Bioinformatic and Modelling Approaches for a System-Level Understanding of Oxidative Stress Toxicity Elias Zgheib

Total Page:16

File Type:pdf, Size:1020Kb

Bioinformatic and Modelling Approaches for a System-Level Understanding of Oxidative Stress Toxicity Elias Zgheib Bioinformatic and modelling approaches for a system-level understanding of oxidative stress toxicity Elias Zgheib To cite this version: Elias Zgheib. Bioinformatic and modelling approaches for a system-level understanding of oxidative stress toxicity. Quantitative Methods [q-bio.QM]. Université de Technologie de Compiègne, 2018. English. NNT : 2018COMP2464. tel-02088169 HAL Id: tel-02088169 https://tel.archives-ouvertes.fr/tel-02088169 Submitted on 2 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Par Elias ZGHEIB Bioinformatic and modelling approaches for a system- level understanding of oxidative stress toxicity Thèse présentée pour l’obtention du grade de Docteur de l’UTC Soutenue le 18 décembre 2018 Spécialité : Bio-ingénierie et Mathématiques Appliquées : Unité de Recherche Biomécanique et Bio-ingénierie (UMR-7338) D2464 BIOINFORMATIC AND MODELLING APPROACHES FOR A SYSTEM-LEVEL UNDERSTANDING OF OXIDATIVE STRESS TOXICITY A THESIS SUBMITTED TO THE UNIVERSITE DE TECHNOLOGIE DE COMPIEGNE SORBONNE UNIVERSITES LABORATOIRE DE BIO-MECANIQUE ET BIOINGENIERIE UMR CNRS 7338 – BMBI 18TH OF DECEMBER 2018 For the degree of Doctor Spécialité : Bio-ingénierie et Mathématiques Appliquées Elias ZGHEIB SUPERVISED BY Prof. Frédéric Y. BOIS JURY MEMBERS Mme. Karine AUDOUZE Rapporteur Mr. Vincent FROMION Rapporteur Mme. Cécile LEGALLAIS Examiner Mr. Maxime CULOT Examiner Mr. Frédéric Y. BOIS Supervisor TABLE OF CONTENTS Table of Contents ..................................................................................................................... 2 Acknowledgements ................................................................................................................... 5 List of Abbreviations ................................................................................................................ 7 List of Figures ........................................................................................................................... 9 List of Tables ........................................................................................................................... 14 1 Introduction ..................................................................................................................... 16 2 Bibliography .................................................................................................................... 24 2.1 Toxicology ................................................................................................................................. 24 2.1.1 Definition of Toxicity ..................................................................................................... 24 2.1.2 Predictive Toxicology: Prevention ................................................................................. 24 2.1.3 Birth of Toxicology ......................................................................................................... 25 2.1.4 Limitations of Traditional Toxicology ............................................................................ 25 2.1.5 A Paradigm Shift in Toxicology ...................................................................................... 26 2.1.6 Modern Toxicology ........................................................................................................ 33 2.2 Biology Underlying Toxicology ................................................................................................. 38 2.2.1 Oxidative Stress, Nrf2 and some Associated Pathways ................................................ 39 2.2.2 Systems Biology – SB ..................................................................................................... 45 2.2.3 Adverse Outcome Pathways – AOP ............................................................................... 47 2.3 Mathematical Considerations .................................................................................................. 49 2.3.1 Ordinary Differential Equations – ODE – Systems ......................................................... 49 2.3.2 Michaelis-Menten – MM – Kinetics............................................................................... 51 2.3.3 The Hill Equation ........................................................................................................... 53 2.3.4 Bayesian Statistical Tools ............................................................................................... 57 2.3.5 Model’s Calibration ....................................................................................................... 61 3 Construction of Systems Biology Model of Nrf2 Control of Oxidative Stress .......... 64 3.1 Starting Models ........................................................................................................................ 64 3.1.1 The model of ‘Hamon et al. (2014)’ ............................................................................... 64 3.1.2 The model of ‘Geenen et al. (2012) and Reed et al. (2008)’ .......................................... 65 3.2 Methods ................................................................................................................................... 66 3.2.1 Remodelling Hamon’s model ........................................................................................ 66 3.2.2 Assembling two models ................................................................................................. 71 3.3 Results ...................................................................................................................................... 74 4 SB and other Tools for the Development of quantitative AOPs ................................. 78 4.1 Study Context ........................................................................................................................... 78 4.2 Methods ................................................................................................................................... 80 2 4.2.1 Experimental data ......................................................................................................... 80 4.2.2 Chronic Kidney Disease – CKD – AOP ............................................................................ 81 4.2.3 Dose-Response based qAOP .......................................................................................... 82 4.2.4 Bayesian Network – BN – qAOP .................................................................................... 83 4.2.5 The Systems Biology – SB – Model ................................................................................ 85 4.2.6 Parameter Estimation .................................................................................................... 87 4.2.7 Uncertainty propagation ............................................................................................... 89 4.2.8 Software ........................................................................................................................ 89 4.3 Results ...................................................................................................................................... 90 4.3.1 Dose-Response based qAOP Model .............................................................................. 90 4.3.2 Bayesian Network – BN – qAOP Model ......................................................................... 93 4.3.3 System biology – SB – Model ........................................................................................ 95 4.4 Discussion ............................................................................................................................... 101 4.5 Conclusion .............................................................................................................................. 107 5 Investigation of Nrf2, AhR and ATF4 Activation in Toxicogenomic Databases .... 109 5.1 The General Approach............................................................................................................ 109 5.2 Material and Methods ............................................................................................................ 111 5.2.1 Generation of Target Gene Lists .................................................................................. 111 5.2.2 Construction of a Chemical-Effects Transcriptomics Database................................... 112 5.2.3 Data Sources ................................................................................................................ 114 5.2.4 Bioinformatics Methods .............................................................................................. 116 5.2.5 Pathway’s Signature-Based Prioritization of Chemicals .............................................. 120 5.3 Results .................................................................................................................................... 123 5.3.1 Pathways’ Global Signatures ....................................................................................... 123 5.3.2 Pathways’ Stratified
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • Anti-Inflammatory Role of Curcumin in LPS Treated A549 Cells at Global Proteome Level and on Mycobacterial Infection
    Anti-inflammatory Role of Curcumin in LPS Treated A549 cells at Global Proteome level and on Mycobacterial infection. Suchita Singh1,+, Rakesh Arya2,3,+, Rhishikesh R Bargaje1, Mrinal Kumar Das2,4, Subia Akram2, Hossain Md. Faruquee2,5, Rajendra Kumar Behera3, Ranjan Kumar Nanda2,*, Anurag Agrawal1 1Center of Excellence for Translational Research in Asthma and Lung Disease, CