19 11 27.07 08211500 18 46 12.19 08197788 20 04 11.18 continued. Table 1.

A125, page 29 of 70 A&A 534, A125 (2011) Quarters LC Quarters SC T δ T (d) (d) Δ 47 109 251.8 187.3 Q1 Q4.1 15 845 44.4 1.2 Q1 Q0 11  44 3134 . . . 45 466 109.544 3113 35.3 Q0–Q1 . . . Q2.2 15 834 44.445 2892 1.2 Q1 . . . Q0 45 344 109.1 35.3 Q0–Q1 Q2.2 . . . binary ...... 95 046. . . 262.7 . . . 187.3 Q0–Q1 . . . 15 854 Q4.1 44.4 45 195 1.2 169.8 95.2 Q1 Q0–Q1 Q0 Q3.1 + + + HD 181598 . . . 46 063HD 189177 200.7 126.4 binary Q0–Q1HD 187254 55 306HD 189637 Q3.2 321.5HD 176390 . . 4.5 . . . . Q0–Q4 . . . 39 574 14 442 Q2.1 228.8 46 035 321.5 158.6 4.5 200.7 Q0–Q1 126.4HD 190566 Q0–Q4HD 175201 Q0–Q1 Q3.3 HD 188538 ...... Q3.2 . . .HD 182895HD 190226 . . Ap . variable 45 192 49 159 . 169.8 . . 44.2 95.2 40 206 1.2 Q0–Q1 137.7 47 457 66.5 Q0 262.8 Q3.1 Q0–Q1 187.3 Q0–Q1 Q1 Q2.3 Q4.1 BD BD BD 37 26 ,F0V 35 25 25 20 25 35 25 35 25 35 35 25 35 35 35 35 44 33 57.344 33 43.7 14.2 8.6 . . . A2 ...... 13 161 310.5 5.9 Q1–Q4 . . . 44 33 21.144 35 42.6 10.5 10.6 . . . A TYC 3148-1229-144 47 24.944 44 45.3 10.9 9.4 ...... A5 46 05844 59 17.2 TYC 3131-1633-1 8.244 200.7 56 01.444 58 126.4 05.0 13.044 57 54.0 11.8 . . . A3V Q0–Q1 11.2 ...... Q3.2 F0 38 676 292.5 219.3 . . . . Q0–Q1 . . Q4.2 ...... 45 26 59.245 29 45.6 10.645 26 47.0 13.4 14 043 14.5 14 093 . . 321.4 . . . 321.4 . 6.3 . . . 5.9 TYC Q0–Q4 3540-2491-1 Q0–Q4 ...... 40 433 . . . 137.7 . . . 66.3 Q0–Q1 14 112 13 975 321.5 Q2.3 310.5 5.7 4.5 Q0–Q4 Q1–Q4 ...... 44 30 13.4 10.5 . . . TYC44 3147-849-1 40 18.9 11.2 ...... 44 51 44.944 47 52 548 47.4 10.9 10.944 57 56.3 262.7 14.0 187.3 . F . . . . . Q0–Q1 . . . Q4.1 TYC 3162-71-1 ...... 45 44 13 398 39.445 14 24.9 8.9 12.8 321.5 15 850 248.345 21 01.2 . F0 . 10.8 . Q0–Q1 A5 44.445 28 35.9 1.2 10.7 F2III Q4.3 13 862 Q1 . . 310.5 . 4.5 Q0 TYC Q1–Q4 3540-2380-1 ...... 45 179 169.8 95.2 Q0–Q1 Q3.1 45 13 09.3 9.5 A2 44 59 42.0 9.7 A5p? 45 10 02.9 9.645 15 51.8 11.5 A2 ...... 45 194 169.8 95.2 Q0–Q1 Q3.1 44 44 57.744 50 14.8 11.044 50 53.6 10.9 8.7 . . . . kA2mF0 . . TYC 3147-395-145 05 . 58.7 . .45 05 53.6 11.145 10 . 42.0 . . 11.245 08 03.5 14.145 11 42.2 12.645 07 06.9 . 10.8 . . . . . 10.6 . . . 15 857 ...... TYC . 44.4 3556-3407-1 A5 TYC 3558-2497-1 44 401 1.2 . . . TYC 321.5 3541-1172-1 ...... Q1 248.3 . . . . . Q0–Q1 . 43 942 77 120 Q0 79.6 Q4.3 . . . 292.5 50 . 616 . . 4.5 219.3 321.5 Q0–Q1 Q0–Q1 13 803 34.8 40 429 310.5 Q0–Q4 Q4.2 Q2.1 137.7 4.5 66.3 Q4.2 Q1–Q4 Q0–Q1 . . Q2.3 . 44 42 18.6 10.8 . . . TYC 3149-307-144 59 09.8 . . . 10.8 . . . 45 275 109.5 35.3 Q0–Q1 . . .45 20 48.9 8.9 Q2.2 F2CrEu? binary 44 792 98.6 35.3 Q1 Q2.2 44 35 50.444 39 58.5 13.444 40 08.5 11.744 40 09.6 10.644 36 58.0 11.144 40 59.2 . 11.2 . . . . 10.1 ...... B9III . TYC 3146-802-1 . . . TYC 3147-509-1 . . . TYC 3149-571-1 ...... 40 130 49 509 44 402 228.8 41 777 158.5 44.2 15 859 321.5 1.2 248.3 Q0–Q1 68.6 44.4 Q0–Q1 5.1 1.2 Q0 Q3.3 Q1 Q4.3 Q1 Q1 Q2.1 Q0 44 34 20.0 10.9 . . . TYC 3149-863-1 . . . 38 572 292.5 219.3 Q0–Q1 Q4.2 45 22 07.6 10.7 A2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + (J2000) (J2000) 08489712 19 18 59.50 KIC ID08488065 19 16 14.83 RA Dec Kp Spectral type Name Variable N Datapoints 08516008 19 53 42.72 08623953 19 25 59.76 0874741508748251 19 17 39.50 19 19 07.73 0907398509077192 18 58 15.29 19 05 34.85 08507325 19 44 27.10 08608260 18 56 07.42 08738244 18 57 58.94 08746834 19 16 37.06 09073007 18 56 09.07 08499639 19 34 14.23 08590553 20 04 13.46 0871488608717065 19 59 10.18 20 01 40.54 08742449 19 07 33.17 0893339108940640 18 52 06.41 19 06 33.89 09020157 19 24 43.66 09072011 18 53 55.80 08975515 19 53 45.58 08750029 19 21 54.91 08915335 20 03 45.55 08972966 19 51 32.42 0869515608703413 19 36 27.74 19 47 11.45 0883845708869302 19 53 09.36 08869892 18 58 45.58 08871304 19 00 00.74 08881697 19 02 56.93 19 21 36.02 08655712 20 04 50.98 08827821 19 40 41.38 08651452 19 59 54.19 08766619 19 46 09.19 09020199 19 24 48.48 0854545608560996 19 00 22.73 08565229 19 28 46.42 08579615 19 35 28.32 08583770 19 52 44.14 19 56 58.51 08525286 20 03 36.36 08516686 19 54 22.56 09052363 20 02 07.70 continued. Table 1.

A125, page 30 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. Quarters LC Quarters SC T δ T (d) (d) Δ 45 464 109.5 35.3 Q0–Q1 Q2.2  4554268 . . . 13 252 320.4 7.7 Q0–Q4 . . . + 45 3006 . . .45 2812 38 573 292.5 . . . 219.345 2962 Q0–Q1 14 392 . . . Q4.2 321.5 4.5 40 43345 2961 Q0–Q4 137.745 2805 66.3 . . . .45 . 2955 . Q0–Q1 . . . 40 135 . . . Q2.3 228.8 14 398 158.545 2954 43 586 321.5 Q0–Q1 4.6 79.6 . . . Q3.3 4.5 Q0–Q4 40 419 Q0–Q1 . . . 137.7 Q2.1 66.3 Q0–Q1 Q2.3 ...... 15 828 15 847 44.4 1.2 44.4 . . . 1.2 Q1 15 842 Q1 44.4 Q0 1.2 Q0 Q1. . . Q0 . . . 15 859 44.4 1.2 Q1 Q0 + + + + + + + HD 176843 Am starHD 190548 40 057 228.5 . . . 158.5HD 179458 Q0–Q1 15 840 . . . Q3.3 44.4 1.2 44 436 109.5 Q1 35.4 Q0–Q1 Q0 Q2.2 BD BD BD BD BD BD BD TYC 3542-1223-1 . . . 94 344 262.8 187.3 Q0–Q1 Q4.1 37 37 25 25 25 35 27 35 35 35 35 35 35 25 35 45 27 04.445 24 06.7 11.4 10.5 . . . F0 TYC 3557-2024-1 . . . 42 088 79.6 4.5 Q0–Q1 Q2.1 45 33 12.6 12.1 A5 45 41 09.0 9.6 F0 45 57 45.8 9.6 A2 45 31 27.5 10.145 34 59.1 10.7 . . . F0V TYC 3540-1966-145 41 22.1 10.5 ...... 43 944 TYC 79.6 3556-929-1 4.5 . . . Q0–Q1 45 039 Q2.1 169.8 95.245 54 16.3 11.5 Q0–Q1 . . . Q3.1 ...... 15 860 44.4 47.9 Q1 Q0 45 39 16.7 12.1 A2p: 45 45 08.345 44 58.2 13.045 47 36.5 13.445 45 04.0 12.1 . . 9.0 .45 43 57.1 . . . . . 9.7 . A7 A5 ...... 13 992 40 132 28 654 320.9 228.8 5.0 322.0 158.5 4.6 Q0–Q4 Q0–Q1 Q0–Q4 Q3.3 . . . Q0 45 38 11.9 13.5 . . .45 44 20.3 14.3 . . .45 42 32.2 . . . 14.2 ...... 40 134 ...... 228.8 158.5 13 393 Q0–Q1 . . . 310.3 7.6 Q3.3 13 243 Q1–Q4 310.5 7.0 . . . Q1–Q4 . . . 45 33 12.7 11.3 . . . TYC 3556-1431-1 binary 45 40 35.7 9.8 G 45 36 43.7 11.0 . . . TYC 3540-3014-1 . . . 46 072 200.7 126.4 Q0–Q1 Q3.2 45 53 38.445 53 29.7 13.7 9.845 53 53.1 . . 9.1 .45 52 05.7 K0 45 54 26.8 11.3 13.3 F0 45 58 27.0 11.8 ...... 46 03 F2 02.246 03 46.0 13.646 J18491255 02 11.4 12.446 01 38.5 13.846 01 . 56.3 . . 10.1 . .46 . . 05 . 43.3 . 10.9 . .46 . 03 33.0 10.5 . .46 . 06 48.5 10.6 . .46 . 06 58.1 . . 9.9 4746 . 113 09 49.7 10.7 . .46 . 10 . . 17.4 . 14.5 . . . . 251.8 . 11.1 TYC . 3556-3291-1 ...... 187.3 . . . TYC 3558-16-1 . . TYC . . . 3558-1852-1 . 38 680 . TYC . . . 3558-1208-1 . . Q1 TYC 3540-1568-1 . 292.5 . . . . . TYC 3541-30-1 . . . . . 219.3 . . 15 . 859 ...... Q4.1 Q0–Q1 38 44 682 . . 756 . . . . 39 44.4 664 77 . 094 . . 43 912 15 292.5 169.8 841 1.2 13 429 Q4.2 217.8 292.5 219.3 63 95.2 454 158.5 79.6 219.3 44.4 310.5 Q0–Q1 . Q1 . . Q0–Q1 4.5 321.5 Q0–Q1 6.5 . . 1.2 . Q1 4.9 Q0–Q1 Q4.2 Q1–Q4 13 Q3.1 290 Q4.2 Q1 Q0 Q0–Q4 14 428 Q3.3 310.5 Q2.1 321.5 . . . 6.0 Q1 4.5 Q0 Q1–Q4 Q0–Q4 ...... 45 28 35.9 7.5 kA2mF2 45 36 27.5 8.8 kA3mF0 45 37 13.7 9.0 A0 45 47 59.3 12.445 52 16.5 13.3 . . .45 53 54.7 10.6 . . .45 55 14.4 11.4 ...... 46 00 17.7 . . . TYC 12.7 3557-1126-1 . . . . TYC . . 3541-2014-1 ...... 40 . 133 . 45 467 228.8 40 405 . 109.5 . . 13 158.5 911 35.3 137.7 Q0–Q1 320.7 66.3 Q0–Q1 5.7 . . . Q0–Q1 Q3.3 Q2.2 Q0–Q4 45 Q2.3 194 . . . 169.8 95.2 Q0–Q1 Q3.1 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + (J2000) (J2000) 09111056 19 54 07.15 KIC ID09108615 19 51 37.61 RA Dec Kp Spectral type Name Variable N Datapoints 09143785 19 06 42.17 09229318 19 43 51.82 09413057 19 41 19.15 09138872 18 55 47.57 09147229 19 14 11.59 09222942 19 34 45.65 09408694 19 34 45.60 0926704209268087 18 58 52.06 09272082 19 01 09.07 19 10 33.79 09216367 19 24 20.86 09264462 18 53 13.32 09291618 19 43 36.74 09210037 19 12 07.37 09264399 18 53 05.98 09274000 19 14 57.79 09156808 19 30 53.18 09204672 18 59 58.82 09201644 18 52 58.58 09327993 18 57 59.76 09386259 18 49 12.55 0945307509458750 19 03 44.09 09473000 19 16 37.49 09489590 19 39 48.67 09490042 19 59 40.42 09490067 20 00 11.69 09509296 20 00 12.86 09514879 18 50 55.32 09520434 19 03 49.58 09520864 19 16 48.22 19 17 41.62 09324334 18 49 26.86 09351622 19 41 26.86 09368220 20 01 18.62 09395246 19 10 06.41 09451598 19 00 28.58 09117875 20 01 46.73 09204718 19 00 03.36 09246481 20 03 33.70 09306095 20 00 41.90 09336219 19 16 36.91 09353572 19 43 58.61 09391395 19 01 29.78 09450940 18 58 53.42 continued. Table 1.

A125, page 31 of 70 A&A 534, A125 (2011) Quarters LC Quarters SC T δ T (d) (d) Δ 14 440 321.5 4.6 Q0–Q4 . . . 12 994 310.5 6.8 Q1–Q4 . . . 49 401 44.2 1.2 Q0 Q1    4629.2 . . . 45 194 169.8 95.2 Q0–Q1 Q3.1 + 46 263346 2621 ...... 40 416 137.7 66.3 43 946 Q0–Q1 79.6 4.5 Q2.3 Q0–Q1 Q2.1 ...... 15 859 . . . 44.4 1.2 63 481 Q1 321.5 4.5 Q0 Q0–Q4 Q1 ...... 40 134 228.8 158.5 Q0–Q1 Q3.3 + + HD 189916 . . .HD 183829 45 192 169.8 95.2 . . . Q0–Q1 Q3.1 45 231 109.5 35.3HD 189861 Q0–Q1 Q2.2 . . . 39 895 228.8 158.6 Q0–Q1 Q3.3 BD BD NGC 6811 26NGC 6811 18NGC 6811 70 NGC 6811 NGC 6811 NGC 6811NGC 6811 40 49 429 52 782 137.7 43 883 321.5 66.3 NGC 6811 4.5 79.6 Q0–Q1 4.5 Q0–Q4 47 543 Q2.3 Q0–Q1 Q2.3 262.8 187.3 Q2.1 Q0–Q1 Q4.1 NGC 6811 114 NGC 6811, binary NGC 6811 113 NGC 6811, binary 63 523 321.5 4.5 Q0–Q4 Q1 TYC 3557-1418-1TYC 3542-1780-1 ...... 39 877 228.8 158.6 46 081 Q0–Q1 200.7 126.4 Q3.3 Q0–Q1 Q3.2 25 25 35 35 35 28 28 28 28 28 35 28 25 25 35 25 46 10 07.446 11 16.9 12.746 07 21.6 11.346 07 30.5 13.046 11 55.4 11.0 . . . 10.4 ...... A3 TYC 3556-3494-1 . . TYC . 3558-1238-1 ...... 45 449 . . . 44 429 109.5 35.3 321.5 49 449 248.3 Q0–Q1 48 961 44.2 Q0–Q1 1.2 33.4 Q2.2 Q4.3 0.0 Q0 . . . Q1 Q1 46 21 51.646 20 42.6 12.0 11.546 21 26.1 . . . F5 9.4 A0 ...... 15 861 44.4 1.2 Q1 Q0 46 19 16.1 13.746 21 27.9 . . . 12.9 ...... 13 939 310.5 13 4.5 969 320.7 Q1–Q4 6.5 . . Q0–Q4 . . . . 46 18 39.246 23 20.4 13.3 11.4 . . . A4 . . .46 24 11.346 25 08.0 11.346 28 21.7 13.446 . 29 . . 11.9 12.7 12.7 ...... 40 227 TYC 3541-967-1 ASAS J190751 137.7 . 66.3 ...... Q0–Q1 Q2.3 41 869 ...... 79.6 5.1 40 133 Q0–Q1 40 426 228.8 137.7 158.5 Q2.1 66.3 Q0–Q1 Q0–Q1 Q3.3 Q2.3 46 16 00.1 11.3 F0V 46 22 52.2 11.1 . . . TYC 3556-768-1 . . .46 26 56.1 10.4 49510 . . .46 24 14.8 44.2 9.9 1.2 TYC 3540-1359-1 G2III Q0 . . . Q1 45 385 109.5 35.3 Q0–Q1 Q2.2 46 18 23.646 18 52.3 10.346 19 17.0 11.2 10.6 ...... A0 TYC 3556-3198-1 TYC 3557-368-1 ...... 49 500 49 510 44.2 44.2 1.2 1.2 Q0 Q0 Q1 Q1 46 18 28.8 12.7 ...... 77 242 292.5 219.3 Q0–Q1 Q4.2 46 15 18.546 16 03.3 13.0 10.6 . . . A5 . . .46 22 39.146 21 31.9 13.1 . . . 12.4 . . . A5 49 454 44.2 . . . 1.2 Q046 32 20.4 9.5 . . Q1 . F0 48 956 33.4 0.0 . . . Q1 46 17 34.0 12.6 ...... 46 19 35.7 12.3 ...... 38 532 292.5 219.3 . . . Q0–Q146 28 Q4.2 02.5 12.9 ...... 47 505 262.8 . . . 187.3 Q0–Q1 Q4.1 . . . 49 302 44.2 1.2 Q0 Q1 46 12 46.6 12.7 . . .46 21 16.1 11.1 F0 . . . binary 46 32 01.7 13.9 ...... 13 158 310.5 6.3 Q1–Q4 . . . 46 19 25.7 10.946 23 52.146 18 39.0 11.5 A4 11.9 . . . B7 NGC 6811 39 NGC 6811 45 605 189.7 126.4 Q1 Q3.2 46 20 22.646 22 59.4 12.1 13.246 19 53.3 A4 12.6 ...... 46 19 15.0 11.5 NGC 6811 16 A4 . . . NGC 6811 48 853 33.4 . . . 0.0 . . . 47 574 262.8 187.3 Q1 Q0–Q1 Q4.1 46 26 58.046 27 45.3 13.1 12.5 ...... binary . . 48 446 33.4 0.1 . . . Q1 46 28 10.6 14.3 . . .46 30 50.3 11.1 F0 ...... 13 495 310.5 5.7 Q1–Q4 . . . + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + (J2000) (J2000) continued. 0953344909533489 19 38 37.37 09550886 19 38 41.71 09551281 20 00 06.74 20 00 33.60 KIC ID09532644 19 37 26.47 RA Dec Kp Spectral type Name Variable N Datapoints 09640204 19 10 14.09 09632537 18 52 00.24 09650390 19 29 17.81 09630640 18 46 31.25 09643982 19 18 38.69 09655055 19 36 51.91 0969995009700145 19 06 55.32 09700322 19 07 23.57 19 07 50.71 09654789 19 36 28.80 09696853 18 59 33.43 09580794 19 14 08.02 09651065 19 30 25.63 09693282 18 51 14.90 09700679 19 08 42.53 0966486909673293 19 50 12.10 20 00 11.23 09656348 19 38 45.29 09655800 19 37 53.16 09604762 19 50 59.64 09655501 19 37 31.22 09594100 19 36 55.99 09655487 19 37 29.21 09760531 19 06 59.78 09593997 19 36 47.76 09655438 19 37 25.22 09716947 19 38 11.95 09582720 19 18 17.18 09642894 19 16 18.07 09764712 19 16 49.58 09655433 19 37 24.86 09655177 19 37 03.24 09655422 19 37 24.10 0965511409655151 19 36 58.18 19 37 01.18 09655393 19 37 21.38 09655514 19 37 32.11 09716350 19 37 17.98 09716107 19 36 56.76 09703601 19 15 25.03 09762713 19 12 12.26 Table 1.

A125, page 32 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. Quarters LC Quarters SC T δ T (d) (d) Δ 10 327 228.7 4.5 Q0–Q3 . . . 12 15 CVn 2 α 46 2714 . . . 15 860 44.4 1.2 Q1 Q0 46 2665 . . .46 2624 14 431 321.5 binary 4.5 44 462 Q0–Q4 109.5 35.9 . . . Q0–Q1 Q2.2 ...... 43 845 79.6 4.5 Q0–Q1 Q2.1 + + + HD 181206 Ap orHD Am 185115 star 49 507HD 188833 hybrid HD 174019 44.2 1.2 ...... Q0 15 822 45 192 Q1 44.4 169.8 1.2 95.2HD 188832 Q0–Q1 Q1 . . . Q3.1 Q0 40 424 137.7 66.3 Q0–Q1 Q2.3 HD 189013 . . . 37 977 25.9 0.0 . . . Q3.3 BD BD BD , V2094 Cyg Am star, or 47 787 310.5 4.5 Q1–Q4 Q2.3 20 40 25 29 30 35 35 35 35 35 35 25 A7pCrEu 46 42 16.1 11.4 F2 46 35 35.2 8.9 A5mp 46 46 48.0 10.8 ...... 38 670 292.5 219.3 Q0–Q1 Q4.2 46 45 39.546 45 55.9 11.546 50 00.2 10.946 48 52.2 14.246 52 29.2 14.1 . . . 9.6 ...... A2 TYC 3558-637-1 ...... 13 759 ...... 44.1 88 778 4.6 13 980 321.5 13 980 Q1 248.3 310.5 310.5 Q0–Q1 4.5 4.6 Q0 Q1–Q4 Q4.3 Q1–Q4 ...... 46 44 27.8 14.1 ...... 13 809 310.5 5.0 Q1–Q4 . . . 46 35 22.3 8.2 F1IV 46 56 12.646 54 22.8 11.347 00 23.3 11.147 00 11.3 12.947 00 27.8 13.447 . 03 . . 05.0 13.947 . 05 . . 13.2 13.3 . . . 10.347 . 05 . . 38.447 TYC . 3562-2361-1 05 . . 14.4 11.447 . 02 . . 41.1 TYC 3562-32-1 11.3 A5 47 05 05.2 11.547 05 24.2 . . 11.3 . . . . . 6.9 ...... A3V . 38 677 TYC 3547-470-1 43 903 TYC 3547-20-1 . 292.5 . . . TYC . 3561-258-1 . 219.3 . . . . 79.6 ...... Q0–Q1 . . . . . 4.5 . . . 13 699 40 137 . . Q0–Q1 . Q4.2 88 326 13 930 320.6 433 14 213 399 228.8 45 170 6.8 321.5 310.5 158.5 Q2.1 321.6 248.3 321.5 14 433 4.9 109.5 Q0–Q4 Q0–Q1 4.5 4.6 Q0–Q1 35.4 321.5 Q1–Q4 Q0–Q4 Q0–Q1 4.6 . Q3.3 . . . . . Q4.3 . . Q0–Q4 . Q2.2 . . . Q0–Q4.3 . . . 46 35 26.9 11.1 . . . TYC 3556-1982-1 . . . 43 914 79.6 4.5 Q0–Q1 Q2.1 46 54 20.9 10.7 . . .47 04 34.5 TYC 3560-2590-1 12.3 ...... 47 550 . 262.8 . . 187.3 Q0–Q1 . . . Q4.1 43 945 79.6 4.5 Q0–Q1 Q2.1 46 39 58.746 40 03.0 11.446 40 01.7 12.846 39 55.9 11.6 7.6 . . . . . kA5hA7mF3 ...... 46 58 02.046 59 48.0 14.246 59 11.5 13.846 59 01.5 13.246 . 55 . . 12.7 14.246 . . 55 . . . . 02.6 12.246 . . . 57 . . . 26.2 14.2 . . . 9.7 . . . 15 851 . . . 14 463 . . . 15 860 K0 44.4 . . . 321.5 . . . 1.2 44.4 . . . 4.5 . . . 1.2 . . . Q0–Q4 . . Q1 . . . . Q1 ...... Q0 47 . 11 . . 12.1 13 . 495 . . Q0 12.6 13 322 14 360 310.5 36 583 310.5 15 853 . 5.7 . . 321.5 13 941 6.4 28.9 4.9 44.4 Q1–Q4 310.5 3.9 Q1–Q4 1.2 Q0–Q4 4.5 ...... Q1–Q4 . Q1 . . . . Q4.2 . . Q0 . . . 40 348 137.7 66.3 Q0–Q1 Q2.3 46 35 29.8 10.0 A2 46 37 51.046 41 43.7 7.9 11.9 A0 ...... 46 55 47.6 13.9 ...... 15 859 44.4 . . . 1.2 Q1 . . . Q0 47 07 21.6 13 276 9.9 310.5 6.1 . . . Q1–Q4 TYC 3544-1245-1 ...... 52 795 321.5 4.5 Q0–Q4 Q2.3 46 31 34.146 35 05.1 10.9 9.9 . . . A2 TYC 3556-3228-1 . . . 57 342 321.5 4.5 Q0–Q4 Q3.1 46 31 14.2 13.0 ...... 63 426 321.5 4.5 Q0–Q4 Q1 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + (J2000) (J2000) 09881909 19 10 03.58 KIC ID09764965 19 RA 17 24.91 Dec Kp Spectral type09874181 Name 18 51 26.57 Variable N Datapoints 0991348109944208 19 58 20.76 09944730 19 13 58.44 09970568 19 15 11.54 19 55 01.15 09909300 19 53 27.17 09885882 19 18 45.05 1003577210056217 20 00 05.26 10056297 18 50 47.52 10057129 18 51 00.24 10062593 18 52 50.38 10064111 19 04 12.91 19 07 24.91 1006993410073601 19 18 56.14 10090345 19 24 48.70 10096499 19 49 00.12 19 55 54.07 09775454 19 35 32.02 10030943 19 54 12.43 10068892 19 17 00.31 09775385 19 35 24.70 10014548 19 32 14.23 10065244 19 09 47.30 0983602009845907 19 35 43.10 09851142 19 49 30.46 19 55 12.05 0999478909995464 18 52 50.45 10000056 18 54 26.02 10002897 19 05 07.51 10004510 19 11 41.71 10006158 19 14 55.08 19 18 07.39 09818269 19 00 40.73 09991766 18 45 08.02 10130777 19 10 00.34 09773512 19 32 21.77 0981235109813078 18 46 10.32 18 48 21.55 09991621 18 44 43.25 10119517 18 45 55.46 09790479 19 55 05.57 09777532 19 38 31.06 09776474 19 37 00.19 continued. Table 1.

A125, page 33 of 70 A&A 534, A125 (2011) Quarters LC Quarters SC T δ T (d) (d) Δ 39 155 126.8 66.7 Q1 Q2.3 403 034 321.6 324.3 . . . Q0–Q4.3  13 47 2769 . . .47 15 2927 840 44.4 . . . 1.2 45 449 Q147 2721 109.5 35.3 . . Q0 . Q0–Q1 14 423 Q2.2 321.5 4.6 Q0–Q447 282847 2856 ...... 40 147 137.7 15 860 66.5 44.4 Q0–Q1 1.2 Q2.3 Q1 Q0 + + + + + HD 183954HD 187709 ...... 147 978 45 466 109.7HD 174789 109.5 4.5 35.3 . . . . . Q0–Q1 . 43 946 Q2.2 Q0–Q2.2 79.6 4.5 Q0–Q1 Q2.1 BD BD BD BD BD TYC 3546-1494-1 . . . 13 014 320.5 8.2 Q0–Q4 . . . 31 35 35 35 35 35 35 35 35 47 08 52.047 08 32.4 13.647 06 05.4 11.847 06 08.0 11.047 09 58.8 12.1 . . .47 14 57.3 11.4 . . . 11.2 ...... B1 . . . . . TYC . 3562-1846-1 ...... V850 Cyg ...... binary . . . . 39 . 573 . . . . 14 282 137.7 15 858 435 810 66.5 321.3 432 553 44.4 321.6 4.9 Q0–Q1 321.6 1.2 4.5 4.5 Q0–Q4 Q2.3 Q1 ...... Q0–Q4.3 Q0 Q0–Q4.3 47 34 09.247 32 07.6 13.347 32 01.8 10.5 10.4 ...... K 47 TYC 37 3544-2086-1 33.047 40 28.6 14.2 . .47 . 36 . 18.6 . 12.0 .47 40 45.0 10.747 45 27.1 10.6 . . . 10.2 . . . 10 335 ...... M7 228.7 TYC 3560-2319-1 4.5 . 13 . 729 TYC . 3561-1801-1 ...... Q0–Q4 320.9 . . . 5.8 . 47 . 572 Q4.1 . . 40 . 134 . Q0–Q4 262.8 228.8 13 187.3 907 431 107 158.5 . . . Q0–Q1 310.1 321.6 Q0–Q1 4.5 4.5 Q4.1 Q3.3 Q1–Q4 ...... Q0–Q4.3 47 24 27.347 28 30.5 9.3 10.9 A2 . . . TYC 3562-1455-147 38 22.5 . . 14.1 . . . . 40 046 137.7 66.3 . . . Q0–Q1 Q2.3 . . . 13 274 310.5 5.7 Q1–Q4 . . . 47 47 43.447 43 47.5 14.447 47 49.8 11.5 9.6 ...... A5 ...... 13 450 433 130 310.4 321.6 6.0 4.5 Q1–Q4 ...... Q0–Q4.3 47 21 30.147 23 36.7 10.947 18 39.2 11.547 18 34.9 11.747 23 24.5 11.5 . . .47 23 25.7 11.1 . . . 10.2 . . .47 24 08.2 . . .47 24 44.0 12.0 . . .47 24 A2 09.4 11.6 . 9.0 ...... TYC . 3560-1923-1 ...... F8 . . . . .47 . 40 . . 31.047 . 36 . . 50.9 10.8 . .47 . . 43 36 . 712 . 27.9 13.2 . .47 . . . 38 . 14.4 432 12.8 872 436 . 154 . 30.0 9.2 . 431 . 979 . 321.6 . 373 . 959 0.0 . 321.6 . . . . 4.5 A2 321.6 . . . 4.5 321.6 4.5 Q1 35.3 432 133 ...... 431 104 ...... 321.6 ...... 321.647 44 Q3.2 43.0 4.5 Q0–Q4.3 47 42 28.8 4.5 11.6 Q0–Q4.3 . . . Q0–Q4.3 9.9 . . Q0–Q4.3 ...... 45 F0 194 13 719 Q0–Q4.3 13 804 169.8 Q0–Q4.3 321.2 95.2 321.4 . . 4.6 . 6.2 Q0–Q1 Q0–Q4 Q0–Q4 Q3.1 ...... 449 999 321.9 4.5 Q0–Q4 Q0–Q4.3 47 22 59.2 15.0 . . .47 26 07.8 12.0 ...... 47 . 33 . . 08.8 13.3 . . . 13 598 . . . 310.5 . . . 5.6 Q1–Q4 436 158 . . . 321.647 46 . 08.7 . 4.5 . 11.3 . . .47 45 33.3 . . . 11.0 . . . 14 457 . Q0–Q4.3 . . 321.5 4.5 . . . Q0–Q4 ...... 431 681 321.6 44 427 4.5 321.5 248.3 . . . Q0–Q1 Q0–Q4.3 Q4.3 47 17 14.647 17 19.5 11.6 11.4 ...... TYC 3560-2645-1 binary ...... 46 069 200.7 126.4 Q0–Q1 Q3.2 47 14 04.0 11.9 ...... 432 367 321.6 4.5 . . . Q0–Q4.3 47 22 26.347 20 21.6 13.9 9.9 . . . A2 ...... 13 393 310.5 5.6 Q1–Q4 . . . 47 18 05.7 10.2 . . . TYC 3544-2546-1 . . . 43 944 79.6 4.5 Q0–Q1 Q2.1 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + (J2000) (J2000) KIC ID1013460010134800 19 17 02.93 RA10140513 19 17 24.60 10140665 19 26 25.46 10164569 19 26 38.47 10206340 19 57 20.35 Dec 19 24 58.82 Kp Spectral type Name Variable N Datapoints 1038545910389037 18 48 19.39 18 56 44.62 1046796910471914 19 23 32.47 10484808 19 30 03.02 10526137 19 48 04.58 19 11 42.82 10383933 18 44 15.65 10453475 18 55 16.63 1035505510361229 19 49 16.61 19 56 08.93 10451250 18 50 15.94 1053350610533616 19 24 50.42 19 25 00.91 10526615 19 12 39.94 1027338410273960 19 26 19.54 10274244 19 27 17.42 10281360 19 27 44.74 10289211 19 38 39.22 19 48 58.75 1034051110341072 19 28 56.16 19 29 46.20 1045055010450675 18 48 44.04 10451090 18 49 01.15 18 49 55.92 10537907 19 32 08.18 10273246 19 26 05.76 10339342 19 27 05.35 10448764 18 44 12.41 10536147 19 29 11.93 10266959 19 15 19.42 10338279 19 25 28.94 10394332 19 08 02.76 10534629 19 26 43.27 10549292 19 48 10.56 10213987 19 37 05.16 10208345 19 28 17.04 10208303 19 28 12.58 10264728 19 10 59.66 10254547 18 48 46.27 10253943 18 47 24.48 continued. Table 1.

A125, page 34 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. Quarters LC Quarters SC T δ T (d) (d) Δ 52 538 137.9 101.1 . . . Q0–Q2.3 43 946 79.6 4.5 Q0–Q1 Q2.1   47 2705 . . . 43 945 79.6 4.5 Q0–Q1 Q2.1 47 292247 277347 2868 . . . . binary . . 43 939 15 851 79.6 4.5 44.4 1.2 Q0–Q1 Q1 Q2.1 Q0 48 2768 . . . 43 656 79.6 4.5 Q0–Q1 Q2.1 + + + + + HD 183280 . . . 38 016 25.9 0.0 . . .HD 183558 Q3.3 . . . 147 727 109.7 4.5HD 184333 ...... Q0–Q2.2 49 510 44.2 1.2 Q0 Q1 BD BD BD BD 35 35 35 35 32 35 35 47 42 28.8 9.5 A5 48 08 30.948 08 15.5 13.148 10 36.3 11.1 8.3 ...... B5 TYC 3546-1364-1 ...... 40 136 . . . 228.8 158.5 11 299 Q0–Q1 252.5 4.5 Q3.3 Q0–Q4 . . . 48 06 19.5 13.8 ...... 13 190 310.5 7.4 Q1–Q4 . . . 47 59 53.147 58 27.2 11.047 55 43.1 11.147 58 55.8 11.148 05 33.0 11.3 . . .48 02 25.8 13.9 . . .48 02 56.6 11.2 . . .48 00 40.9 10.5 . . .48 05 TYC 34.8 3562-461-1 14.2 . . .48 06 TYC 56.6 3562-805-1 10.5 . . .48 06 TYC 45.9 3562-301-1 10.6 . . . .48 . 07 . TYC 13.9 3562-707-1 14.1 ...... 10.2 . . . . . TYC . 3544-1186-1 . . . . . TYC . 3545-2523-1 . 44 . 430 ...... 49 . . 511 . TYC 3547-1205-1 . . 49 . 46548 10 321.5 TYC 17.3 3544-733-1 45 455 .48 . . 10 28.0 248.3 44.2 . . 11.3 . 15 860 44.2 11.2 . . BD . . 40 109.5 . 1.2 421 . Q0–Q1 . . . 1.2 35.3 . . . 411 44.4 665 . 137.7 . . . . . 39 Q0 910 1.2 13 Q0–Q1 Q4.3 501 66.3 321.6 Q0 TYC 3561-1538-1 7.3 . 228.8 . TYC . 3561-434-1 310.5 Q0–Q1 13 650 Q1 158.6 Q2.2 . . . binary 6.1 Q1 48 Q1 32 . 32.0 . 310.5 Q0–Q1 . 12 Q2.3 652 Q1–Q4 9.3 5.9 40 408 Q0 310.5 Q3.3 Q0–Q4.3 Q1–Q4 137.7 A2 7.3 . . . 66.3 Q1–Q4 . Q0–Q1 . . . . . Q2.3 47 57 32.6 10.9 . . . TYC 3561-371-1 . . . 15 84248 10 57.2 44.4 10.8 1.2 . . . Q1 TYC 3547-1020-1 binary Q0 48 27 435 37.8 432 10.2 321.6 5.1 ...... TYC 3561-622-1 . . . Q0–Q4.3 43 947 79.6 4.5 Q0–Q1 Q2.1 47 53 45.3 10.0 F0 47 48 48.9 12.447 50 14.0 9.9 . . . F0 ...... 45 316 109.5 35.3 Q0–Q1 Q2.2 47 57 29.447 59 54.2 11.747 55 26.2 12.047 56 52.3 13.347 55 45.2 11.4 . . .47 54 19.0 11.9 . . .47 57 27.0 13.1 . . .47 58 53.9 11.9 . . .47 58 53.9 11.8 . . .47 58 11.7 10.9 ...... 7.6 ...... A2 ...... TYC . . 3547-1575-1 ...... 15 860 . . . 15 851 . . . 13 667 . 44 . 427 . 44.4 44 102 . . . 44.4 11 249 321.0 1.2 321.5 43 591 321.5 1.2 15 248.3 854 7.4 252.5 248.4 430 810 79.6 Q1 Q0–Q1 4.5 44.4 Q0–Q4 Q0–Q1 Q1 321.6 4.5 1.2 4.5 Q0–Q448 17 37.9 Q4.3 48 Q0–Q1 23 Q4.3 01.6 Q0 . 12.1 . . 48 19 09.9 Q0 12.5 Q148 . 19 . . 45.4 . 11.8 . . 48 18 27.6 Q2.1 11.9 . . .48 26 53.3 11.2 . . .48 29 14.9 13.8 . . Q0–Q4.3 .48 26 33.1 Q0 11.1 . . . . . 8.8 ...... A2 . . TYC . 3547-1099-1 ...... 44 . 429 . . . . 431 057 321.5 9 . . 706 . 430 256 248.3 321.6 . . . 430 371 4.5 217.8 321.6 Q0–Q1 12 321.6 734 5.4 4.5 48 556 4.5 . . . 310.5 Q4.3 Q1–Q3 44.2 . 5.7 . . . . . 1.3 Q0–Q4.3 Q1–Q4 . . . Q0–Q4.3 Q0–Q4.3 Q0 . . . Q1 47 51 56.6 10.3 ...... 40 385 137.7 66.3 Q0–Q1 Q2.3 48 12 21.2 11.0 . . . TYC 3546-374-1 . . . 44 428 321.5 248.3 Q0–Q1 Q4.3 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + (J2000) (J2000) KIC ID10549371 19 RA 48 16.15 Dec Kp Spectral type Name Variable N Datapoints 1078845110797526 19 12 37.80 19 27 49.37 10783150 19 01 20.76 10778640 18 51 17.76 1068467310685653 19 53 42.41 10686752 19 54 50.30 10709716 19 56 03.43 10713398 18 45 29.64 10717871 18 53 42.43 10723718 19 03 14.88 10730618 19 15 05.93 10775968 19 26 30.48 10777541 18 45 15.58 10777903 18 48 50.14 18 49 40.42 10815466 19 52 28.63 10684587 19 53 36.67 10813970 19 50 47.21 11013201 18 48 00.07 10675762 19 43 05.02 10797849 19 28 20.69 10988009 19 48 08.23 10590857 19 11 38.54 10586837 19 03 02.38 10604429 19 34 36.46 1064761110647860 18 52 04.49 10648728 18 52 37.75 10652134 18 54 35.76 10658302 19 02 08.28 10658802 19 15 07.68 10663892 19 16 03.00 10664703 19 24 45.10 10664975 19 26 02.47 19 26 28.49 1090273810920182 18 45 46.99 10920273 19 27 36.17 10920447 19 27 45.77 10971674 19 28 04.97 10975247 19 19 09.79 10977859 19 26 34.37 19 31 37.99 10647493 18 51 45.14 10861649 19 27 58.37 10615125 19 48 58.92 10853783 19 13 30.60 continued. Table 1.

A125, page 35 of 70 A&A 534, A125 (2011) Quarters LC Quarters SC T δ T (d) (d) Δ 28 72124 170 322.0 4.5 228.5 4.5 Q0–Q4 Q0–Q3 Q0 Q0 15 , 14 14 48 2925 . . . 40 42348 2912 137.7 66.3 . . . Q0–Q1 Q2.3 40 25548 2815 137.7 66.3 . . . Q0–Q1 Q2.3 45 466 109.5 35.3 Q0–Q1 Q2.2 + + + HD 177876 . . . 39 548 217.8 158.5HD 186700 Q1 . . . Q3.3 56 546 321.5HD 183489 35.3HD 178327 Q0–Q4 Am star Am, hybrid Q2.2 BD BD BD 14 14 20 35 35 35 35 3V / 48 33 17.048 34 19.4 14.648 33 38.9 11.448 35 49.5 11.348 36 16.9 11.348 . . 40 . 08.7 14.348 . . 38 . 19.8 14.548 . . 36 . 24.2 10.9 . . . 9.6 ...... TYC . 3547-1058-1 A5 ...... TYC 3547-759-1 ...... binary ...... 88 810 . 38 . . 597 321.5 . 10 . 873 . 338 509 248.3 292.5 342 509 241.5 219.3 252.7 Q0–Q1 150.6 12 252.7 550 5.1 13 Q0–Q1 300 4.5 Q1–Q4 310.5 Q4.3 310.5 . 7.2 . . Q4.2 . 5.9 . . . . . Q1–Q4 Q1–Q4 Q0–Q4.1 Q0–Q4.1 ...... 48 52 21.448 50 21.2 12.848 52 07.6 10.8 9.6 ...... A2 TYC 3550-456-1 ...... 45 180 169.8 95.2 11 324 Q0–Q1 252.5 4.6 Q3.1 Q0–Q4 . . . 48 50 41.5 12.0 ...... 49 02 05.6 10.3 . . . F2 337 715 252.7 5.1 . . . Q0–Q4.1 49 18 20.8 8.549 22 19.3 kA7hA9mF5 11.9 ...... 338 310 252.7 4.8 . . . Q0–Q4.1 49 18 01.6 11.949 20 52.2 11.8 ...... 341 474 334 372 252.7 5.1 252.7 5.1 ...... Q0–Q4.1 Q0–Q4.1 48 42 57.548 46 32.4 11.148 43 27.7 11.448 47 45.1 10.848 44 32.1 11.348 . . 52 . 00.3 11.7 . . . 7.7 ...... TYC . 3545-69-1 A2 48 48 07.548 55 32.1 . . 10.9 .48 54 . . 33.0 . . . 13.6 .48 56 31.6 . . 14.1 .48 56 07.0 . . 13.5 .48 . . 55 . 39.1 11.948 . . 56 . 39.3 11.948 . . 54 . 49 03.6 041 12.048 . . . 55 . . . 44.2 10.6 . TYC . . 3565-674-1 . . . 8.4 . 33.4 ...... 49 . . . 02 . . 36.3 0.0 .49 . 05 . 50.0 . . 11.4 . . .49 15 . F5 10 856 52.6 . . 10.5 . 33949 574 08 47.4 . . 14.4 . 33849 231 11 . . 48.3 . . . 13.0 . 336 44.4 TYC49 245 . 3551-523-1 . 252.7 17 . 49.7 . . 12.8 .49 . . 252.7 14 . 02.1 . . 11.5 1.2 . 58 4.649 160 . . 252.7 15 . 04.5 12.0 5.149 . . . 16 . . . 44.4 10.8 . 5.1 .49 . . . . 17 . TYC Q1 . . 3550-42-1 04.6 321.6 11.7 TYC 3565-1318-149 . Q1 . . . 15 . . . . 23.5 . 248.3 12.6 ...... 8.1 ...... 10 . . 454 . . . kF3hA9mF5 . . Q1 ...... 77 272 . Q0–Q4.1 10 . 290 . . Q0 . . Q0–Q4.1 10 545 . . 241.5 . 337 TYC 220 Q0–Q4.1 3550-300-1 292.5 . . 241.5 . 338 Q0–Q4.3 373 5.7 . 219.3 . 251.5 . 328 959 337 252.7 111 6.2 45 182 252.7 5.6 . . Q0–Q1 . . 5.1 Q1–Q4 . . . 252.7 . . 252.7 . . . 5.1 Q1–Q4 169.8 . . . 5.1 Q0–Q4 5.1 . . . 95.2 . Q4.2 ...... 335 . Q0–Q1 442 . . 10 . 617 ...... 46 . 076 . 252.7 Q0–Q4.1 . 11 . 332 . 241.5 340 340 Q0–Q4.1 Q3.1 5.1 200.7 338 263 Q0–Q4.1 Q0–Q4.1 4.9 252.5 126.4 252.7 336 659 252.7 4.5 4.5 Q1–Q4 . Q0–Q1 45 . . 461 5.1 252.7 Q0–Q4 109.5 4.5 . . Q3.2 . . Q0–Q4.1 . . 35.3 ...... Q0–Q1 . Q0–Q4.1 Q0–Q4.1 Q2.2 Q0–Q4.1 48 47 55.6 13.9 . . .48 48 22.0 . . . 11.0 ...... TYC 3565-514-149 03 12.5 13 297 11.8 . . . 310.5 . . . 5.8 44 324 Q1–Q4 TYC 3550-892-1 321.5 248.3 . . . Q0–Q1 . . . Q4.3 15 861 44.4 1.2 Q1 Q0 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + (J2000) (J2000) 1102052111021188 19 07 39.65 11027270 19 09 15.58 11067972 19 22 35.14 11069435 18 48 26.30 11082830 18 52 28.25 11090405 19 24 46.87 19 39 12.38 KIC ID11017401 18 59 53.81 RA Dec Kp Spectral type Name Variable N Datapoints 1118353911193046 19 12 25.80 19 32 45.31 11183399 19 12 06.29 11182716 19 10 24.26 11285767 19 01 12.19 11445913 19 05 40.63 11446181 19 06 24.36 11445774 19 05 21.00 11446143 19 06 19.22 1112719011128041 19 04 37.85 11128126 19 06 59.26 11129289 19 07 12.19 11180361 19 10 15.19 19 04 04.61 1123051811232922 18 55 50.50 11233189 19 02 17.33 11234888 19 02 52.42 11235721 19 07 00.22 11236253 19 09 10.61 11240653 19 10 39.34 11253226 19 19 53.18 19 43 39.62 1130933511340063 19 48 47.21 11340713 19 04 11.66 11342032 19 05 42.79 11393580 19 09 19.63 11394216 19 06 05.35 11395018 19 07 48.43 11395028 19 09 55.49 11395392 19 09 57.86 11402951 19 10 54.34 19 27 32.81 11125764 19 01 09.67 11199412 19 43 51.58 11290197 19 12 40.70 11122763 18 52 27.24 11197934 19 41 29.06 11288686 19 08 39.31 continued. Table 1.

A125, page 36 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. Quarters LC Quarters SC T δ T (d) (d) Δ 46 863 251.8 187.5 Q1 Q4.1  49 2951 . . .49 2927 351 517 253.0 . . . 4.549 3039 49 507 Q0–Q4 . . . 44.2 Q0–Q4.1 1.2 15 83549 3109 Q0 44.4 . . . 1.6 Q1 49 3018 Q1 2 089 . . . 44.2 Q0 1.2 45 466 Q0–Q1 109.5 35.349 3081 . . . Q0–Q149 3106 . . . Q2.2 . . . 15 800 44.4 15 861 1.2 44.4 1.2 Q1 Q1 Q0 Q0 + + + + + + + HD 178874 . . . 104 958 79.7 4.5 . . . Q0–Q2.1 HD 181252 . . . 57 638 321.5 35.3 Q0–Q4 Q2.2 BD BD BD BD BD BD BD 32 33 35 35 35 35 33 35 33 49 19 22.3 9.8 F0 49 25 47.549 28 46.6 10.749 29 48.4 14.249 27 49.4 10.7 . . 9.7 ...... A2 TYC 3550-1330-1 ...... 342 562 252.7 . . . 4.5 . . . 13 788 . . . 38 643 309.6 292.5 4.6 Q0–Q4.1 219.349 48 06.149 54 06.3 10.9 Q1–Q4 Q0–Q149 57 15.4 14.750 03 11.0 12.7 10.0 . . . Q4.2 ...... F0 TYC 3564-891-1 ...... 44 372 . 321.5 . . . . 248.3 . Q0–Q1 10 563 45 195 241.5 Q4.3 169.8 5.7 156.1 Q1–Q4 Q0–Q1 Q3.1 . . . 49 25 10.5 12.0 ...... 298 877 252.7 30.949 53 09.0 . . . 10.3 Q0–Q4.1 . . . TYC 3564-231-1 . . . 39 814 137.7 66.4 Q0–Q1 Q2.3 49 18 46.249 19 42.5 11.549 23 03.2 12.149 24 56.4 11.149 25 39.1 11.1 . . . . . 9.7 ...... F0 TYC 3551-2195-1 . . TYC . 3549-1627-1 . .49 . 32 . 58.2 . .49 33 . 08.0 . 13.2 .49 35 28.8 13.949 39 07.6 9.949 . 94 41 . 458 . 07.8 . . 9.9 .49 . 49 39 . 461 . 10.7 12.6 . . .49 39 14.1 10.6 262.8 . . . 339 553 9.5 187.5 44.249 . 45 . . 14.1 . . 12 .49 780 44 22.2 13.8 . . 1.2 .49 252.7 Q0–Q1 47 37.4 TYC 11.9 3565-1155-1 A2 .49 . . 45 320.0 33.7 TYC 11.9 4.5 3550-1718-1 .49 . . 45 43.5 15.0 . . . . . 7.8 TYC Q0 . 3564-1819-1 Q4.1 . . 9.4 . .49 . . 51 03.6 . . . .49 . . . . 53 . 55.7 . . 10.6 Q0–Q4 . . . .49 . 51 . 01.2 . 11.1 15 857 F2 49 . 51 . 34.5 . 11.0 15 Q1 85549 51 13.6 12.4 . . Q0–Q4.1 . .49 . . 40 51 115 44.4 . 00.8 . 13.8 . . . . 10 . . 898 . . . 44.4 . . . . 7.2 10 . . 369 . 1.2 . 228.8 . . . . . 1.2 TYC 252.1 3549-677-1 . . . 158.5 TYC 241.5 3549-914-1 F2 14 393 4.8 . . . Q1 . . Q0–Q1 5.7 . . . . Q1 .50 . . . 05 . . 321.5 14.2 Q0–Q4 . .50 . . 11 . . 20.1 10.6 Q1–Q4 . 10 . 423 4.6 . Q3.3 39 335 10.1 786 . 138 .50 . Q0 16 17.4 49 334 100 440 Q0 241.3 . . Q0–Q4 10.6 . . . 13 . 252.7 043 228.7 A5 . . . 252.7 5.5 . . 158.6 44.2 . 4.5 . . . 310.5 4.5 . . . . . 1.3 TYC . . 3565-247-1 Q0–Q1 . Q1–Q4 . 6.1 14 . 384 . . 14 . . 380 . . . . Q0 Q1–Q4 13 Q3.3 915 321.5 . . . 321.5 Q0–Q4.1 . . 4.9 . 310.5 39 824 Q0–Q4.1 4.8 . . . 4.8 Q1 Q0–Q4 228.8 Q0–Q4 binary 158.6 Q1–Q4 . Q0–Q1 ...... Q3.3 49 22 41.1 11.3 . . .49 29 07.3 7.3 . F5 . .49 25 27.0 10.6 ...... 342 43949 46 TYC 57.8 3565-580-1 11.3 252.7 . . . 4.5 . . .49 47 11.6 38 114 . . . 11.0 292.5 219.4 . . Q0–Q4.1 . . . . Q0–Q1 TYC 3565-1003-1 Q4.2 ...... 50 04 31.8 10.7 11 057 41 58050 06 09.4 252.5 11.0 . 321.5 . . 248.3 4.6 . . . Q0–Q1 Q0–Q4 . . TYC . 3565-1373-1 Q4.3 ...... 15 858 47 44.4 515 1.2 262.8 187.3 Q1 Q0–Q1 Q4.1 Q0 50 17 00.6 10.2 . . . TYC 3550-1782-1 . . . 45 401 109.5 35.3 Q0–Q1 Q2.2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + (J2000) (J2000) KIC ID11447883 19 RA 11 04.92 Dec Kp Spectral type Name Variable N Datapoints 1150207511508397 19 16 07.75 11509728 19 29 38.30 19 32 21.24 1175316911754974 19 03 04.37 11821140 19 08 15.94 19 41 26.98 11499453 19 10 05.35 11718839 19 39 17.64 11499354 19 09 50.93 11714150 19 30 25.78 1144993111454008 19 15 46.08 11494765 19 24 45.94 11497012 18 57 57.77 19 03 53.04 1155162211572666 19 10 12.67 11602449 19 51 22.80 11607193 19 08 13.78 11612274 19 19 29.78 11622328 19 30 41.54 19 47 56.14 1165395811654210 19 08 57.19 11657840 19 09 41.76 11661993 19 18 15.26 19 27 55.78 1170060411706449 18 58 21.74 11706564 19 13 34.66 11707341 19 13 51.17 11708170 19 15 32.38 19 17 18.50 11874676 19 47 15.31 11448266 19 12 02.93 11549609 19 04 23.64 11651147 19 01 26.57 11700370 18 57 38.28 11824964 19 47 43.10 11910256 19 17 46.56 11447953 19 11 13.92 11498538 19 07 46.85 11515690 19 42 55.30 11651083 19 01 15.65 11671429 19 45 48.82 11822666 19 43 57.53 11874898 19 47 35.95 11910642 19 18 33.77 continued. Table 1.

A125, page 37 of 70 A&A 534, A125 (2011) ); ); ); ); 2004 2006 1976 Guetter 2011c (22) ); Bidelman et al. 1977 (30) Balona et al. ( ); (37) 1950 ); 0.5607 d (Hartman et al. 2011 = P Hill & Lynas-Gray ( (4) ); (21) 2.18 d (Magalashvili & Kumishvili Quarters LC Quarters SC ); = 2004 P Moore & Paddock ( 1999 (9) 4.56427 d, eclipsing binary (Malkov et al. T (29) δ ); = ); P 2009 1972 (13) ( T Eclipsing binary (Prša et al. ); (d) (d) Δ ff (36) Grenier et al. ( Binarity is suspected by inspection of Digitized Sky Survey and 2002 ); ) Lindo (20)  ( ); ). 2009 (28) ); 2004 47 568 262.8 187.3 Q0–Q1 Q4.1 2008 1970 Abt ( 4.924 d (Pigulski et al. = (19)  P ); 4.0303 d, pulsating star (Hartman et al. (8) Floquet ( = ); 1925 (27) P ˙ Zakowicz et al. ( ); (3) ); 8.480322 d (Carrier et al. Kharchenko & Roeser ( 2006 ); (35) 1975 2007 Cannon ( ); 2001 Molenda- (18) 1925 ); (41) Floquet ( HD 234999 . . . 28 668 322.0HD 234984HD 234859 4.6HD 234869 . . . Q0–Q4 ...... 15 841 Q0 40 397 44.4 15 729 137.7 1.2 66.3 44.4 Q0–Q1 1.6 Q1 Q2.3 Q1 Q0 Q0 ); 35.9 d (Watson 1990 (26) = 1951 ); Cannon ( P 8.4803 d (Otero (7) (34) eit ( = 1952 ); ); ffl P 34 34 34 34 Ho Sato & Kuji ( 0.0665 d (Henry et al. (12) 2004 1952 (40) ); = (17) Macrae ( P ); ); (2) (25) 2006 ); ); 2003 2001 2004 1997 Hill & Schilt ( (33) ); Henry et al. ( Wright et al. ( 1958 0.2948 d (Hartman et al. 50 21 01.3 9.1 B9 50 27 38.850 33 35.9 10.050 31 10.2 11.150 32 03.4 10.950 37 26.3 10.4 . . .50 38 31.5 11.1 . . .50 39 11.8 10.8 . . . 10.7 . . . TYC 3565-859-1 . . . TYC 3550-895-1 . . . TYC 3551-450-1 . . . .52 . TYC . 05 3564-1358-1 39.6 . . . TYC 3549-88-1 . 9.8 . . TYC . 3568-996-1 . . TYC 3569-391-1 15 830 . . . 49 055 A5 . binary . . 15 826 40 428 44.4 44.2 49 308 1.4 44.4 45 137.7 441 1.2 66.3 1.6 44.2 109.5 Q1 Q0–Q1 35.3 Q0 1.2 Q1 Q0–Q1 Q2.3 Q0 Q0 Q1 Q0 Q2.2 Q1 50 24 13.8 10.8 . . . TYC 3564-274-151 10 47.5 .51 . . 42 20.1 9.6 10.7 95 A2 146 . . . 262.8 187.3 TYC 3555-1407-1 Q0–Q1 . . . Q4.1 47 581 262.8 187.3 Q0–Q1 Q4.1 50 53 13.2 9.9 F2 50 53 45.6 10.7 . . . TYC 3569-368-1 . . . 40 433 137.7 66.3 Q0–Q1 Q2.3 (16) 0.38414 d (Watson + + + + + + + + + + + + + + = (39) ); = P ); P Perryman et al. ( (6) 2010 ); 2011 (11) (24) Vyssotsky ( ); ); 2004 (32) (J2000) (J2000) ); 2006 1984 1986 spectroscopic binary. Grigahcène et al. ( ) ◦ ( KIC ID11973705 19 RA 46 42.58 Dec Kp Spectral type Name Variable(15) N Datapoints 1205842812062443 19 18 05.66 12068180 19 27 48.05 12102187 19 39 22.42 12117689 19 04 01.97 12122075 19 40 37.25 19 48 15.07 12020590 19 42 20.35 12784394 19 19 51.41 12018834 19 38 48.29 1235364812647070 19 18 07.97 19 21 51.14 12217281 19 44 00.38 12216817 19 43 11.14 9.3562 d, eclipsing binary (Hartman et al. ); = Abt & Cardona ( Stephenson ( P continued. 1984 0.066677 d (Watson (23) (31) (1) 0.1886 d (Hartman et al. ); ); = = Eclipsing binary (Slawson et al. P Abt ( P 1988 1968 Table 1. Notes. (5) (10) (14) (38) 2MASS images; ( (

A125, page 38 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. ) 1 ...... − (km s g g i 3 13 ± sin ...... ± ...... v Spectra Spectra 91 100 b b g b b b g a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a  0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.21 0.23 0.21 0.21 0.22 0.19 0.26 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ...... ± 3.5 3.9 4.0 4.0 2.5 4.0 4.1 2.7 3.8 3.6 3.7 2.4 2.3 2.0 2.3 4.0 2.5 2.5 2.2 4.1 4.2 4.5 4.1 3.6 2.4 3.7 4.0 4.1 2.6 4.2 2.3 Adopted 4.2 4.43 3.50 4.00 4.23 3.74 2.69 g g 0.26 0.19 ± ± ...... (dex) g 4.15 2.69 b b b b b b b 0.21 0.21 0.21 0.23 0.21 0.21 0.22 ± ± ± ± ± ± ± Literature Literature a ...... 4.43 3.50 ...... 4.00 4.23 . . . 3.74 3.473.923.99 ...3.16 ...3.98 4.49 ...2.543.95 ...... 4.07 ... 2.673.35 ...... 3.83 ... 3.84 ...3.58 ... 3.65 ...2.42 ...2.32 ...... 2.02 ...... 2.31 ...... 3.95 ...... 2.52 ...... 2.48 ...... 2.22 ...... 4.104.19 ...... 4.46 ...... 4.12 ...3.56 ...... 2.44 ...... 3.70 ...... 3.99 ... 4.10 ...2.63 ...4.17 ...2.34 ...... KIC a a a a a a b b a a a a a a a a a a a a a a a a a a b b a a a a a a a b g g  80 75 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 120 130 150 130 130 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ...... Adopted 7070 7000 6870 8410 7270 4639 7500 6680 4590 7140 7280 4600 4670 4440 4640 4590 6250 6440 6170 8020 7930 4620 7290 7280 4850 7060 4570 8110 8140 7990 4590 4340 8180 6410 6560 6940 6610 6690 ) for the 750 sample stars. 1 − ... g (K) log 75 ff values (in km s e ± i ...... T sin v 7000 b b b b b b g 80 130 120 130 130 130 150 ± ± ± ± ± ± ± (in dex), and g Literature Literature Literature a 7050 6500 ◦ 01162150 6870 ...... 0129475601432149 841001571152 727001573064 .01718594 . . 4639 .01995489 . . 75000202096602162283 . . . .02163434 . . . . . 6680 . . .02166218 . . . 6410 4590 . . . 6560 715002300165 .02303365 . . 7070 7140 . .02306469 ...... 7280 .02306716 . . . . . 460002310479 467002311130 . . . 4440 .02423932 ...... 4640 ...... 02443055 ...... 02444598 . . . 4590 ...... 02556387 ...... 02557430 ...... 02558273 . . . . . 6250 .02568519 ...... 644002569639 . . . 617002571868 ...... 8020 .02572386 ...... 7930 ...... 02578251 ...... 02583658 ...... 02584202 ...... 4620 . . . .02694337 . . . . . 6610 ...... 02707479 . . 7290 . .02718596 ...... 7280 .02720582 . . . . . 485002834796 ...... 7060 .02835795 ...... 4570 ...... 6690 ...... KIC ID KIC 01571717 8110 . . .02168333 8140 ...... 02439660 799002556297 459002557115 . . . 4340 ...... 02575161 ...... 02584908 6940 . . . 8180 ...... ective temperature (in K), log ff E Table 2.

A125, page 39 of 70 A&A 534, A125 (2011) ) ...... 1 − (km s g g i i i i 5 5 5 18 15 ± sin ± ± ± ± ...... v Spectra Spectra 90 50 120 228 210 g b b i i i a a a a a a a a a a a a a a a a a a a a a a a a a a a a g  0.1 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.09 0.21 0.21 0.3 ± ± ± ...... ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 3.6 4.0 4.1 3.6 2.5 2.5 2.4 2.2 2.6 3.6 2.6 3.6 4.0 3.9 2.6 3.9 3.8 3.9 3.7 2.3 3.7 3.6 3.6 4.1 2.3 2.7 3.4 4.1 2.5 2.5 3.9 3.6 Adopted 3.69 3.82 4.10 i 0.2 ± ...... (dex) 4.1 g g b b i i e g 0.1 0.1 0.2 0.09 0.21 0.21 0.3 ± ± ± ± ± ± ± Literature Literature a ...... 3.82 3.592.522.53 ...2.37 ...2.24 ...2.59 ...... 3.59 ...... 2.64 ...... 3.56 ...... 4.04 ...... 3.503.89 3.69 ... 3.562.58 ...... 3.6 3.89 ...3.763.85 ...... 3.66 ...2.32 ...... 3.68 ...3.55 ...... 3.60 ...... 4.07 ...... 4.02 ...... 2.26 4.10 ...... 2.74 ... 3.44 ...... 4.06 ...... 2.55 ...... 2.48 ...3.42 ...... 3.86 ...... 4.0 3.93 3.3 ...... 3.84 ... 3.6 ... KIC i i i a a a a a a a a a a g a a b a a a a a a a a a b a a a a a a a g  70 120 150 150 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 120 130 150 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ...... Adopted 7750 7700 7500 7200 7320 4850 4770 4620 4700 4720 4660 7310 7880 8210 7970 7800 8420 7870 4660 6500 7020 7200 6780 4810 4900 7230 8050 4790 4900 7190 4590 7410 7830 6750 6850 ... i (K) log 120 ff e ± ...... T 7700 i i e g b b g 70 150 150 162 120 130 150 ± ± ± ± ± ± ± Literature Literature Literature a 7800 7830 ◦ 02853280 7320 ...... 02995525 4850 ...... 0285568702860123 477002969151 462002970244 470002972401 472002975832 . . . 466002987660 . . .02989746 ...... 7310 . . .02997802 ...... 03097912 . . .03111451 ...... 788003119604 . . .03119825 ...... 821003215800 . . . . .03217554 ...... 03219256 ...... 7290 . 03222364 . . .03230227 . . . . 7500 ...... 03231406 . . . . 797003240556 ...... 7800 .03245420 . 6750 842003248627 ...... 7870 . . 03327681 ...... 466003331147 ...... 6500 . . 03337002 . . . . 702003347643 . . . . 7200 . .03348390 . . . . 6780 . .03354022 ...... 7140 .03355066 . . . . . 4810 .03424493 . . 6850 . . . 4900 .03425802 . . . . . 723003427144 . . . . . 8050 . 03427365 ...... 4790 . .03429637 ...... 4900 ...... 6960 ...... 03449373 . . 7200 . . . .03449625 ...... 03453494 ...... 7810 ...... 7750 ...... KIC ID KIC 03218637 719003220783 4590 ...... 0343794003440495 7430 7410 7342 ...... continued. Table 2.

A125, page 40 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. ) 1 − (km s i sin ...... v Spectra Spectra b b a a a a a a a a a a a d a a a a a a a a a a a a a a a a a a a a a  0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.21 0.22 0.1 ...... ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 2.4 2.5 2.8 2.3 4.1 2.7 2.4 3.9 2.0 4.1 4.3 3.5 4.0 3.4 4.1 3.6 4.1 4.0 3.9 4.0 3.6 4.1 3.9 3.6 4.2 4.0 3.8 4.1 4.1 3.7 3.5 3.5 4.3 Adopted 3.73 3.84 ...... (dex) g b b d 0.21 0.22 0.10 ± ± ± Literature Literature a ...... 2.39 ...2.472.783.81 ...2.34 3.73 ...... 4.112.74 ...2.38 ...... 3.86 ...... 2.02 ...4.11 ...... 4.33 ...... 4.03 ...... 4.31 ... 3.51 ... 4.043.42 ...... 4.10 ...... 3.56 ...4.10 ... 4.04 ...... 3.87 ...... 3.99 ...... 3.59 ...4.14 ...... 3.87 ...... 3.56 ...... 4.21 ...... 3.95 ...... 3.80 ...... 4.05 ...... 4.05 ...... 3.65 ... 3.83 ...... 3.50 3.84 ...3.47 ...... KIC a a a b a a a a a a a a a a a a a a a a a a a a a a a a a a a b a a c  76 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 140 120 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ...... Adopted 6671 4570 4570 6600 4890 7300 6790 6620 5020 4770 7340 4830 4530 7480 4410 7500 7030 8640 8150 8190 8340 7800 7310 7460 7160 7960 8300 5900 7620 7190 8290 7710 7500 6790 6470 o 0 ± 6546 d (K) log 0 ff ± e T ...... 6760 b b c 76 140 120 ± ± ± Literature Literature Literature a 03457434 4570 ...... 0345831803525951 . . . 4570 ...... 03655608 660003733735 ...... 644003759814 . . . 6671 4890 . . .03850810 . . . 7300 ...... 04077032 . . . 679004150611 6620 ...... 03458097 . . .0352857803539153 502003546061 7310 . . .03558145 4770 6790 03629080 7340 . . .03633693 483003634384 4530 . . .03643717 7480 ...... 03644116 4410 . . .03655513 . 7500 ...... 03663141 ...... 03758717 ...... 03760002 ...... 03760826 . 7030 ...... 03761641 . 8640 . . . . . 03836911 8150 ...... 03851151 ...... 03868032 8190 ...... 03941283 834003942911 7800 ...... 03966357 . 7310 . . . . .03970729 . 7460 ...... 04035667 . 7160 . . . . .04044353 7960 ...... 04048488 8300 ...... 04048494 . 5900 ...... 04069477 . 7620 ...... 04075519 . 7190 ...... 04144300 ...... 04160876 ...... 04164363 . 8290 ...... 04168574 . 7480 . . . . . 04170631 . 7710 . . . . . 6470 . . . . 7500 ...... KIC ID KIC continued. Table 2.

A125, page 41 of 70 A&A 534, A125 (2011) ) 1 ...... − (km s i g i g 9 1 20 ± sin ± ± ...... v Spectra Spectra 41 80 162 e b g d i a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a  0.3 0.19 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.22 0.13 0.05 ± ± ...... ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ...... ± 4.0 3.9 3.7 3.6 3.8 3.6 3.9 3.9 3.5 3.5 3.9 4.0 3.9 3.3 3.3 4.1 4.0 3.6 3.9 3.9 3.9 4.0 3.6 3.8 3.5 4.1 4.4 4.1 3.6 4.1 3.8 3.9 Adopted 3.11 3.56 2.70 4.26 g d 0.37 0.05 ± ...... ± (dex) g 4.01 4.26 e b g i e 0.3 0.2 0.19 0.22 0.13 ± ± ± ± ± Literature Literature a ...... 4.0 ...... 4.2 ...... 3.11 3.913.723.58 ...3.84 ...3.63 ...3.88 ...3.87 ...3.54 ...... 3.54 ...... 3.87 ...... 3.98 ...... 4.05 ... 3.87 ... 3.56 ...3.27 ... 3.32 ...... 4.07 ...... 3.97 ...3.55 ...... 3.89 ...... 3.90 ...... 3.92 ... 3.97 ...... 3.62 ...... 3.79 ...... 3.51 ...... 4.11 ...... 4.44 ...... 4.133.58 ... 4.04 ...4.13 2.70 ...... 3.83 ... 3.89 ...... KIC i e a a a a a a a a a a a b a a a a a a a o a a a a a a a a a a a a a a a g g  50 80 150 163 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 140 290 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ...... Adopted 6740 6960 7000 7132 7220 7520 6210 6740 7650 8000 8140 8250 6760 7150 7130 7290 7290 8330 8230 7860 6980 8360 7110 7350 7820 7320 7630 7470 7900 5250 6760 4300 5140 8140 7860 7090 7450 6850 6680 o 0 ± ... 6982 g d (K) log 0 80 ff ± e ± T ...... 7244 6960 i e e b g o 0 50 150 163 121 140 ± ± ± ± ± ± Literature Literature Literature a 04180199 7220 ...... 04863077 7520 . . .05024454 6210 . . .0502475005038228 ...... 6740 ...... 0425275704269337 765004281581 800004383117 814004476836 8250 . . .04480321 6760 . . .04488840 7150 . . .04550962 7130 . . .04556345 7290 . . .04570326 7290 ...... 04647763 ...... 04649476 6890 ...... 7000 04671225 8330 . . 6850 . .04677684 . . 8230 . . . .04758316 . . 7860 . . . .04768677 . . 6980 ...... 04840675 . . 8360 ...... 04850899 . . 7110 . . . .04856630 ...... 04857678 . . . 7350 ...... 7132 . .04909697 ...... 04919818 7820 ...... 04920125 6668 7320 . . .04936524 7630 . . .04937257 . . . 7470 ...... 04989900 ...... 05024150 . . 7900 ...... 5250 . . . .05024455 . . .05024456 . . 6760 ...... 4300 ...... 05080290 ...... 05088308 5140 ...... 6570 ...... 05112786 ...... 6740 05112932 ...... 05113797 ...... 05164767 . 8140 ...... 6576 ...... 04588487 7860 ...... 05105754 7090 . . .05180796 7450 ...... KIC ID KIC continued. Table 2.

A125, page 42 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. ) ...... 1 − (km s i g i i i i g 5 20 11 1 n 10 20 ± sin ± ± ± ± ± ...... v 115 Spectra Spectra 11 220 20 70 200 170 e e g b b g b i i i a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a  0.3 0.3 0.3 0.21 0.23 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.28 0.22 0.21 0.26 0.23 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ... 3.8 4.0 3.6 3.9 4.5 3.8 4.0 4.2 3.9 3.8 4.1 3.9 4.0 3.9 3.9 3.9 3.7 3.6 4.1 3.9 3.7 3.5 4.1 4.0 4.0 4.2 4.1 3.9 3.9 4.2 4.0 3.8 3.6 3.6 3.8 Adopted 3.86 3.32 3.58 3.72 4.48 3.44 3.60 i i 0.3 0.3 ± ± ...... (dex) 3.6 3.7 g e e e g b b g b i i 0.3 0.4 0.21 0.21 0.23 0.28 0.22 0.21 0.26 0.23 ± ± ± ± ± ± ± ± ± ± Literature Literature a ...... 3.884.533.84 ...... 3.95 ...4.223.94 ...... 3.76 ...... 4.07 ...... 4.11 ...3.91 ...... 3.8 4.03 ... 3.89 ...... 3.93 ...... 3.90 ...... 3.67 ...4.48 ...... 3.63 3.58 ...... 4.14 ... 3.92 ...... 4.11 ...... 4.43 3.72 ...... 3.71 4.48 3.53 ... 4.07 ...... 3.97 ...... 4.04 ...4.21 ...4.08 ...... 3.57 ...... 3.88 3.98 ...... 3.95 ... 4.18 ...... 3.99 ...... 3.62 ...... 4.22 3.44 ...3.80 3.60 ... 3.64 ... 3.59 ...... 4.15 ...... 4.15 3.86 ...3.76 4.0 3.54 ... 3.32 ...... KIC i i i i e a a a a a a a a a a a a a a a g a a a b b a a a a a a a a a a a b a a a a g  80 200 200 150 120 146 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 120 120 140 120 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Adopted 7940 6500 6975 7400 7350 6900 7610 7120 8290 7450 7330 7680 6080 7470 5450 9120 7410 6580 7070 8060 7390 8330 7710 6880 7360 8000 7360 8090 7160 7200 6670 6520 6450 6760 7050 6710 7690 8010 8360 5980 6550 6610 6480 i 120 ± ... 7350 i e (K) log ff 150 186 e T ± ± ...... 7400 7537 i i e e g b b b c g 81 80 200 200 146 163 120 120 120 140 ± ± ± ± ± ± ± ± ± ± Literature Literature Literature a 5340 5980 ◦ 05197256 7610 ...... 05272673 712005356349 8290 ...... 05473171 . . . 7450 ...... 05724810 7330 . . . .05810113 . . 6360 6480 . . .05980337 7680 ...... 0519946405200084 608005201088 7470 545005217733 .05219533 . . 9120 . . . 7410 .05294571 . .05296877 6580 . . . 6660 .05371747 . . . . .05391416 . 6500 . . 7070 .05428254 . . . . . 806005436432 739005437206 . . . 8330 .05446068 ...... 7710 ...... 05474427 ...... 05476495 . . 6880 .05476864 . . . . . 736005513861 ...... 658005603049 . . . 6170 .05630362 . . 6550 ...... 8000 .05632093 . . 6610 . . . 736005641711 . . . 809005709664 . . . 7160 .05722346 . . . . . 7200 .05724048 ...... 6670 .05724440 ...... 6520 ...... 7290 .05768203 . . .05772411 . . . . 7699 . 6450 .05774557 ...... 676005785707 ...... 7050 . . . 8010 .05857714 ...... 05880360 . . . . . 7940 . . . 6710 .05940273 ...... 769005954264 . . . 801005965837 . . . 6720 ...... 6520 .05988140 . . 6900 ...... 6975 . . . . 7450 7267 ...... 05209712 8360 ...... KIC ID KIC continued. Table 2.

A125, page 43 of 70 A&A 534, A125 (2011) ) ...... 1 − (km s g g g g i 7 8 9 12 ± ± ± sin ± ...... v Spectra Spectra 148 132 138 190 e g b g d e a a b a a a a a a a a a a a g a a a a a a a a a a g a a a a a a a a a a a  0.2 0.19 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.09 0.21 0.3 0.09 0.1 0.3 0.11 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 3.8 3.8 3.9 4.2 4.0 3.6 3.5 3.6 4.1 3.5 4.1 4.0 4.3 3.6 3.8 4.1 3.9 4.1 4.1 4.0 3.5 3.6 3.9 3.7 3.5 4.0 3.7 3.5 3.7 3.6 3.6 4.2 3.5 3.5 3.9 3.3 3.2 3.1 Adopted 3.81 4.27 3.29 4.01 3.78 e l 0.2 0.21 ± ± ...... (dex) 3.9 g 3.06 e b d g b g g g e 0.3 0.19 0.2 0.11 0.23 0.09 0.21 0.09 0.10 ± ± ± ± ± ± ± ± ± Literature Literature a ... 3.8 3.793.863.40 ...4.21 3.09 ...4.024.01 ...3.55 4.27 ...3.49 ...... 3.74 ...4.13 ... 3.29 3.63 ... 4.01 3.854.09 ... 3.81 ...3.54 ... 4.06 ...4.01 ...4.32 ...3.64 ...... 3.52 ...3.80 ... 3.29 ...4.05 ... 3.93 ...... 3.93 3.78 ...... 4.09 ... 4.14 ...... 3.95 ...3.48 ...... 3.61 ...... 3.85 ...3.66 ...... 3.51 ...... 3.52 3.17 ...... 4.04 ... 3.72 ...... 3.52 ...... 3.65 ...... 3.62 ...... 3.61 ...4.16 ...... 3.47 ...... 3.52 ...... 3.91 ...... KIC l e a a b a a a a g b a a a a a a a a a g a a a a a a a a a a a a a a a a a a c c g g  62 60 60 70 150 140 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 100 130 190 130 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Adopted 6386 6025 7520 7900 7400 6826 7110 7840 7080 7000 7850 7280 8060 8320 7480 7380 8150 8390 7840 7520 6750 7270 7070 7770 7410 7750 7240 7650 7690 7480 7770 7320 7060 7840 7140 8170 7150 7030 7310 8150 6740 8870 6700 ...... l e d 0 (K) log 150 123 ff ± e ± ± ...... T 6025 7400 6641 e e b g b g c c g g 60 62 60 70 140 167 130 100 190 130 ± ± ± ± ± ± ± ± ± ± Literature Literature Literature a 06032730 7110 ...... 0606781706123324 784006141372 667006142919 7080 6700 06187665 7000 . . .06199731 688006268890 7850 . . . 6025 06279848 7280 . . .06289468 . . . 8270 ...... 06381306 . . 8150 . 6826 06432054 8060 . . .06440930 7090 . . .06443122 8320 7287 06446951 . . 7480 ...... 06448112 7380 . . .06462033 . 8150 . . . . .06500578 . 8390 . . . . .06509175 7840 . . . . 7300 ...... 06586052 ...... 7520 06587551 7520 ...... 8380 . . .06606229 . 8870 . .06614168 . 6750 ...... 06629106 7270 . . .06668729 . 7070 . . . . .06670742 . 7770 . . . . .06678614 . 7450 . . . . .06694649 . 7410 ...... 6386 .06756386 . 7750 ...... 7990 . . 06761539 . . . . . 7900 .06776331 7240 ...... 06790335 . 7650 . . . . .06804821 7690 . . .06865077 7480 . . .06922690 . 7770 ...... 06923424 . 7320 ...... 06937758 . 7060 . . . . .06939291 . 7840 . . . . .06947064 7140 ...... 8170 ...... KIC ID KIC 06301745 6790 6740 06519869 715006590403 7030 ...... 06756481 . . . 7310 ...... continued. Table 2.

A125, page 44 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. n 2.0 ) ± 1 ...... − 19.4 (km s i i g l q 6 sin 20 2 2 o v ± ± ± ± ...... 19 Spectra Spectra 10 12 119 200 l e b b b g a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a  0.25 0.21 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.21 0.18 0.23 0.28 0.3 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ... 3.4 3.4 4.1 4.1 4.1 4.1 3.8 4.0 4.1 3.9 4.3 4.1 3.8 3.6 3.6 4.0 3.7 4.1 4.0 3.9 4.1 3.7 3.9 3.8 4.1 3.9 3.9 4.0 3.9 3.5 3.6 3.7 3.6 3.9 3.9 2.4 Adopted 3.90 3.26 3.73 4.00 2.88 4.06 i 0.3 ± ...... (dex) 3.6 g l e b b q b g 0.25 0.21 0.21 0.18 0.35 0.23 0.28 ± ± ± ± ± ± ± Literature Literature a ...... 3.373.394.06 ...4.05 ...4.11 3.73 ...4.083.49 ...... 3.84 3.26 ...... 4.05 4.00 ... 3.773.97 ...... 4.06 ...... 3.89 ...4.26 ...4.13 ...... 3.76 ...... 3.60 ...... 3.60 ...... 3.96 ...... 3.65 ...... 4.07 ...... 3.99 ...... 3.87 ...... 4.05 ...... 3.74 ...... 3.89 ...... 3.80 ...... 2.42 ...... 3.84 1.50 ...... 4.12 3.90 ... 3.95 ... 3.90 ...... 4.01 ...... 3.89 ...... 3.54 ...... 3.56 ... 3.67 ...... 4.00 ...... 3.64 2.88 ...... 3.893.47 ...... 3.94 4.06 ...... KIC i l a a a b a a b a a a a a a a a a a a a a a a a a a a q a a a a a a a a b a a a g  64 200 250 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 140 200 120 130 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ... Adopted 7260 7500 7500 7180 7850 7650 6910 7010 7270 8070 8220 7500 6530 6940 6340 7560 7850 7000 6890 7860 7290 6890 7460 6480 7020 7930 7470 7860 8310 6870 7050 8150 7480 7410 7550 7170 6930 8060 6900 7740 5370 6710 ... i (K) log 200 ff e ± ...... T 7500 r e b b q b g 64 250 190 140 120 130 200 ± ± ± ± ± ± ± Literature Literature Literature a 06951642 7180 ...... 07694191 7850 ...... KIC ID KIC 0696578907007103 765007106205 691007106648 697007109598 7010 . . 6900 .07119530 7270 . . . 778007204237 . . 7608 .07211759 8070 . . .07212040 8220 . . .07215607 7500 . . .07217483 6530 . . .07220356 6940 ...... 07265427 6340 ...... 07287118 . . 7560 . . . .07300387 . . 7850 . . . .07304385 7000 ...... 07338125 . . 6890 ...... 07350486 . . 7860 ...... 07352425 7290 ...... 07352776 6890 ...... 07385478 . . 7460 ...... 07436266 . . 6480 ...... 07450284 . . 7020 ...... 07502559 . 7930 ...... 07533694 . 7470 ...... 07548061 . 7860 ...... 5000 ...... 5370 . . .07583939 ...... 07596250 . . 8310 . . . .07662076 . . 6870 . . . .07668791 . . 7050 . . . .07669848 . . 8150 ...... 07697795 ...... 07699056 . . 7480 . . . .07702705 . . 7410 . 07732458 . . 7310 ...... 07742739 . . 7550 . . . . 6710 . . .07748238 7170 ...... 7230 ...... 7260 ...... 07122746 8340 7740 0754847907553237 7340 6930 7500 ...... 07756853 . . 8060 ...... continued. Table 2.

A125, page 45 of 70 A&A 534, A125 (2011) i g, 5 ) ± ...... 1 − 15 (km s n i i i 20 20 2.0 sin ± ± ± v ...... Spectra Spectra 230 250 15.4 e b i i a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a  0.3 0.3 0.21 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.21 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ...... 4.0 3.7 3.5 3.5 3.5 3.8 3.5 3.9 3.7 3.8 3.5 3.5 4.1 4.1 3.7 3.9 3.8 4.6 3.9 3.6 4.2 4.3 3.7 4.2 3.9 4.1 4.0 4.1 4.1 3.9 2.2 4.5 3.5 3.7 4.1 4.1 3.7 3.7 Adopted 3.90 4.38 i 0.3 ± ...... (dex) 3.7 g e b b i i 0.3 0.3 0.21 0.27 0.21 ± ± ± ± ± Literature Literature a ...... 3.503.533.52 ...3.75 ...3.40 ...3.49 3.90 ...3.86 ... 3.67 ...... 3.77 ...... 3.54 ...... 3.52 ...4.07 ...... 4.14 ...... 3.73 ...... 3.90 ...... 3.77 ...... 4.60 ...... 3.89 ...... 3.62 ...... 3.67 ...... 4.16 3.08 ...... 4.29 ... 3.69 ...... 4.22 ...... 3.85 ...... 4.06 ...4.00 ...... 4.14 ...... 4.09 ...... 3.98 ...... 3.91 ...... 4.0 2.20 ...... 3.88 ...... 4.45 4.38 ... 3.48 ...... 3.74 ...... 4.104.06 ...3.74 ...... 3.73 ...... 3.7 ...... KIC i i e a a a a a a a a a a a a a a a a a a b a a a a a a a a a a a b a a a a a a  150 200 144 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 150 140 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ...... Adopted 7500 7500 6880 8290 7450 7300 6640 8120 8160 7450 7660 7620 7380 7080 6970 7840 8480 7120 5610 7120 6350 7130 6510 7160 3680 7290 6800 7540 5020 7070 4550 5550 7280 7230 7650 7640 7400 7310 6770 6740 o 0 ± 6745 i (K) log 200 ff e ± T ...... 6700 i i e b b 150 200 144 150 140 ± ± ± ± ± Literature Literature Literature a 07767565 ...... 07827131 8290 ...... 07770282 7450 ...... KIC ID KIC 0777199107773133 730007777435 664007798339 8120 6680 . . .07831302 . . 6880 .07834612 8160 . . .07842286 745007842621 766007848288 7620 ...... 07890526 7380 ...... 07900367 7080 ...... 07908633 6970 . . .07959867 7840 . . .07977996 . 8480 ...... 07985370 . 7120 ...... 08029546 . 5610 ...... 08043961 7120 ...... 08054146 6350 ...... 08103917 . 8150 ...... 08104589 . 7130 . . . . . 6770 . . .08123127 . 6510 ...... 08143903 . 7160 . . . . .08144674 . 3680 ...... 08145477 . 7290 ...... 08149341 . 6800 ...... 08159135 . 7540 ...... 08197761 . 5020 . . . . .08197788 . 7070 ...... 8010 ...... 08218419 ...... 7500 .08222685 . 4550 ...... 08223987 ...... 08230025 . 5550 ...... 08245366 . 7280 ...... 08264061 ...... 08264075 . 7230 . . . . .08264274 . 7650 . . . . .08264404 . 7640 ...... 7890 ...... 7500 ...... 08211500 7400 ...... 08223568 6790 6740 08248630 7310 ...... continued. Table 2.

A125, page 46 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. ) 1 ...... − (km s i i i g 20 10 4 sin ± ± ± ...... v Spectra Spectra 84 210 130 b g i i a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a  0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.22 0.08 ± ± ...... ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 3.9 3.0 4.0 4.1 3.7 4.1 4.2 3.9 4.1 4.1 4.9 4.0 4.3 4.1 4.3 3.6 4.0 3.7 3.9 3.6 3.6 4.0 4.5 4.3 4.2 3.5 4.1 3.4 3.6 4.0 4.2 3.9 3.6 3.9 4.0 4.0 3.9 4.1 3.4 Adopted 3.97 3.47 ...... (dex) g b g i i 0.2 0.2 0.22 0.08 ± ± ± ± Literature Literature a ...... 3.963.64 2.97 ...4.123.693.79 ...4.05 ...... 3.9 4.223.92 ...4.10 ...... 4.12 ...... 4.86 ...4.03 ...... 4.30 ...... 4.11 ...... 4.30 ...... 3.55 ...... 4.00 ...... 3.67 ...... 3.93 ...... 3.58 ...... 3.62 ...... 3.98 ...... 4.52 ... 4.33 ...... 4.20 ...... 3.52 ...... 4.12 ...3.43 ...... 3.60 ...... 4.02 ...... 4.19 ...... 3.87 ...... 3.61 ...... 3.88 ...... 3.98 ...... 3.47 ...... 3.98 ...... 3.0 3.91 ... 3.74 ...... 4.07 3.47 ...... 3.45 ...... KIC i i a b a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a g  50 200 200 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 160 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ...... Adopted 7720 7500 9000 7630 5500 7300 6940 7310 6710 8030 6450 7590 7240 6900 6020 7620 6560 7040 5860 7030 7780 7360 7150 6670 7430 5050 6360 6190 8350 6580 7140 8320 8240 7350 7860 7870 7740 8260 7890 7380 7240 (K) log ff e ...... T i i b g 50 200 200 160 ± ± ± ± Literature Literature Literature a 08264546 7630 ...... 08283796 5500 ...... 08590553 730008651452 6940 ...... 08264617 7310 ...... 08460993 6710 ...... 0826458308264588 8360 7240 . .08264674 .08264698 8030 801008293302 . . 7500 .08323104 6450 . . .08330056 759008330092 724008330463 6900 . . .08330778 . 6020 . . . . .08352420 . . 7620 . . . .08355130 6560 . . .08355837 7040 . . .08397426 . . . 5860 ...... 08415752 . . . . 7030 . . . . .08429756 . . 7780 . . . .08446738 . . 7360 . . . .08454553 . . . 7150 ...... 08459354 . . . 6670 ...... 08460025 . . . 7430 ...... 08479107 ...... 08482540 . . . 5050 ...... 08488065 . . . 6360 . . . 08489712 . . . 6190 ...... 08499639 . . . 8350 ...... 08507325 . . . 6580 ...... 08516008 . . . 7140 ...... 08516686 . 8320 . . . . .08525286 . . 8240 ...... 08545456 . . . 7350 ...... 08560996 . . . 7860 ...... 08565229 . . 7870 . . . .08579615 . . . 7740 ...... 08583770 . . . 8260 ...... 7660 . . . . .08608260 ...... 9000 .08623953 . . . . 7890 ...... 7730 . . 08655712 ...... 7720 . . . . 7380 ...... KIC ID KIC continued. Table 2.

A125, page 47 of 70 A&A 534, A125 (2011) ) 1 ...... − (km s g g i 8 8 ± ± sin ...... v Spectra Spectra 133 165 e g b b f a a a a a a a g a a a a a a a a a a a a a a a a a a a a a a a  0.19 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.12 0.22 0.21 0.3 0.3 ± ...... ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 3.4 3.8 3.8 4.4 3.3 3.5 4.2 3.7 3.9 4.2 3.4 3.9 3.5 3.8 3.9 4.0 3.7 4.4 4.4 3.8 3.7 4.0 4.3 3.6 3.9 1.8 3.9 3.7 4.0 3.7 3.7 4.3 Adopted 3.71 3.25 3.59 4.12 ...... (dex) g e g b b g 0.3 f 0.19 0.12 0.22 0.21 ± ± ± ± ± Literature Literature a ...... 3.72 3.373.774.09 ...3.76 ...4.15 4.3 4.38 3.25 ...3.28 ... 3.51 ...... 4.15 ...... 3.81 ...3.69 3.59 ... 3.85 ... 4.18 ...... 3.43 ...3.863.48 ...... 3.69 ...... 3.71 ...... 3.803.90 ... 3.97 ...... 3.98 4.12 ...... 3.74 ...... 4.37 ... 4.403.81 ...... 3.65 ...... 4.03 ...4.25 ... 3.57 ...... 3.94 ...... 1.82 ...3.93 ...... 3.65 ...... 3.99 ... 3.65 ...... KIC f e a a a g a a a a b a a a a a a a a b a a a a a a a a a a a a a a a g  290 60 193 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 160 120 150 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ...... Adopted 7340 7616 7640 7150 7660 5990 7500 4030 7840 7710 7440 4690 5030 6800 7390 6200 7280 7730 7770 7180 6540 7610 4750 6710 6800 7600 7300 7070 7150 7000 7140 5580 8260 6570 6880 19 000 (K) log ff e T ...... e g b b f g 0 60 193 160 150 120 ± ± ± ± ± ± Literature Literature Literature a 08695156 7640 ...... 08871304 7150 . . .08972966 7660 ...... 0907300709073985 . . . . . 5990 ...... 09138872 . . 7500 ...... 09204672 403009216367 ...... 7840 ...... 0870341308714886 771008717065 914008738244 7440 19 000 8170 . . .08746834 8260 08747415 4690 . . .08748251 503008750029 6800 ...... 08827821 . . .08838457 . . 7390 . . . .08869302 7340 620008869892 . . 7280 ...... 08881697 ...... 08915335 . . 7730 . . . .08933391 777008940640 . . 7630 ...... 7616 . . . .08975515 ...... 09020157 . . 7180 .09020199 696009052363 . . . 6540 . . . . 6880 . .09072011 . . . . 7610 ...... 09077192 ...... 09108615 . . . 4750 . . .09111056 . . . . 6710 . . . . .09117875 6800 ...... 09143785 ...... 09147229 . . 7600 . . . .09156808 . 7300 . .09201644 . 7070 ...... 09204718 ...... 09210037 . . 7150 ...... 09222942 ...... 09229318 . . . 7000 ...... 7140 ...... KIC ID KIC 08742449 5580 . . .08766619 6990 6570 ...... continued. Table 2.

A125, page 48 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. ) 1 ... − (km s g i 8 ± sin ...... v Spectra Spectra 165 b g a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a  0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.19 0.07 ...... ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 3.8 4.5 3.3 3.8 4.5 3.6 4.6 4.1 2.4 4.3 3.5 4.0 4.1 4.3 4.0 4.2 4.6 4.0 3.7 3.9 4.1 4.0 4.1 3.6 4.1 3.6 3.9 3.7 4.1 4.5 3.6 4.5 3.8 4.1 Adopted 3.80 3.62 ...... (dex) g b g 0.19 0.07 ± ± Literature Literature a ...... 3.794.463.31 ...3.81 ...... 4.46 ... 3.61 ... 4.63 ...... 4.06 ...... 2.37 ...4.26 ...3.53 ...... 3.99 ...... 4.10 ...... 4.30 ...... 3.96 ...... 3.62 ...... 3.87 3.80 ... 4.21 3.62 ... 4.56 ... 4.00 ...... 3.69 ...3.88 ...4.09 ...3.98 ...... 4.07 ...... 3.61 ...... 4.10 ...... 3.56 ...... 3.89 ... 3.654.05 ...4.49 ...... 3.62 ...4.51 ...3.77 ...... 4.10 ...... KIC a a a a a a a a a a a a a a a b g a a a a a a a a a a a a a a a a a a a  290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 130 140 290 290 290 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ...... Adopted 8050 5060 4870 8130 7610 6340 7250 4600 6520 7450 7190 6660 5810 7310 6060 8060 5070 7130 7160 7060 6880 7400 5880 7450 7300 5620 7620 6520 7290 6530 8210 6810 8630 5660 7300 7490 (K) log ff e ...... T b g 140 130 ± ± Literature Literature Literature a 09246481 8050 ...... 0926439909264462 506009267042 487009268087 8130 ...... 09291618 . . .09306095 761009324334 6340 . . .09327993 . . 7250 .09336219 . . 4600 . . . .09351622 . . 6520 . . . .09353572 7450 . . .09368220 . . 7190 ...... 09386259 . 6660 . . . . .09391395 . . . 5810 ...... 09395246 . . 7310 ...... 09413057 ...... 8470 . . . . .09451598 ...... 8630 09453075 . . . . 6060 . . . . .09458750 . . . . 8060 . . 09473000 . . . . 5070 . . 09489590 . . . . 7130 . . . . .09490042 . . 7160 . . . .09490067 . . . 7060 ...... 09509296 . . 6880 . . . .09514879 . . 7400 . . . .09520434 . . 5880 ...... 09533449 ...... 09551281 ...... 09580794 . . . 7450 . . . 09582720 . . . 7300 ...... 09593997 . 5620 . . 09594100 . . 7620 ...... 09604762 . 6520 . . . . .09630640 . 7290 ...... 6530 ...... KIC ID KIC 09450940 8210 ...... 09272082 ...... 09408694 . 7480 . . 6810 09520864 . . .09533489 ...... 09274000 5660 ...... 09532644 730009550886 7490 ...... continued. Table 2.

A125, page 49 of 70 A&A 534, A125 (2011) ) 1 ...... − (km s i i i g g m 20 5 3 4 1 sin ± ± ± ± ± ...... v Spectra Spectra 70 85 56 19 150 i b g g i a a a a a a a a a a a a a a a b a a a a a a a a a a a a a a  m 0.3 0.21 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.21 0.19 0.23 0.2 0.1 ± ± ...... ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ... ± ± ± ± ...... ± 3.9 3.8 4.3 4.1 4.2 3.7 4.1 3.5 4.2 3.9 4.1 3.4 4.1 3.9 3.6 4.2 4.0 3.9 4.1 4.0 4.5 4.9 3.7 4.0 4.0 4.1 4.7 3.7 4.5 4.0 3.9 Adopted 3.7 3.91 3.82 3.78 3.15 i 0.3 ± ...... (dex) 4.0 g e b g g i b m 0.3 0.21 0.21 0.2 0.19 0.23 0.1 ± ± ± ± ± ± ± Literature Literature a ...... 3.7 . . . 3.91 3.834.254.09 ...4.20 ...3.68 ...3.67 ...4.09 3.82 ...... 3.48 ... 3.78 ...... 4.18 ...... 3.9 3.87 ... 4.06 ...3.38 ...... 4.09 ...... 3.88 ...... 3.61 ... 4.16 ...... 3.52 ...3.99 ... 3.9 ... 3.87 ...... 4.14 ...... 4.03 ...... 4.45 ...... 4.893.65 ...... 4.04 ...... 4.034.09 ...... 4.68 ...... 4.09 ...... 3.70 3.78 ...4.05 ...... 4.043.47 ... 3.15 ...... KIC i i a a a a a b a a a a a a a a a a a b a a a a a a a a a a a a a a m g g  45 87 200 150 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 150 160 290 290 290 290 290 290 290 290 100 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ...... Adopted 7470 7847 7400 7050 7820 6440 7050 6580 8390 6990 7620 6900 7570 7600 8300 7440 6780 7190 8230 5720 7460 6740 6960 6020 7450 6970 7060 5070 7960 7740 7130 7590 7300 7010 7190 7840 6700 ... i (K) log 150 ff e ± ...... T 7050 i e b b m g g 45 87 200 159 150 160 100 ± ± ± ± ± ± ± Literature Literature Literature a 09632537 7820 ...... 0964020409642894 644009643982 705009650390 658009651065 8390 . . .09654789 7390 . . .09655055 6990 . . 7010 .09655114 7620 . . . 775009655177 . . . . 7400 .09655393 . 6900 . . . . .09655422 . 7570 . .09655433 . 7600 . . . 8300 . . .09655487 ...... 09655514 ...... 09655800 . 7440 . . 09656348 6780 . .09664869 . . 7670 ...... 09673293 . . 7190 . . . . . 7190 . .09693282 . 8230 ...... 09699950 ...... 09700322 ...... 09703601 . .09716107 5720 . . . 6700 . .09716350 . 7460 ...... 09760531 ...... 09762713 . . 6740 . . .09764712 6960 . . . .09764965 . . 6020 ...... 7460 . . .09775385 ...... 7470 09775454 . 7450 ...... 7109 09812351 ...... 7790 . . . . . 7847 ...... KIC ID KIC 09655438 6970 ...... 09655151 7060 ...... 09700679 5070 . . .09773512 . . . 796009776474 ...... 09655501 7740 . . .09696853 713009700145 . . . 7590 ...... 09716947 7300 ...... 09777532 ...... 09790479 7840 ...... continued. Table 2.

A125, page 50 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. ) 1 − ... (km s i g 4 sin ± ...... v Spectra Spectra 78 e e b b b b b a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a g a a a a  0.21 0.16 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.21 0.22 0.22 0.22 0.22 0.2 ± ± ... ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 4.1 4.0 4.1 3.9 2.6 4.2 3.5 4.3 4.2 3.6 4.4 4.3 3.9 2.6 4.0 3.7 4.6 2.4 3.9 4.3 3.5 4.3 4.0 3.2 4.9 4.1 4.0 2.3 4.0 3.9 3.7 3.1 3.7 4.4 4.3 Adopted 3.97 3.91 3.67 3.47 4.30 2.90 4.48 ...... (dex) g e e b b b b b g 0.21 0.16 0.22 0.22 0.22 0.22 0.21 0.2 ± ± ± ± ± ± ± ± Literature Literature a ...... 3.67 4.094.033.95 ...4.08 3.97 ...3.862.63 ...4.19 ...... 3.53 ...... 4.29 ...4.18 ...... 3.64 ...... 4.35 ...... 4.25 ...... 3.85 ...... 2.64 ...... 3.96 ...... 3.74 ...... 4.60 ...... 2.39 ...... 3.92 ...... 4.30 ...... 3.48 ...... 4.28 ...... 4.03 ...... 3.17 ...... 4.93 ...... 4.05 ...... 3.98 ...... 2.29 ...... 4.01 ...... 4.09 ...... 3.94 3.47 ...... 4.13 ... 4.38 3.91 ...... 3.71 ... 4.3 3.06 ... 3.71 ...3.96 ...... 4.37 4.30 ...3.664.46 2.90 ...... 4.48 ...... KIC e e b a a a a a a a a a a a a a a a a a a a a a a a a a a a a a b a a a a b a b g b  80 80 156 218 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 138 130 100 150 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ... Adopted 6450 5760 7047 8012 7480 7940 7180 6810 5090 6670 7410 7040 5920 7790 5270 6050 5290 4850 8200 7490 4340 4680 7160 6700 7290 6000 7160 4860 5270 7220 7260 4610 7060 7190 5010 7910 6620 8020 6811 6680 6030 7130 (K) log ff e ...... T e e b b b b g b 80 80 156 218 138 130 100 150 ± ± ± ± ± ± ± ± Literature Literature Literature a 09813078 . . . 6811 09836020 7480 ...... 09818269 . .09845907 .09851142 794009874181 680009881909 7180 . 7047 . .09885882 6810 . . .09909300 509009913481 6670 . . .09944208 7410 . . .09944730 . 7040 . . . . .09970568 . . 5920 . . . .09991621 7790 . . .09991766 . . 5270 . . . .09994789 . . 6050 ...... 09995464 . . . 5290 ...... 10000056 . . 4850 . . . .10002897 . . . 8200 ...... 10004510 . . . 7490 ...... 10006158 . . . 4340 ...... 10014548 . . . 4680 ...... 10030943 . . . 7160 ...... 10035772 . . . 6700 ...... 10056217 . . . 7290 ...... 10056297 . . . 6000 ...... 10057129 . . . 7160 ...... 10062593 . . . 4860 ...... 10064111 . . . 5270 ...... 10065244 . . . 7220 ...... 10068892 . . . 7260 ...... 10069934 . . . 4610 ...... 10073601 . . . 7060 ...... 10090345 . . . . 7100 . . . . .10096499 . . . . 7190 . . . . 6680 .10119517 . . . . 7780 ...... 6230 . . 8021 10134600 ...... 6450 10134800 . . . . 5010 . . 10140513 . . . . 7910 . . 10140665 . . . . 5880 . . 10164569 . . 6620 . . . 6030 .10206340 . . . . . 7720 ...... 5210 . 7130 ...... 5760 ...... KIC ID KIC 10130777 8020 ...... continued. Table 2.

A125, page 51 of 70 A&A 534, A125 (2011) ) ...... 1 − (km s f i g 2 10 sin ± ± ...... v Spectra Spectra 44 195 b b b b g f a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a  0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.22 0.21 0.25 0.22 0.19 0.3 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ... ± 4.0 3.9 3.7 4.8 3.9 4.4 4.5 4.1 3.7 4.5 4.2 4.4 4.2 3.7 4.0 4.3 4.2 2.2 4.5 4.0 3.6 4.1 4.1 4.5 4.1 4.0 4.0 4.6 4.2 3.8 3.9 3.4 3.9 4.0 4.2 3.8 3.8 Adopted 4.05 4.54 3.79 4.13 3.74 ...... (dex) g b b b b g f 0.22 0.21 0.25 0.22 0.19 ± ± ± ± ± Literature Literature a ...... 4.174.01 4.05 3.943.70 ...4.84 ...3.85 ...4.40 ...4.15 ...... 3.96 4.54 ...... 4.44 3.79 ... 4.53 4.13 ... 4.05 ... 3.73 ...... 4.47 ...4.19 ...4.40 ...4.18 ...... 3.74 ...... 4.03 ...... 4.27 ...... 4.23 ...... 2.19 ...... 4.47 ...... 4.00 ...... 3.63 ...... 4.12 ...... 4.13 ...... 4.06 3.74 ...... 4.47 ... 4.09 ...... 3.95 ...... 3.99 ...... 4.62 ...... 4.18 ... 3.77 ...... 3.94 ...... 5.89 ...... 3.45 ...3.94 ... 3.8 3.95 ...... 4.23 ...... 3.76 ...... KIC f b a a a a a a b b b a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a g  290 60 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 120 120 110 130 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Adopted 7640 6080 5650 7500 7150 7830 7740 5880 7790 5050 5210 7530 7900 5400 5950 5850 6300 8110 6980 5100 6920 4710 4920 7400 4970 6420 5200 8850 7290 8140 3180 6510 8320 6070 7740 6970 7020 7560 6310 6300 6220 6460 20 800 (K) log ff e T ...... b b b b f g 0 60 120 120 110 130 ± ± ± ± ± ± Literature Literature Literature a 10208303 6380 6310 10526615 6080 ...... 10451250 5650 ...... 10537907 7500 ...... 1020834510213987 715010253943 783010254547 774010264728 5880 . .10266959 . 7790 . .10273246 . 5050 . .10273384 . 6070 . .10273960 . 6970 . . 6300 10274244 . . 6660 . . . .10281360 6220 . . 5210 . .10289211 6460 . 7530 . .10338279 . 7900 . .10339342 . . 5400 ...... 10340511 . . . 5950 ...... 10341072 . . 5850 . . . .10355055 . . 6300 . . . .10361229 . . 8110 . . . .10383933 . . . 6980 ...... 10385459 . . 5100 . . . .10389037 . . 6920 . . . .10394332 . . 4710 . . . .10448764 . . 4920 ...... 10450550 . . 7400 ...... 10450675 . . 4970 ...... 10451090 . . 6420 ...... 7580 ...... 10453475 ...... 10467969 . 7640 . 5200 ...... 10471914 . . 8850 . . . . . 10484808 . 7290 . . . . . 10526137 . 8140 ...... 3180 ...... 10533506 ...... 10533616 . 6510 . . . . .10534629 . 8320 . . . . .10536147 . . 6070 . . . . . 12 490 ...... 10549292 . . . 20 . . 800 .10549371 . . 7740 . . . .10586837 . . 6970 . . . . . 10590857 7020 . . . . 7560 ...... KIC ID KIC continued. Table 2.

A125, page 52 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. ) 1 − ...... (km s i g 3 p p sin ± ...... v 60 100 Spectra Spectra 63 g f f p a a a a a a a b a a a a a a a a a a a a a a a a a a a a a a a a a a a a  0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.07 0.3 0.3 0.2 0.3 0.3 0.2 ...... ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 3.6 4.0 4.6 4.1 4.2 4.1 3.7 3.6 3.6 3.8 3.9 3.9 4.0 4.4 3.5 4.2 4.2 3.8 3.5 4.2 3.9 4.0 4.2 3.6 3.9 3.9 4.2 2.5 4.2 4.1 4.0 4.3 4.0 3.9 3.5 4.9 3.9 3.2 3.5 Adopted 3.61 ...... (dex) g g f p p b f 0.2 0.07 0.5 0.0 0.2 ± ± ± ± ± Literature Literature a ...... 3.533.59 3.5 3.97 ...4.614.08 ...4.17 ...6.08 ...... 4.11 ...4.32 ... 3.9 3.65 ...... 4.9 3.58 ... 3.59 ...... 3.83 ...3.91 ...... 3.90 ...3.95 ...... 4.35 ...... 3.50 ...... 4.18 ... 4.22 ...... 3.84 ...... 3.53 ...4.16 ... 3.93 ...... 4.02 ...... 4.41 ...... 4.20 ... 3.2 3.61 ... 3.86 ...... 3.88 ...... 4.18 ...... 2.47 ...4.24 ...... 4.09 ...... 3.98 ...... 4.31 ...... 3.94 ...... 4.00 3.61 ... 3.82 ...... 3.5 ...... KIC f f p p e a a a a a a b a a a a a a a a a a a a a a a a a a a a a a a a a a a g  290 70 5600 123 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 100 200 200 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ...... Adopted 8190 6641 7130 7290 7320 5460 6600 6880 7480 7630 7220 7290 7110 7970 7270 6050 5370 6200 7490 6390 7340 8790 6020 7420 8310 7830 5900 4640 5930 5570 7900 5530 7780 7160 7320 6020 7200 7200 15 900 20 870 ... f 0 (K) log ± ff e ...... T 20 870 f p p e b f g 0 70 5600 123 100 200 200 ± ± ± ± ± ± ± Literature Literature Literature a 10604429 7620 7200 10647611 7130 ...... 10717871 729010777903 . . . 7320 ...... 10647493 .10647860 . .10648728 546010652134 660010658302 688010658802 14 810 . . .10663892 . . 7480 .10664703 15 . 900 . 5960 .10664975 . . 7630 .10675762 7950 6020 10684587 . . 7220 .10684673 . . . 7290 6641 .10685653 . . . 7110 . . .10686752 . . 7970 .10709716 . . . 7270 . .10713398 . 6050 ...... 10723718 ...... 10730618 . . . . . 5370 . . . . 10775968 . 6200 . .10777541 . . . . 7490 ...... 10778640 ...... 10783150 . . . . 6390 . .10788451 . . . . 7340 ...... 10797526 . . 8790 . . . 10797849 11 710 ...... 10813970 ...... 6020 23 . . 600 . .10815466 . . . . . 7420 . . . .10853783 . . . . . 8310 . . . .10861649 . . 783010902738 . 5900 . . . . . 10920182 . . . . . 4640 . . . . .10920273 . . . . 5930 . . . . .10920447 . . . . 5570 . . . . .10971674 . . . 7900 . .10975247 . 5530 . . . . . 10977859 . . . . . 7780 ...... 8050 . . . . 11013201 ...... 7780 . . 8190 ...... 7200 ...... KIC ID KIC 10615125 7160 ...... 10988009 7320 ...... continued. Table 2.

A125, page 53 of 70 A&A 534, A125 (2011) ) 1 ...... − (km s i i h 2 1 ± sin ± ...... v Spectra Spectra 19 100 b b k a a a a a a a a a a a a a a a a a a a a a a a a a a h a a a a a a b  0.1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.24 0.23 0.1 0.2 ± ...... ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 3.5 4.4 4.3 4.2 3.9 4.5 4.6 4.0 3.7 4.3 3.9 3.7 4.5 4.3 4.3 3.6 4.2 4.0 3.5 3.7 3.7 3.7 4.4 4.3 4.3 4.5 4.1 3.7 4.3 3.9 3.1 4.5 4.2 4.2 4.6 Adopted 3.65 4.26 k 0.1 ± ...... (dex) 3.5 g b b b i h 0.1 0.24 0.23 0.20 0.1 ± ± ± ± ± Literature Literature a ...... 3.5 4.394.314.15 ...3.91 ...4.46 ...4.55 ...3.96 ...3.71 ...... 4.28 ...... 3.85 ...... 3.72 ...... 4.47 ...... 4.32 ...... 4.31 ...... 3.55 ...... 4.22 ...... 4.03 ...... 3.51 ...... 3.70 ...... 3.68 ...... 3.70 ...... 4.38 ...... 4.33 ... 4.33 ... 4.45 ...... 4.12 ...... 4.18 ...3.65 ... 4.2 ... 4.30 ...... 3.86 ... 3.10 ...... 4.45 ... 4.19 ... 4.47 ...... 4.42 3.65 ...... 4.26 4.33 ... 4.64 ... KIC k a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a b c b  75 80 100 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ...... Adopted 6736 5740 7250 5410 6670 7320 6850 5990 5590 7020 7710 6530 7980 7630 5670 5940 5990 8330 5390 7260 7470 8170 7860 7470 6140 5940 5740 5430 6460 6340 7280 4900 3850 5140 7460 5320 6210 o 0 ± ... 6622 k h (K) log 100 400 ff e ± ± T ...... 7250 6800 i b c b b 75 80 80 120 110 ± ± ± ± ± Literature Literature Literature a 11017401 5410 ...... 1102052111021188 667011027270 732011067972 685011069435 5990 . . .11082830 5590 . . .11090405 7020 . . .11122763 7710 . . .11125764 6530 . . .11127190 7980 ...... 11128041 7630 ...... 11128126 5670 ...... 11129289 5940 ...... 11180361 5990 ...... 11182716 8330 ...... 11183399 5390 ...... 11183539 7260 ...... 11193046 7470 ...... 11197934 8170 ...... 11199412 7860 ...... 11230518 7470 ...... 11232922 6140 ...... 11233189 ...... 11234888 ...... 11235721 5940 ...... 11236253 5740 ...... 11240653 5430 ...... 11253226 6460 ...... 6470 ...... 11288686 ...... 6736 .11290197 ...... 11309335 6340 . . . . .11340063 . 7280 ...... 11340713 . 4900 ...... 11342032 ...... 11393580 ...... 11394216 3850 ...... 11395018 5140 ...... 11395028 5420 ...... 11395392 5320 ...... 5740 . .11402951 ...... 5720 ...... 7150 ...... KIC ID KIC 11285767 7460 ...... 11445774 . 6110 . . 6210 continued. Table 2.

A125, page 54 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. o ) 1 ...... 45 − (km s h i k g 3 1 1 ± sin ± ± ...... v Spectra Spectra 51 40 105 b b b d k a a h a b b a a a g a a a a a a a a a a a a a a a a a a a a a a a a  0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.22 0.21 0.21 0.07 0.1 0.2 0.2 0.3 ± ...... ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± 3.5 4.5 4.4 4.4 3.8 4.0 3.9 4.4 4.6 3.5 3.7 4.1 4.6 4.5 3.5 3.8 4.1 3.6 4.5 4.7 3.9 3.6 4.0 3.9 2.4 4.6 3.9 3.8 3.9 3.9 3.9 4.2 4.7 4.8 3.3 Adopted 4.39 4.20 4.63 4.21 k 0.2 ± ...... (dex) 3.5 g b b g b b b d i h 0.2 0.20 0.20 0.41 0.22 0.21 0.21 0.1 0.07 ± ± ± ± ± ± ± ± ± Literature Literature a ...... 3.894.47 3.5 4.384.07 ...4.43 ... 4.2 4.274.52 4.69 ...3.79 4.84 ... 3.99 ... 3.87 ...4.04 ...... 4.47 3.30 ...4.38 4.39 4.57 ... 3.52 ...... 3.73 ...... 4.11 ...4.56 ...4.50 ...3.49 ...... 3.83 ...... 4.14 ...... 3.62 ...... 4.48 ...... 4.25 ... 4.46 4.20 ...... 4.66 4.63 ... 3.933.58 ...3.99 ...... 3.85 ...... 2.35 ...4.58 ...... 4.15 ...... 3.87 4.21 ...3.78 ... 3.94 ...... 3.85 ...... 3.87 ...... KIC k a a a a b b a a a b a a a a a a a a a a a a b b a a a a a a a a a a a a c c  70 79 100 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 110 110 100 120 110 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ...... Adopted 6410 6776 7250 6030 4550 8050 5770 6870 7050 7660 5810 3980 7460 7790 6460 5580 5690 7040 7390 7210 7470 6120 7200 7360 8290 7630 4210 8270 8260 7210 8440 4300 6410 6690 6110 6130 6020 6450 6200 o o 0 0 ± ± ... 6441 6714 k g d (K) log 0 80 100 ff ± e ± ± T ...... 6918 6450 7250 i h b b b b b c c 70 79 120 100 400 110 110 120 110 ± ± ± ± ± ± ± ± ± Literature Literature Literature a 11445913 6950 7200 11499354 5780 6020 11651147 6030 ...... 11651083 ...... 11706564 . . . 4550 ...... 11821140 8050 ...... 1144618111447883 5770 669011448266 6800 11449931 5980 . . .11454008 5940 6110 11494765 6870 6130 11497012 705011498538 7660 6290 ...... 11499453 . . . 6410 11502075 5810 . . .11508397 398011509728 746011515690 . 7790 ...... 11549609 6460 ...... 11551622 5580 ...... 11572666 5690 . . .11602449 7040 . . .11607193 7390 ...... 11612274 7210 ...... 11622328 7470 ...... 11653958 ...... 11654210 6620 ...... 11657840 6060 . . . . . 6450 . . . .11661993 6120 . . . . 6200 . .11671429 7200 ...... 11700370 7360 ...... 11700604 8290 ...... 11706449 7630 ...... 11707341 ...... 11708170 4210 ...... 11714150 6640 . . .11718839 8270 ...... 6776 .11753169 8260 ...... 11754974 7210 ...... 11822666 ...... 8440 ...... KIC ID KIC 11446143 430011447953 6410 ...... continued. Table 2.

A125, page 55 of 70 A&A 534, A125 (2011) j Nordström et al. SOPHIE spectra, ) 10 ) o ( h ) ( ± (see text). ... 1 ); g − 103 2000 Allende Prieto & Lambert (km s ) i i d g ( 20 12 sin ); v ± ± ...... Spectra Spectra 2006 120 189 and0.3dexforlog ff b g e j a a a a a a a a a a a a a a a a  TLS spectra, this paper; T ) g ( 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.22 0.26 ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± Masana et al. ( Glebocki & Stawikowski ( 4.0 4.0 4.0 3.5 3.6 4.0 3.7 4.0 4.0 3.8 4.1 4.1 3.9 3.8 3.7 3.9 3.6 Adopted ) ) c 3.72 3.60 ( n ( ); j 2011 ...... 3.96 (dex) g b g i Breger et al. ( 0.3 0.22 0.26 ) m ± ± ± ( Literature Literature ); values derived from spectroscopy: SPM photometry, this paper; ) b ( a ); 2011b 3.974.003.96 ...3.53 3.72 ...3.594.04 ...4.00 ...... 4.2 3.67 ... 3.99 ...3.97 ...... 3.78 ...... 4.13 ...4.09 ...... 3.89 ...... 3.81 ...... 3.71 ...... 3.47 ...... 3.87 3.60 ...... 3.61 ...... KIC 2005 j the estimated errors on the KIC values are 290 K for a a b a a a a a a a a a a a a a a g )   ( 290 45 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 290 130 ); ± Balona et al. ( ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ) Antoci et al., priv. comm.; f ( ) l ( 2011 Adopted 7190 7190 7270 7280 8220 7130 7660 8020 7110 7380 7460 7030 6910 7120 6680 7130 7850 6650 ); 11 150 j 2011c 0 ± Antoci et al. ( ) r ( 11 150 KIC Catalogue, Latham et al. ( ); ) a ( Balona et al. ( i ) (K) log 2008 k ( ff e 300 ); T ± ...... 2011 7300 b f g ˙ Zakowicz et al. ( 0 45 130 ± ± ± Lehmann et al. ( Literature Literature Literature ) j ); values derived from photometry or spectroscopy: Molenda- ( ) q ); ( 1998 ); a 2011 7400 11 898 2010 ◦ 11824964 7190 . . .12018834 7270 ...... 12647070 7280 ...... 1187467611874898 822011910256 701011910642 713011973705 6650 7660 . . .12020590 .12058428 . . 8020 .12062443 . . 711012068180 738012102187 . . . 7460 .12117689 . . 7030 .12122075 . . . . . 6910 .12216817 . . . . . 7120 .12217281 . . 6680 .12353648 . . . . . 7130 ...... 7410 .12784394 ...... 7190 7850 ...... KIC ID KIC Catanzaro et al. ( ) i ( Catanzaro et al. ( Hauck & Mermilliod ( Spectroscopic binary; values derived from photometry: ) ) continued. ) p e ( ◦ ( ( ); ); 1999 2004 Table 2. Notes. ( this paper; (

A125, page 56 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. • • • Flag ) high 1 − Freq high Amplitude Sct δ ) (ppm) (d 1 − (Freq Range) Dor γ )(d 1 − (d Sct stars δ (Freq Range) total N Sct δ N Dor γ N Dor, and hybrid stars. γ SctSct 88Sct 49Sct 124 0Sct 160 0Sct 0 321Sct 88 0 30Sct 49 0 124 4 195Sct 160 85 0 373Sct 63 321 71 631 0 120 0 496 29 0 . . . 0 4 . . 85 75 ...... 71 . 120 165 . 11 . . 184 401 [4.3, 46.7] . . . [4.4, 48.7] [4.5, 47.4] . . . [4.1, . . 40.9] ...... [4.3, . 73.2] 1544 2680 [10.2, 54.9] 1168 2399 [5.4, 20.699 1118 65.2] [4.0, 21.5] [4.5, [4.0, 19.582 32.1] 61.9] 22.069 . . . 2458 20.992 . . . . 19.045 . . . . . 931 332 . . 28.039 . 9479 2740 . . . 14.048 21.543 16.809 9.621 ...... SctSct 136 98 0 0 136 204 98 126 ...... [4.0, 35.5] [5.4, 56.5] 1857 767 16.408 . . . 41.235 SctSct 53Sct 37Sct 36 0Sct 189 0 12 0 53 0 37 0 139 36 189 162 345 12 51 . . . 59 ...... [5.4, 76.1] [5.0, 34.8] [4.0, [15.9, 52.7] 79.5] 1674 [9.1, 12.1] 7340 1766 829 18.328 14.806 1091 . . . 20.550 42.967 ...... 9.481 SctSct 11 142 0 0 11 142 494 12 ...... [4.1, [22.8, 74.2] 45.1] 3973 399 23.717 26.259 ...... SctSct 186Sct 138Sct 0 355Sct 0 93Sct 0 186 16Sct 138 18 0 537Sct 355 0 8 446Sct 16 0 532Sct 93 81Sct 16 0 208 0 164 .Sct . 18 . 75 0 .Sct . 30 . 0 12 8 .Sct . 16 29 . 86 0Sct 81 208 62 0 . .Sct . 47 9 104 0 140 573Sct 75 [4.3, . 64.0] 114 . . 0Sct 12 [4.0, . 0 56.1] 190 . .Sct 86 [4.0, 95 0 79.7] 31Sct 62 46 . 0 . 104 . 87 . . . . . 159 . [4.2,Sct . . . 3610 68.2] 274 114 0 149 422Sct 2407 [24.3, 190 44.4] 43 0 173Sct 1431 . 0 135 . [9.3, . 19.4] 295 31 15.049 . 106 . . 0 . . 87 . 0 654 5.604 274 [7.0, 23.0] [4.1, . . . . . [4.0, 21.7] . . [4.4, . 78 17.857 . 44.2] 0 643 68.7] 254 . 869 . 42 . . . 135 . 1640 ...... 106 [6.5, 29.695 42.6] 139 332 [5.2, 31.693 1147 12.6] [7.3, 297 2891 332 . 1584 33.1] . . . . 10.338 . [11.6, . . . 74.6] . . [4.5, . . . 51.1] . [9.4, . . 69.1] . 13.490 1325 . . . 22.122 . . [4.3, 11.648 . 15.973 52.9] 2848 . . 2246 ...... 506 ...... 1936 [4.8, 30.022 79.0] [9.9, [4.6, 1067 42.0] 75.8] 8.333 16.260 . 1220 . . [4.4, 37.307 [5.0, 14.462 18.9] 36.5] ...... [5.0, 33.270 69.1] . 552 . . . . . 4701 29.490 3707 ...... 1495 3961 46.399 14.364 14.482 1552 ...... 21.480 7.989 35.215 ...... Sct, δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ KIC ID Class N 04649476 04840675 04856630 04863077 04909697 04936524 05080290 05209712 05272673 05391416 01162150 01571717 01718594 02303365 02439660 02571868 02572386 04383117 04647763 02987660 03217554 03219256 03347643 03425802 03429637 03440495 03458318 03558145 03634384 03644116 03655513 03760002 03761641 03850810 03941283 03942911 04035667 04048494 04077032 04168574 04252757 04269337 Classification and characterization of Table 3.

A125, page 57 of 70 A&A 534, A125 (2011) • Flag ) high 1 − Freq high Amplitude Sct δ ) (ppm) (d 1 − (Freq Range) Dor γ )(d 1 − (d (Freq Range) total N Sct δ N Dor γ N Sct 43 0 43 55 . . . [6.0, 45.9] 1866 20.216 . . . Sct 168 0 168 285 . . . [4.2, 66.2] 2775 19.161 . . . Sct 197 0 197 627 . . . [4.1, 47.5] 4822 8.529 . . . Sct 129 0 129 283 . . . [4.1, 31.1] 5363 14.816 . . . Sct 122 0 122 441 . . . [4.4, 78.5] 2785 26.424 . . . Sct 118 0 118 209 . . . [4.0, 48.5] 2163 24.345 . . . Sct 29 0 29 48 . . . [4.4, 42.9] 688 29.791 . . . Sct 53 0 53 153 . . . [4.5, 75.8] 623 47.616 . . . Sct 30 0 30 79 . . . [4.6, 41.2] 3857 13.247 . . . Sct 25 0 24 46 . . . [4.2, 29.0] 823 19.440 . . . Sct 39 0 39 69 . . . [4.0, 38.1] 1799 17.747 . . . Sct 3 0 3 5 . . . [7.8, 17.0] 1269 7.808 . . . Sct 101 0 101 367 . . . [4.0, 49.1] 27 451 11.938 . . . Sct 60 0 60 133 . . . [4.7, 35.4] 3426 13.855 . . . Sct 184 0 184 311 . . . [4.0, 37.2] 1652 19.486 . . . Sct 99 0 99 200 . . . [4.4, 71.3] 1036 41.279 . . . Sct 38 0 36 82 . . . [4.0, 38.4] 1180 24.985 . . . Sct 103 0 103 468 . . . [4.1, 51.0] 12 596 3.235 . . . Sct 5 0 5 9 . . . [4.9, 26.4] 131 26.427 . . . Sct 78 0 78 219 . . . [4.1, 49.2] 4161 20.880 . . . Sct 99 0 99 410 . . . [4.1, 51.3] 17 926 5.007 . . . Sct 35 0 35 85 . . . [4.2, 49.7] 4403 6.417 . . . Sct 25 0 25 95 . . . [4.5, 27.0] 2608 16.943 . . . Sct 228 0 228 463 . . . [4.1, 48.9] 2003 21.164 . . . Sct 447 0 447 1080 . . . [4.0, 51.7] 3374 20.265 . . . Sct 20 0 20 26 . . . [12.8, 23.3] 730 14.518 . . . Sct 53 0 53 215 . . . [5.3, 73.1] 2102 24.163 . . . Sct 73 0 73 257 . . . [4.4, 67.2] 4883 20.077 . . . Sct 21 0 21 36 . . . [7.5, 27.6] 725 17.876 . . . Sct 6 0 6 13 . . . [20.6, 23.0] 2104 22.791 . . . Sct 291 0 291 942 . . . [4.0, 73.2] 3135 16.321 Sct 18 0 18 53 . . . [8.0, 19.5] 4901 13.395 . . . Sct 99 0 99 121 . . . [9.7, 62.1] 860 25.848 . . . Sct 34 0 34 87 . . . [4.2, 35.1] 4795 13.932 . . . Sct 190 0 190 391 . . . [4.4, 51.4] 1943 24.137 . . . Sct 118 0 118 178 . . . [6.5, 49.8] 2241 30.830 . . . Sct 113 0 113 222 . . . [4.3, 33.5] 1847 11.820 . . . Sct 136 0 136 298 . . . [4.0, 49.1] 3167 19.726 . . . Sct 67 0 67 93 . . . [5.9, 67.2] 1451 21.709 . . . Sct 501 0 501 806 . . . [4.2, 78.6] 1330 23.165 . . . Sct 114 0 114 383 . . . [4.2, 35.7] 2523 17.487 . . . Sct 305 0 305 651 . . . [4.1, 75.2] 2406 12.977 . . . Sct 155 0 155 531 . . . [4.6, 33.5] 23 529 5.826 . . . δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ KIC ID05428254 Class N 07834612 05474427 07842286 05603049 07842621 05632093 07900367 05709664 08103917 05768203 08245366 05774557 08248630 05785707 08264546 06123324 08330778 06586052 06590403 06606229 06629106 06668729 06790335 06804821 06865077 06937758 06939291 06947064 06965789 07106205 07212040 07217483 07265427 07287118 07352425 07450284 07548479 07583939 07697795 07699056 07773133 07777435 continued. Table 3.

A125, page 58 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. • Flag ) high 1 − Freq high Amplitude Sct δ ) (ppm) (d 1 − (Freq Range) Dor γ )(d 1 − (d (Freq Range) total N Sct δ N Dor γ N Sct 100 0 100 522 . . . [4.1, 32.9] 3352 10.321 . . . Sct 14 0 14 63 . . . [6.9, 19.3] 5376 9.271 . . . Sct 232 0 232 1254 . . . [4.2, 71.6] 56 655 10.173 . . . Sct 49 0 49 60 . . . [7.3, 66.3] 365 37.764 . . . Sct 142 0 142 356 . . . [4.1, 39.2] 8675 10.272 . . . Sct 53 0 53 67 . . . [22.1, 61.9] 590 27.746 . . . Sct 12 0 12 16 . . . [6.5, 49.0] 1780 13.392 . . . Sct 37 0 37 60 . . . [8.0, 67.3] 985 38.249 . . . Sct 179 0 179 505 . . . [4.2, 62.5] 8093 5.392 . . . Sct 285 0 284 988 . . . [4.1, 51.6] 3867 19.468 . . . Sct 63 0 63 199 . . . [4.6, 58.3] 4588 7.697 . . . Sct 64 0 64 117 . . . [4.0, 21.3] 1117 13.160 . . . Sct 278 0 278 844 . . . [4.3, 80.0] 155 660 5.661 . . . Sct 41 0 41 44 . . . [21.1, 60.0] 142 43.752 . . . Sct 99 0 99 219 . . . [6.0, 76.0] 3959 29.997 . . . Sct 97 0 97 235 . . . [4.3, 53.4] 2189 34.056 Sct 25 0 25 27 . . . [16.9, 51.7] 824 20.944 . . . Sct 21 0 21 60 . . . [4.6, 34.9] 2389 19.313 . . . Sct 118 0 118 405 . . . [8.1, 46.8] 3902 22.543 . . . Sct 75 0 75 113 . . . [7.3, 46.7] 1549 15.788 . . . Sct 34 0 34 68 . . . [4.1, 31.9] 987 8.130 . . . Sct 192 0 192 325 . . . [4.1, 35.7] 1332 13.191 . . . Sct 107 0 107 342 . . . [6.6, 54.5] 11 516 27.257 . . . Sct 253 0 253 494 . . . [4.0, 35.2] 2141 14.436 . . . Sct 56 0 56 237 . . . [4.3, 54.7] 3358 5.777 . . . Sct 74 0 73 206 . . . [4.5, 61.5] 811 24.547 . . . Sct 4 0 4 6 . . . [11.0, 12.5] 39 11.030 . . . Sct 3 0 3 7 . . . [4.4, 22.4] 484 22.439 . . . Sct 89 0 89 172 . . . [12.9, 50.1] 1689 17.713 . . . Sct 34 0 34 129 . . . [4.2, 18.6] 5539 7.699 . . . Sct 93 0 93 339 . . . [5.5, 76.3] 1835 16.557 . . . Sct 7 0 7 7 . . . [6.7, 14.5] 193 6.708 . . . Sct 53 0 53 180 . . . [4.0, 57.3] 5855 7.477 . . . Sct 10 0 10 21 . . . [6.6, 49.2] 497 6.617 . . . Sct 208 0 208 775 . . . [4.0, 56.2] 12 668 5.655 . . . Sct 98 0 97 273 . . . [4.2, 49.2] 2268 19.697 . . . Sct 90 0 90 392 . . . [5.8, 77.6] 2386 11.798 . . . Sct 69 0 69 116 . . . [6.4, 48.5] 2204 21.279 . . . Sct 207 0 207 448 . . . [4.3, 42.5] 2067 14.723 . . . Sct 101 0 101 288 . . . [4.6, 34.8] 7634 9.282 . . . Sct 263 0 263 851 . . . [4.0, 44.1] 5249 6.246 . . . Sct 57 0 57 124 . . . [4.1, 62.3] 402 33.845 . . . Sct 185 0 185 475 . . . [4.1, 69.9] 7895 24.664 . . . δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ KIC ID08352420 Class N 09306095 08415752 09324334 08429756 09353572 08446738 09368220 08459354 09395246 08499639 09408694 08516686 09450940 08525286 08560996 09453075 08565229 09489590 08579615 08608260 08623953 08655712 08695156 08717065 08747415 08750029 08827821 08869892 08881697 08933391 09020199 09108615 09111056 09138872 09143785 09156808 09201644 09210037 09229318 09246481 09267042 09291618 continued. Table 3.

A125, page 59 of 70 A&A 534, A125 (2011) • • • Flag ) high 1 − Freq high Amplitude Sct δ ) (ppm) (d 1 − (Freq Range) Dor γ )(d 1 − (d (Freq Range) total N Sct δ N Dor γ N Sct 92 0 92 484 . . . [4.1, 33.6] 10 776 9.591 . . . Sct 64 0 64 180 . . . [4.1, 49.3] 3170 12.519 . . . Sct 79 0 79 157 . . . [10.5, 64.8] 1411 38.376 . . . Sct 170 0 170 335 . . . [4.4, 41.8] 1593 21.480 . . . Sct 59 0 59 86 . . . [10.5, 80.0] 886 27.118 . . . Sct 84 0 84 393 . . . [4.1, 50.5] 2886 10.188 . . . Sct 4 0 4 5 . . . [31.9, 50.6] 34 31.853 . . . Sct 28 0 28 100 . . . [5.1, 29.1] 7796 14.678 . . . Sct 82 0 82 92 . . . [4.9, 48.3] 957 18.081 . . . Sct 64 0 64 182 . . . [4.2, 25.1] 2269 7.842 . . . Sct 15 0 15 44 . . . [7.1, 15.8] 3996 13.880 . . . Sct 268 0 268 508 . . . [4.5, 77.3] 3633 20.569 . . . Sct 87 0 87 343 . . . [4.4, 48.5] 2217 20.924 . . . Sct 103 0 101 420 . . . [4.7, 27.6] 8012 8.510 . . . Sct 90 0 90 147 . . . [4.0, 38.7] 873 18.407 . . . Sct 229 0 229 498 . . . [4.7, 64.6] 2682 28.159 . . . Sct 109 0 109 385 . . . [4.1, 39.2] 5064 9.661 . . . SctSct 137 165 0 0 137 165 385 305 ...... [4.0, 50.2] [4.7, 64.1] 5689 3336 5.128 15.177 . . . Sct 62 0 62 312 . . . [4.4, 37.1] 2998 8.159 . . . Sct 20 0 20 23 . . . [24.2, 48.8] 192 29.120 . . . Sct 228 0 228 506 . . . [4.0, 47.3] 4047 5.558 . . . Sct 324 0 324 1047 . . . [4.1, 63.6] 4391 8.683 . . . Sct 64 0 64 142 . . . [13.8, 49.1] 5219 17.011 . . . SctSct 72 28 0 0 72 28 230 75 ...... [4.0, 35.2] [9.8, 24.1] 4431 27 944 13.062 12.569 . . . Sct 38 0 38 80 . . . [4.4, 26.8] 3687 13.859 . . . Sct 15 0 13 41 . . . [9.2, 14.9] 2242 9.207 . . . Sct 57 0 57 93 . . . [4.4, 68.6] 1173 16.266 . . . Sct 170 0 170 480 . . . [4.8, 79.8] 4279 18.581 . . . Sct 27 0 26 85 . . . [9.4, 76.2] 1666 19.175 . . . Sct 28 0 28 41 . . . [13.7, 22.3] 1062 17.715 . . . Sct 127 0 124 570 . . . [4.9, 77.0] 33 209 17.597 . . . Sct 71 0 71 114 . . . [5.6, 31.7] 1116 20.316 . . . Sct 88 0 88 387 . . . [4.4, 65.9] 8606 20.141 . . . Sct 33 0 33 181 . . . [4.5, 49.0] 4046 15.393 . . . Sct 63 0 63 323 . . . [4.6, 39.9] 32 902 9.560 . . . Sct 84 0 81 319 . . . [4.1, 49.1] 2894 27.058 . . . Sct 9 0 9 20 . . . [7.2, 20.6] 1156 17.059 Sct 246 0 246 805 . . . [4.2, 78.8] 6959 25.206 . . . Sct 81 0 81 238 . . . [6.4, 25.6] 18 859 8.223 . . . Sct 267 0 267 645 . . . [4.4, 49.9] 2067 19.812 . . . Sct 45 0 45 140 . . . [5.7, 52.6] 3433 22.084 . . . δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ KIC ID09533449 Class N 10451090 09551281 10484808 09580794 10533616 09642894 10549292 09655055 10549371 09655114 10590857 09655177 10604429 09655393 10615125 09655422 09655514 10658802 09673293 10664703 09693282 09699950 09700145 09700322 09762713 09773512 09776474 09812351 09818269 09836020 09845907 09874181 10000056 10002897 10056297 10134800 10213987 10253943 10273384 10289211 10355055 10448764 continued. Table 3.

A125, page 60 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. • • Flag ) high 1 − Freq high Amplitude Sct δ ) (ppm) (d 1 − (Freq Range) Dor γ )(d 1 − (d Hybrid stars (Freq Range) total N Sct δ N Dor γ N Sct 48 0 44 277 . . . [4.3, 24.0] 3928 7.818 . . . Sct 298 0 298 722 . . . [4.1, 49.3] 2226 20.302 . . . Sct 19 0 19 34 . . . [18.8, 37.4] 393 22.215 . . . Sct 73 0 73 241 . . . [4.9, 67.5] 1798 13.577 . . . Sct 32 0 32 70 . . . [18.4, 57.4] 235 24.877 . . . Sct 87 0 84 396 . . . [4.3, 69.9] 57 658 16.345 . . . Sct 30 0 30 30 . . . [5.2, 72.0] 101 28.678 . . . Sct 312 0 312 624 . . . [4.1, 49.4] 1425 15.970 . . . Sct 147 0 147 440 . . . [4.3, 49.5] 3473 14.035 . . . Sct 85 0 85 258 . . . [4.0, 41.1] 1660 24.105 . . . Sct 97 0 97 161 . . . [5.3, 49.1] 884 23.846 . . . Sct 90 0 90 413 . . . [4.8, 46.2] 6577 25.188 . . . Sct 26 0 26 113 . . . [4.2, 23.6] 11 333 10.150 . . . Sct 213 0 213 440 . . . [4.1, 48.8] 2265 22.664 . . . Sct 48 0 47 156 . . . [13.7, 59.3] 3559 18.731 . . . Sct 35 0 35 95 . . . [19.2, 65.5] 1868 38.327 . . . Sct 54 0 54 89 . . . [4.1, 37.5] 992 14.371 . . . Sct 70 0 70 77 . . . [4.5, 55.5] 1360 23.831 . . . Sct 26 0 26 56 . . . [5.5, 57.8] 522 33.416 . . . Sct 169 0 165 613 . . . [4.1, 48.8] 5483 12.957 . . . Sct 67 0 67 120 . . . [4.1, 63.6] 2014 59.969 . . . Sct 89 0 89 132 . . . [4.0, 62.9] 1622 31.523 . . . Sct 102 0 102 136 . . . [4.0, 50.7] 1708 28.955 . . . Sct 267 0 267 721 . . . [4.1, 79.0] 2188 36.712 . . . Sct 183 0 183 648 . . . [4.1, 49.8] 5261 9.606 . . . Sct 122 0 122 301 . . . [4.0, 43.1] 3603 23.160 . . . Sct 277 0 277 966 . . . [4.1, 38.0] 4486 16.791 . . . Sct 11 0 11 17 . . . [4.5, 24.7] 432 21.549 . . . Sct 234 0 234 693 . . . [4.2, 39.7] 3778 12.217 . . . Sct 80 0 80 383 . . . [5.1, 48.1] 3106 15.348 . . . Sct 62 0 62 87 . . . [12.7, 58.8] 628 40.473 . . . Sct 9 0 9 28 . . . [5.8, 10.4] 7430 10.387 . . . Sct 306 0 306 760 . . . [4.0, 48.9] 7128 12.837 . . . Sct 3 0 3 11 . . . [29.4, 47.9] 107 42.652 . . . Sct 33 0 33 52 . . . [9.8, 39.2] 1110 13.356 . . . δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ δ 12647070 12353648 12068180 12020590 11874676 11821140 11754974 11700370 11671429 11661993 11497012 11402951 11395392 11340713 11183539 11127190 11125764 11090405 11021188 11013201 10988009 10977859 10920447 10853783 10815466 10813970 10788451 10777903 10775968 10717871 10713398 10686752 10684673 KIC ID10684587 Class N 12784394 0309791203119604 hybrid hybrid 21 171 15 12 4 157 196 56 [0.2, 4.6] [0.2, 4.6] [5.0, 76.9] [5.2, 20.0] 554 212 41.151 1.466 . . . 0216833302694337 hybrid02707479 hybrid 6802853280 hybrid 5202975832 hybrid 188 13 hybrid 27 53 58 15 53 28 22 124 278 10 123 674 23 4 [0.2, 102 5.0] [0.2, [0.2, 4.9] 5.0] 128 [0.2, 5.0] [5.5, 49.1] [0.3, 3.5] [5.4, [5.1, 34.6] 51.1] [5.0, 35.1] 1452 [5.7, 16.5] 2267 506 21.718 988 15.158 24.500 . 733 ...... 13.000 . 2.034 . . continued. Table 3.

A125, page 61 of 70 A&A 534, A125 (2011) • • • Flag ) high 1 − Freq high Amplitude Sct δ ) (ppm) (d 1 − (Freq Range) Dor γ )(d 1 − (d (Freq Range) total N Sct δ N Dor γ N KIC ID03231406 Class03240556 hybrid03245420 N hybrid 36203337002 hybrid 19103437940 62 hybrid 4203453494 40 hybrid 16203851151 292 hybrid 347 1003970729 151 92 hybrid 176 793 10604044353 hybrid 329 32 704170631 47 hybrid 64 156 22404180199 hybrid [0.2, 224 59 5.0]04281581 129 529 44 hybrid 957 3 495 [0.3, 5.0]04476836 hybrid 13 91 35804480321 105 74 hybrid [0.8, 3.9] 77 1 [0.2,04488840 [0.2, 4.9] hybrid 5.0] [5.0, 65.0] 30 332 44 904550962 412 hybrid [5.0, 142 [0.3, 51 63.6] 5.0]04556345 22 hybrid 178 153 138 6104671225 54 hybrid [5.0, 5 179 [0.2, 45.8] 5.0] 21 [5.0, [5.1,04768677 52.8] 42 63.2] hybrid 137 1761 40404919818 [0.2, 93 hybrid 86 [0.6, [5.0, 1.3] [0.2, 282 4.8] 62.9] 74 5.0] 867 304920125 129 19 hybrid 1304989900 504 hybrid 83 [0.5, [5.6, 2733 17.438 4.9] 39 28.2] 45 517 459405038228 4886 116 52 hybrid [0.2, 4.6] 28 [26.5, 3 25.22005219533 . 26.5] 603 . hybrid [5.1, . [5.1, 54.5] 34 59.5] 42 186 487 30 [0.2,05356349 5.0] hybrid 14.097 203 [0.3, . 20 . 5.0] . 05437206 10.476 4.558 [0.5, hybrid [5.2, 5.0] 7 1394 51.2] 191 24 35 10 [0.2, .05446068 . 5.0] 72 hybrid . [5.2, [0.3, 54.3] . 41 4.2] . . . 805473171 . 7.499 42 hybrid . 120 6264 553 22 47 16 74 [5.1,05476864 61.2] 125 hybrid [0.2, [5.0, 18.828 5.0] 14 51.3] 63 .05641711 [5.5, . 32 hybrid 92 . 10.9] 112 210 790 616 11 [5.3,05722346 . 54.1] [13.1, . hybrid . 64.5] 26.487 478 33 85 8.314 [0.2, 22 [0.4, 4.7]05724440 2.390 5.0] 46 hybrid 82 119 112 232305810113 . hybrid [0.4, [5.1, . [0.2, 179 [0.2, . 4.8] 1277 . 46.3] 4.8] 26 . 5.0] 24 60 . .05857714 . 3.284 258 . 46 hybrid 64 969 425 291205940273 0.882 72 hybrid 653 [0.3, 217 4.6] [6.2, 41 [5.0, 54 . 52.2] 32.4]05965837 . 391 0.710 . 70 hybrid 68 15.803 210 [0.2, . [0.2,06032730 . 5.0] . 4.7] [5.6, hybrid [5.0, 99 [5.1, 1271 29.3] 170 38.9] 374 17 49.7] 9.859 .06067817 . 343 . 294 2.259 41 . hybrid . . [0.3, 26.640 4.9] 93 [0.3,06141372 507 4.8] 80 hybrid [5.4, 29.9] . 87 663 22 . . 124 . 342 . 166 . . hybrid . . [0.2, 133 8.880 3.4] 29 [5.1, [5.2, [0.3, 51.5] 49.7] 4.8] 81 390 2261 718 26 19 850 92 [0.2, 4.9] 27 [5.3, . [0.2, 52.1] . . 5.0] 60 [5.1, 54.5] 463 22.904 2.871 437 57 5 103 [5.1, [0.2, 19.2] 354 23.884 0.904 3.7] . [0.2, [5.0, . 1637 2.189 . 3.5] 205 51.6] . . 144 . 296 [5.0, [0.2, 50.4] 5.0] 14 . [5.1, . . . 558 79.7] . 10.285 . . 3578 . . [0.7, 4.5] 13.011 21 [0.2, [5.0, 1862 . 9.826 [0.2, . 5.0] 55.0] . 4.9] [5.8, 20.6] 758 . . . [5.0, 3002 0.287 51.0] 7.574 . . 1918 . [0.3, [5.0, 4.8] 49.2] 1.667 . . . . . 22 . [5.0, 21.111 930 [5.1, 78.1] 79.7] 11.325 652 19.251 1571 . . . 12.227 . [5.1, . . 7243 31.9] 1140 0.333 1374 . . . 3.016 . . 3.392 . . . . 16.267 34.408 338 ...... 18.991 0614291906187665 hybrid06199731 hybrid 5906268890 hybrid 184 hybrid 37 42 60 359 18 19 121 73 115 659 21 284 215 152 [0.3, [0.2, 4.9] 5.0] [0.4, [0.2, 4.9] 4.8] [5.4, [5.0, 49.2] 35.5] [5.1, [5.1, 22.5] 55.1] 3826 986 15 399 2183 11.729 16.316 . . 6.866 . . . 7.643 ...... continued. Table 3.

A125, page 62 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. • • Flag ) high 1 − Freq high Amplitude Sct δ ) (ppm) (d 1 − (Freq Range) Dor γ )(d 1 − (d (Freq Range) total N Sct δ N Dor γ N KIC ID06289468 Class06381306 hybrid06432054 N hybrid 6206443122 hybrid 6406446951 hybrid 356 1706509175 hybrid 154 4306587551 68 hybrid 288 4006614168 63 hybrid 112 1606670742 279 30 hybrid 103 4406694649 42 hybrid 84 143 123 82906756386 256 hybrid 194 406756481 537 40 hybrid 68 [0.5, 120 4.9] 50906761539 57 hybrid [0.2, [0.2, 4.9] 63 5.0]06776331 449 39 39 hybrid 99 114 [0.2,06922690 134 5.0] hybrid 212 [0.4, 4.8] 906951642 392 42 hybrid 79 [5.1, 78 405 40.4] 530 [0.6,07109598 5.0] 56 hybrid [5.3, [5.0, 183 53.3] 74.9]07119530 248 51 52 hybrid 71 75 [5.0, [0.2,07122746 55.3] 154 4.8] 46 hybrid [0.2, [5.1, 152 [0.4, 3.6] 52.9] 5.0]07204237 237 351 256 hybrid 106 432 34 627 [5.1, [0.3,07211759 53.7] 128 4.9] 33 hybrid 2901 234 54 78907300387 78 hybrid 269 478 40 [0.3, [5.0, [0.2, 146607350486 4.8] 57.7] 116 5.0] [5.5, hybrid [5.1, 60.6] 163 [0.2, 1509 70.3] 4.9] 13.652 707352776 54 hybrid 19 10.571 329 [0.2, 295 291 5.0] [5.0, 443107502559 5.814 57.7] 37 hybrid . [0.3, . 22 . 4.9]07533694 . 214 481 2.425 64 47 . hybrid . 14.872 105 [5.1, [5.1, . 2002 72.6]07553237 . 74.0] 125 . hybrid [0.2, [5.1, [0.3, 1411 192 4.6] 17 59.1] 64 537 4.8] .07668791 191 . 254 . 3.954 32 . hybrid . . [5.3, 48.7] 14 587 [0.2, 102707702705 5.0] hybrid [5.0, 38 49.4] 46 852 . 407732458 . 8.356 hybrid . 65 12.789 [0.2, 23 17.422 4.9] [1.1, 1001 607748238 4.9] 540 hybrid [5.5, [5.1, 196 [0.3, 1975 50.8] 34 54.7] 4.9] 20 12.771 .07756853 . . 382 . hybrid 58 . . . . [0.2, 1697 . 20 4.9] [5.0, 407770282 15.2] 63 hybrid 5 1475 . 145 . 53 10 . 07771991 8.964 hybrid [5.0, 17.826 5.766 10 63.4] [5.1, 6 [0.2, 48.8]07827131 130 5.0] 17 hybrid [0.3, [5.1, 2838 13.789 4.7] 132 30 79.4] 70 59 908 .07831302 . . . . hybrid . [0.5, [5.2, . 15.257 . 4.7] 50.5] 12 575 . 2443 407848288 . . hybrid 30 1 . 53 39 1707959867 . . hybrid . [0.2, 2926 0.721 4.9] 76 [0.3, [6.1, 6 18.597 4.9]07977996 735 36.5] [5.3, hybrid 26 17.1] 247 [0.3, 144 17 4.9] 736 10 508029546 4.193 hybrid [0.2, [5.2, . 4.9] 3469 . 31.9] . 22 . 73 . . 08054146 62 hybrid 4 17.993 118 195 19 .08149341 . hybrid 30.154 . [0.2, [5.4, 6 [0.4, 4.9] 15.6] 4.9] [5.6, 23 79 51 49.5] 176408197788 . 178 7.318 27 . hybrid . [5.1, 10.293 130 175 53.3] 38 25 . . . [5.0, hybrid [0.2, 1383 31.1] 183 184 4.7] 38 370 43 . . . . . 84 . 128 [0.2, 11 3.1] 2.374 [5.0, 27 [5.0, [0.3, 2184 32.1] 49.1] 303 4.7] [0.8, 1621 38 1.330 4.1] 220 52 [0.2, [0.2, 4.522 3.6] 4.9] 878 24 . [28.5, 149 . . 51.3] 359 98 . . . 75 14.713 [0.2, . [5.0, . 4.5] 350 11.243 . 27.0] 80 [0.2, 4.9] [5.0, 359 39.4] [5.3, 552 21.4] . . 410 2.038 . [5.5, . [0.2, [5.0, . 48.8] . 4.7] 66.9] 2136 20.643 [0.2, 4.9] [0.3, . 3.2] . . [5.6, 39.3] 13.184 . [5.1, . [0.3, 2.292 . 98 58.2] 4.8] 939 1.004 70 [5.7, . 1051 . 27.4] . 840 . . . [5.1, 50.5] [5.5, . 76.0] . . 1081 21.141 10.044 [5.1, 1224 47.3] 18.750 2.055 25.238 . . . . . 996 . 1681 7.713 . . 11.030 . 185 3441 ...... 2.034 27.016 66.295 . 14.998 ...... continued. Table 3.

A125, page 63 of 70 A&A 534, A125 (2011) • Flag ) high 1 − Freq high Amplitude Sct δ ) (ppm) (d 1 − (Freq Range) Dor γ )(d 1 − (d (Freq Range) total N Sct δ N Dor γ N KIC ID08264404 Class08264583 hybrid08264674 N hybrid 9708264698 hybrid 5008397426 hybrid 32 5408454553 hybrid 140 3408460993 hybrid 33 46 5708507325 49 hybrid 59 1408516008 hybrid 258 414 22 1608590553 hybrid 89 175 26 7908738244 70 hybrid 126 215 2408915335 465 hybrid [0.2, 4.8] 41 70 2608940640 186 52 hybrid [0.3, 116 197 4.8]08972966 hybrid [0.2, 255 5.0] 22 71 630 36 [0.3,08975515 4.8] 39 hybrid 71 23209052363 hybrid [5.1, [0.3, 286 52.3] 146 4.9] 27 4709072011 229 64 hybrid [5.1, 71 [0.2, [0.2, 54.0] 5.0] 25 5.0]09073007 47 hybrid [5.2, 18.1] 146 13 42 [5.2,09222942 47.9] 164 185 hybrid [0.2, 133 4.9] 14 [0.3,09351622 237 5.0] hybrid [5.1, 5380 104 14.1] 162 866 409391395 27 hybrid [5.0, [0.3, [5.0, 22.7] 4.9] 519 56.6] 94 641 [0.2, 709413057 5.0] 50 hybrid 400 48 184809473000 101 hybrid [5.1, [0.2, 7 [0.3, 49.2] 9.396 4.2] 62 28 4.9] [5.0,09509296 49.1] hybrid 61 50 1241 137 [0.2, 21 445 5.0]09532644 0.968 hybrid [5.5, 2014 . 1085 53.3] . 24 11 16 . 24 [5.0, 13.801 09533489 6.598 49.6] 347 35 hybrid 96 17 .09550886 . . hybrid [0.3, [5.1, [5.4, [0.2, 4.7] 33.5] 259 5.576 213 52.7] 64 4.9] 6 . 209604762 . 101 . 886 hybrid [5.1, 18.067 127 2.920 42 50.5] 17 [0.2, [0.2, 1.5]09650390 5.0] hybrid 1002 . 109 . 33 277 . 09651065 . 346 . hybrid 97 . [0.2, . 4 . 5.0] 10 . 53 11.679 709655438 [5.3, 24 10 hybrid 13.376 783 [0.2, [5.3, 1429 25.8] 122 4.8] 55.9] 2809655501 hybrid 24.285 [19.1, . 107 [0.2, 2946 . 389 48.0] 43 . 4.9] [5.0, 3 .09656348 29.5] . 56 hybrid . [0.2, 80 14.621 8 4.5] 273 22 .09664869 17.839 . 20 hybrid . [5.2, 138 50.3] 8.828 .09700679 . 255 hybrid . [5.2, 57 [0.2, 4 19.225 293 6138 13.4] 4.9] . 29 37 [0.2, . 7 . 5.0]09716947 24 hybrid 84 [0.4, [5.1, . . 5.0] 51.8] 88 . 44 503109764965 . 313 [5.3, . hybrid . 15.4] 18 50 12 [0.4,09775385 110 345 5.0] 11 hybrid 671 49 63 13.972 6.116 [1.5, 4.4]09775454 hybrid [5.3, 1152 51.0] [5.6, 35 24 173 17.4] 11.471 [0.4, 209790479 41.966 4.9] hybrid 43 [5.4, . . . 35.5] . 19 . 22 [0.9, 497 33 . [0.2, 3.7]09813078 4.8] hybrid 465 . . 18 . 11 . [5.6, 8 .09970568 137 2.162 . 68.6] hybrid [0.2, 320 6.020 [6.4, 13 4.4] 39 37.6] 910014548 hybrid [0.2, 1406 4.6] 114 10 73 [5.1, . 13.546 997 . 51.7] . 10 hybrid 1520 . 150 . 302 [5.2, . [0.2, [5.5, 24.3] 1.949 7 4.8] 47.6] 5 [0.2, 162 . 5.0] 29 . . 3063 2 64 72 17.677 [0.2, [5.0, 5.0] 53.7] . . 333 . [5.4, 42 58 20.487 8.699 [0.2, 31.9] 4.8] 37 3 . . 797 73 . 83 [5.5, 50.126 126 2259 . 21.9] 114 . . . [0.3, [5.4, . . 5.0] 41.5] 352 395 25 [0.7, [5.1, 4.008 4.0] . 34.7] . 314 530 . [0.2, [5.4, 4.6] 389 16.8] 1.071 19.478 18.151 . . [0.3, . 3.9] [0.2, 806 [1.4, 5.0] [5.1, 4.4] 1389 . 34.6] [0.2, . . . . 5.0] . . 27.723 . . [5.1, 25.9] 12.992 95 [14.7, 14.9] . 833 . . [7.4, . . 2.818 39.5] 1.622 . [5.0, [5.5, 55.5] 20.0] [5.0, 961 57.8] . . . 0.262 189 . . . 6.215 316 . 3871 . . 27.178 . . . 945 246 775 1.788 . . 4.161 . 17.588 . . . . . 3.408 . 1.618 . . 1.528 ...... continued. Table 3.

A125, page 64 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. • Flag ) high 1 − Freq high Amplitude Sct δ ) (ppm) (d 1 − (Freq Range) Dor γ )(d 1 − (d Dor stars γ (Freq Range) total N Sct δ N Dor γ N DorDor 8Dor 57Dor 13Dor 8 57 17Dor 13 47Dor 17 25 0 0 47 6 0 25 0 189 56 0 31 6 0 42 [0.3, 219 5.8] [0.6, 3.5] 0 65 [0.3, 3.2] [0.3, 3.2] [0.5, 5.5] 21 [0.3, 3.3] ...... [0.2, 4.1] ...... 1061 322 . . . 798 149 2500 0.394 3.451 334 . 1.735 . . . . 1.798 . 1.679 150 ...... 2.015 . . . . 0.848 . . . . . γ γ γ γ γ γ γ KIC ID10035772 Class10065244 hybrid10130777 N hybrid 12510164569 hybrid 11510208345 38 hybrid 36110264728 43 hybrid 5310361229 55 hybrid 83 7410471914 hybrid 57 101 2510537907 305 427 hybrid 41 2510647493 448 37 hybrid 308 908 2410647611 hybrid 110 20 27 [0.2,10664975 4.9] 46 hybrid 61 145 78 [0.2,10675762 5.0] 22 hybrid [0.4, 212 69 4.9] 510685653 254 436 hybrid 28 910783150 hybrid 83 [0.2, 4.9] 22 68 534 [5.4,10975247 137 65.8] hybrid [0.3, 4.9] 47 47 [5.0, [0.2,11180361 49.1] 510 4.6] hybrid 5 [5.1, 23 63.7] 77 4211193046 hybrid [0.2, 378 24 4.9] [0.5, 811197934 4.9] hybrid [5.0, 53.5] 317 63 36 40 3 [0.2, 194711285767 4.5] hybrid [5.1, 112 20.5] 10 21 097 [5.4,11288686 53.5] hybrid 5 [0.2, 213 2101 300 4.6] 11 611309335 21 62 hybrid [0.5, [5.2, 133 149 4.6] 57.0] [5.6, 26.891 29.3]11445913 81 hybrid 11.930 466 62 25 [5.1, 311508397 613 45.3] 40 hybrid 48 [0.3, 33.821 146 . 4.7] 861 . . 11572666 . 121 [1.3, 875 . hybrid [5.1, . [0.2, 4.4] 167 56.1] 5.0] 22 7211602449 . 303 22 . hybrid [5.1, 86 8 . 2156 51.2] 92 397 15.396 [0.3,11607193 5.0] 813 18 hybrid 44 33 474111700604 3.452 122 416 hybrid [5.0, . 50.4] . 3.379 42 84 . [0.2, [0.2,11714150 5.0] [6.1, 144 4.9] hybrid [5.4, 19.9] 5536 15.070 102 [0.3, 43.9] 316 [0.3, 17 272 5.0] 4.8] .11718839 . . hybrid 4527 . 2.653 . 36 20 328 . [5.1, 48 11.555 [0.2, 17.0]11822666 . 5.0] 73 . hybrid . 13 2211824964 hybrid . 17.101 [0.2, 3118 . 167 [0.3, . 145 . 4.6] 14 . 4.8] [5.0, 40 . [5.0, 60.0]12117689 54.7] hybrid 14 15.723 [5.1, 383 [0.2, [7.1, 164 565 60.4] 51 4.2] 19.5] 9 .12122075 . 49 hybrid . 310 21 [5.0, 3896 . 412216817 59.7] . 396 hybrid . 15.914 [0.2, 4.9] 31 23 115 hybrid [5.3, [0.2, [5.0, 1 41.1] 4.9] 59.7] 11 80 19.411 2.575 . 334 . 704 66 . [0.5, [7.2, 143 4.9] 50.4] 16 235 720 20 [0.2, 1.560 86 4.9] . . 54 . 28 . . . 6496 5 55 [5.1, 48.2] 73 . 5 . . [0.3, [5.0, 4053 3.752 [0.3, 5.0] 1191 48.9] 1.275 4.9] 20 1.939 38 [6.4, 84 13.943 1654 49.7] [0.3, [5.0, 21.061 4.1] 16.5] 74 . . . . 215 . . [0.4, . 5.0] . . 609 . . 18.487 . 23.435 . 340 . . [5.0, [0.4, [5.1, 27.0] 31.558 4.5] 976 42.4] . . . . . [0.3, . [0.3, 1392 4.6] [6.0, 5.0] 11.0] [0.2, . 716 5.0] . . [5.0, 11.367 35.7] 18.279 [5.0, 10.579 . 34.6] 515 . . 696 [5.1, [5.0, . 25.0] 31.9] . 1.817 . [5.2, 307 . 52.6] . . 298 . . 27.013 . 16.441 125 1229 . 0.756 1260 . . . 22 . . 007 2.050 . . . 2.160 . . 3.218 1.116 . 8.121 ...... 01432149 01571152 02020966 02166218 02300165 02558273 02568519 continued. Table 3.

A125, page 65 of 70 A&A 534, A125 (2011) • • Flag ) high 1 − Freq high Amplitude Sct δ ) (ppm) (d 1 − (Freq Range) Dor γ )(d 1 − (d (Freq Range) total N Sct δ N Dor γ N DorDor 8Dor 34Dor 8Dor 8 34 16Dor 83Dor 8 16 23 0 0Dor 83 14Dor 23 24 0 0 38 70Dor 14 54 0Dor 24 18 0 64 51Dor 109 54 0 237 [0.6,Dor [0.3, 2.5] 5.6] 18 9 109 0 93Dor 4 0 [0.4, 36Dor [0.2, 2.4] 3.7] 13 [0.2, 0 115 6.0] 0Dor 9 8 204Dor [0.4, 4 3.7] 13 87 373 77Dor [0.3, . 1.5] . . . 77 . . [0.3, 0 5.8] 8 87 73 [0.2, 0 0 5.9] . . . 77 . . . [0.2, . 14 6.0] . [0.3, . 3.3] 73 0 0 34 63 . . . 0 . . . 0 349 . 39 [0.5, . 329 467 . 2.6] 250 . [2.3, . [0.6, . 5.0] 3.2] 300 1696 . 865 . . . . 4526 . [0.2, 5.3] [0.3, 1.7] 2.245 0.551 [0.2, 5.7] 496 [0.2, 5.9] 1.506 301 . . . . . 0.359 4684 . . . 3.849 . . . . . 7606 ...... 2.482 . 4512 . . . 1035 . . . . . 1.011 1.427 . . . . . 2.709 . . .Dor ...... 2.035 . Dor 0.942 77 . 46 . . 135Dor 259 50 . . . .Dor . . 142 46 3706 249Dor 50 3305 57 142 0.636Dor 2.788 8312 80 0.871 0Dor 57 38 1.595 . 0 . 0 . Dor . . . 0.398 80 21 . . 1.408 . 137Dor 38 . 23 . 1.381 . 0 126 513Dor 147 . . 21 . . . . 0Dor 23 45 [0.2, 147 0 144 4.5]Dor 16 [0.2, [0.2, 0 267 6.0] 5.8]Dor 45 57 0 103 0 16 26 [0.3, 5.7] 33 57 [0.2, 0 5.9] 774 42 26 [0.2, 0 6.0] . . . 0 182 . . . [0.3, . . . 4.9] [0.2, 0 5.4] 17 [0.4, 4.4] 282 . . . [0.2, 127 4.4] . . . . . [0.5, . 5.3] [0.2, 740 5.9] . . 5215 . [0.4, 782 4.9] ...... 1948 . . 1.435 . 1780 1.353 1.500 . . 1335 ...... 2.735 ...... 291 . . 23 271 1.540 74 . . 2.355 . 1703 . . . 1.269 . 2.231 . . 92 2292 1.261 . . . . . 1.714 . 532 . . . . . 2.057 . 2.658 1.994 ...... DorDor 37Dor 126 37 18 126 18 0 0 0 132 416 102 [0.3, [0.2, 5.6] 5.9] [0.5, 4.4] ...... 4489 890 1556 0.991 4.496 . 1.341 . . . . . DorDor 156Dor 26 156Dor 11Dor 26 25 0Dor 11 66Dor 25 62 0 544Dor 66 69 0Dor 62 25 0 114Dor 69 18 [0.2, 0 5.8] 32Dor 25 36 0 88Dor 18 27 [0.2, 0 176 5.1] 36 17 0 216 [0.2, 2.1] 27 0 210 [0.3, 4.3] 17 [0.4, 0 4.9] . 62 . . [0.2, 0 5.9] 27 [0.2, 0 139 . 5.8] . . 66 [0.2, . 4.3] . . 74 [0.3, . 3.5] . . [0.2, . 5.8] . . 10 511 . . [1.2, . 4.0] . . [0.3, . 5.8] 431 1.687 . . . 109 . . . . . 503 . . . . 1138 2.836 . . 1379 . . . 6821 0.958 . . . . 1.890 1.494 269 . . 1.128 . 83 . . . . 4.856 . 787 . . . . 1442 . 2.131 . . 1023 0.843 1.601 . . . 1.840 . . . . 0.393 ...... γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ KIC ID02575161 Class02720582 N 02835795 03215800 03218637 03222364 03327681 03331147 03424493 03449625 03539153 03655608 03663141 03758717 03868032 03966357 04069477 04164363 06462033 06500578 06519869 06923424 07007103 07106648 07215607 07220356 07304385 07436266 07694191 07742739 07767565 04677684 04758316 05024455 05105754 05113797 05164767 05180796 05294571 05371747 05630362 05724048 05772411 05880360 05954264 06301745 continued. Table 3.

A125, page 66 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. • • • • • • Flag ) high 1 − Freq high Amplitude Sct δ ) (ppm) (d 1 − (Freq Range) Dor γ )(d 1 − (d (Freq Range) total N Sct δ N Dor γ N DorDor 8Dor 20Dor 11Dor 0 20 18Dor 141 11Dor 18 18 0 141 0Dor 56 0Dor 18 35 0 0 75Dor 4 56 50 18Dor 35 70 0 320 39Dor 50 34 0 [0.2, 5.4] [0.2, 70 34 4.9] 0 [0.2, 39 3.0] 34 [0.2, 0 274 6.0] [0.2, 2.1] 34 0 104 0 232 [0.2, 5.2] [0.2, 0 321 5.3] . . . [0.2, . . 157 4.0] . . . . [0.2, 135 5.9] ...... [0.2, 5.9] [0.2, 5.9] . . . [0.2, 5.3] . . . . . 391 . 38 . . 121 . 1991 . . 129 . . . . 1.353 . . . 0.450 52 6407 2.795 0.774 . 4330 . 0.538 ...... 878 . . . 5350 . 1.097 . 0.494 2238 2.010 2102 . . . . . 3.659 . . . 1.400 . 1.201 . . . . . 1.483 . . . . DorDor 43Dor 126 43 32 126 32 0 0 0 189 463 104 [0.2, [0.3, 5.9] 5.8] [0.2, 5.5] ...... 29 753 5540 974 1.242 5.002 . . . 2.537 DorDor 94Dor 125Dor 94 21 125Dor 18Dor 21 23 0 0Dor 18 94Dor 23 48 0 372 333Dor 94 78 0Dor 48 12 0 46Dor 78 61 [0.2, [0.2, 0 5.8] 6.0] 83Dor 12 29 0 110Dor 61 17 0 428Dor [0.2, 103 2.2] 29 0 189Dor [0.2, 6.0] 17 68 [0.8, 103 0 546 5.6] 69 [0.2, 0 5.8] . . . 53 . . . 68 [0.2, 0 209 5.9] 0 69 [0.2, 107 3.5] . . . 0 100 309 [0.4, 5.7] . . . [0.2, 0 3.0] . . . [0.2, 261 5.4] . . . 7073 4669 [0.2, [0.3, 246 5.2] . 5.7] . . . . . [0.2, 5.9] . 90 . . [0.2, 1.496 1.082 6.0] . . 484 . 490 . . . 11 426 ...... 1317 1.220 4757 2.668 . . 1.961 . 2.596 . . 2856 . . . . . 1871 . 1.569 ...... 2638 0.766 1971 . 2834 . . 0.685 . . 1.367 . 2812 2.540 . . . 4821 . . 0.989 1.762 ...... 1.598 . . . 0.929 ...... DorDor 165Dor 46 165Dor 91 46 39 0 91 39 0 636 0 0 128 [0.2, 356 5.8] 158 [0.2, 6.0] [0.2, 5.8] [0.3, 5.6] ...... 10 314 257 10 1.375 285 1122 . . . 0.555 2.434 2.047 ...... DorDor 39Dor 114Dor 136 39 114Dor 29 136Dor 5 0 0Dor 29 98 0Dor 107 107 772Dor 5 98 68 107 0 546Dor 33Dor 68 75 [0.2, 0 [0.2, 0 118 5.9] 0 4.0] 33 32 [0.2, 5.6] 75 0 311 280 8 32 [0.3, 0 2.8] 0 150 [0.2, [0.2, 0 181 5.4] . 5.8] . . . . . [0.6, 1.4] 313 . . . [0.2, 197 5.9] [0.2, 5.9] . . . [0.2, 5.7] [0.9, 6.0] ...... 5990 . 743 . . 3742 ...... 1323 0.647 . . 2.256 . 0.970 . . . 4172 . . 675 . . . . 133 . 1.234 . . 686 1987 . . 1.984 . 1.621 5913 0.667 2328 . . . . 2.240 . . 1.052 . . . 0.992 . . . . . 1.418 . . . . DorDor 64 30 64 30 0 0 268 161 [0.2, 4.1] [0.7, 6.0] ...... 4462 1755 1.944 2.152 . . . γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ KIC ID07798339 Class07890526 N 07908633 08104589 08123127 08144674 08197761 08222685 08230025 08264061 08264075 08264274 08264588 08264617 08330056 09909300 10069934 10073601 10096499 10281360 10385459 10586837 10652134 11199412 11447883 11612274 11874898 12018834 12058428 12102187 08355130 08489712 08651452 08766619 08838457 08869302 08871304 09020157 09117875 09147229 09490042 09490067 09594100 09654789 09655151 09655800 09716107 continued. Table 3.

A125, page 67 of 70 A&A 534, A125 (2011) • • • 11707341 solar-like . . . 11910256 ...... 11454008 . . .11549609 solar-like ...... 11290197 solar-like . . . 10920273 solar-like . . . Dor regions γ • • • • • • Sct and δ Sct . . . 09760531 binary . . . δ + Binaries 1020830310254547 solar-like solar-like ...... 11236253 11253226 solar-like ...... 0938625909458750 ...... 10920182 solar-like . . . 1027324610273960 solar-like solar-like ...... 11393580 11394216 solar-like solar-like ...... 10266959 solar-like 10534629 solar-like . . . 11651083 solar-like . . . 10339342 solar-like . . . 11395018 solar-like . . . • • • • • • • • • Sct . . . 06678614 EB δ Dor or hybrid groups. + γ Stars with no clear periodic signal in the Sct, δ KIC ID Class Flag KIC ID Class Flag KIC ID Class Flag 0216343402311130 ...... 01294756 binary 025782510297024402997802 .03111451 . . .03119825 . . .03220783 . . .03427365 ...... 03733735 ...... 03759814 . . 09514879 . . . .03760826 . . 09520434 . . . .04588487 . . 09593997 . . solar-like . . .04850899 . . . . 09703601 . . . .05024150 . . . . 09764712 . . . solar-like . . .05024454 . . . . 09991621 . . solar-like solar-like . . .05024456 . . 11069435 . . . . 09991766 . . . solar-like solar-like . . solar-like . 09994789 . . . solar-like 11067972 . . . 11128041 . . . 10056217 . . solar-like . . . . . solar-like . . 11128126 . . . 10062593 . . solar-like . 11122763 . 11129289 . solar-like . 10090345 ...... solar-like 11182716 . solar-like . 10140665 ...... 11230518 . solar-like . . solar-like ...... 11232922 . solar-like ...... solar-like ...... 11235721 . 11233189 solar-like 11234888 solar-like . . solar-like ...... 0927400009336219 ...... 10861649 solar-like ...... 11910642 ...... 084600250848254008488065 .09073985 . . .09204672 . . solar-like .09264399 . .09264462 . .09272082 ...... solar-like ...... 10709716 . 10647860 . . . solar-like . . . 10663892 . . solar-like . . . . . solar-like 10777541 . . . . 10723718 . solar-like . . 11654210 10730618 . . . solar-like . 11651147 solar-like solar-like 11653958 . solar-like . 10778640 . . . . solar-like . . . solar-like . . . 11657840 . . . 11706449 solar-like solar-like 0821841908223987 solar-like08293302 solar-like08323104 .08355837 ...... 10453475 . . . 10467969 . . . solar-like ...... 10526137 . . . . . 11502075 10526615 . 10533506 solar-like solar-like . . 11499354 . solar-like . . solar-like ...... 11551622 11509728 solar-like ...... 0511293205199464 solar-like 05201088 solar-like 0598033707338125 .07662076 . . .07669848 . . .08143903 . . solar-like .08159135 . . solar-like ...... 10340511 . . 10450550 . 10341072 solar-like 10450675 solar-like 10383933 solar-like solar-like ...... solar-like ...... 11395028 . . 11448266 10451250 . 11446143 solar-like 11449931 solar-like solar-like 11446181 solar-like . . . . . solar-like ...... Classification of the stars that do not belong to the Table 4.

A125, page 68 of 70 K. Uytterhoeven et al.: The Kepler characterization of the variability among A- and F-type stars. I. • • Sct ... δ + DorDor ...... DorDor ...... activityactivity .activity . . .activity . . .activity . . .activity . . .activity . . activity .activity . . .activity . . .activity . . .activity ...... activityactivity .activity . . .activity . . .activity . . .activity . . .activity ...... / / / / / / / / / / / / / / / / / / / γ γ γ γ SPB + + + + + 11494765 rotation 10338279 rotation 10648728 rotation 10971674 EB . . . • • • • Cep . . . 10658302 Bstar SPB . . . β Sct . . . 11180361 EB . . . Sct . . . 11973705 binary δ Sct . . . 10274244 EB δ Sct . . . 09944730 binary . . . Dor . . . 11342032 binary . . . Dor . . . 09913481 EB Dor . . . 09851142 EB activity activityactivity activity . . .activity activity 10140513 . . .activityactivity rotation 10394332 . . .activity . . .activity rotation 10797849 . . .activity 11017401 . . .activity rotation 11020521 . . . rotation 11027270 . . .activity rotation 11183399 . . . rotation 11240653 rotation 11445774 . . . rotation rotation 11498538 rotation activityactivityactivity . . .activity . . .activity 11499453 . . .activity 11515690 . . . rotation 11622328 . . . rotation 11708170 . . . rotation 12062443 rotation 12217281 rotation rotation δ δ + + / / / / / / / / / / / / / / / / / / / γ γ γ + + + + + rotational modulation / B type stars Candidate red giants Stellar activity 09655487 rotation • Sct . . . 09630640 binary Sct . . . 09204718 binary δ Sct . . . 08479107 EB Sct . . . 07385478 EB Dor . . . 08545456 EB . . . 11082830 binary . . . Dor . . . 08223568 binary . . . 10206340 EB Dor . . . 07596250 EB activityactivity . . .activity . . .activity 08283796 . . .activity 08330463 . . .activity 08703413 . . rotation .activity 08742449 . . rotation .activity 08748251 . . rotation .activity 09077192 . . rotation .activity 09268087 . . rotation .activity 09582720 . . rotation .activity 09632537 . . rotation .activity 09640204 rotation 09643982 . . rotation . rotation 09696853 rotation rotation activityactivity . . .activity . . .activity 09716350 . . .activity 09777532 . . .activity 09881909 . . rotation . 09944208 . . rotation . 10004510 rotation 10064111 rotation rotation rotation δ δ δ + / / / / / / / / / / / / / / / / / / / γ γ γ hybrid . . . 08330092 EB + + + + + + + 05197256 EB 04150611 EB 0551386105988140 binary EB . . . 09451598 EB . . . 11447953 EB . . . 05296877 EB . . . 09216367 EB 05088308 EB 04570326 EB 0271859603230227 binary EB . . . 08145477 EB . . . 10119517 EB . . . 0255743002584908 EB EB . . . 08043961 EB KIC ID02162283 EB Class Flag KIC ID Class Flag KIC ID Class Flag 0858377008714886 Bstar Bstar SPB ...... 10536147 . . . Bstar SPB ...... 10797526 Bstar SPB ...... 05217733 Bstar SPB . . . 10030943 Bstar candidate 02306469 red giant . . . 02995525 red giant . . . 08746834 red giant 023067160231047902443055 red giant02444598 red giant02556297 red giant02556387 red . . giant . red . . giant . 03248627 red . . giant . 03354022 . . . 03355066 . . . 03427144 . . . red giant 03449373 red giant 03458097 red giant red giant red . . giant . red . . giant . 09327993 . . . 09520864 . . . 09885882 . . . 09995464 red . . giant . 10006158 red giant 10057129 red giant red giant . . . red giant . . . red giant ...... 01573064 rotation 0199548902423932 rotation 02569639 rotation 02583658 rotation 03348390 rotation 03528578 rotation 03643717 rotation 04075519 rotation 04160876 rotation 04857678 rotation 05200084 rotation 05436432 rotation rotation 0547649506279848 rotation 06440930 rotation 06448112 rotation 07985370 rotation 08211500 rotation rotation continued. Table 4.

A125, page 69 of 70 A&A 534, A125 (2011) • • ...... 09655433 contaminated • • Cepheid Contaminated stars 04937257 contaminated 05724810 contaminated • • 02989746 red giant . . . 05112786 red giant ...... KIC ID025571150258420202834796 red giant Class02855687 red giant02860123 red giant . . .02969151 red giant Flag . . .02972401 red giant 03525951 . . . KIC red ID giant 03546061 . . . red giant 03629080 red . . giant . 03633693 red . . giant . Class 03836911 red . . giant . . . . 04144300 red giant . . . 05024750 red giant Flag 10068892 . . . red giant 10134600 . . . red KIC giant ID 10389037 red . . giant . 10902738 red . . giant . 11340063 red . . giant . . . Class . 11706564 red giant . . . 11753169 red giant . . . red giant Flag . . . red giant ...... 03457434 contaminated 07548061 Cepheid ...... 04048488 contaminated continued. Table 4.

A125, page 70 of 70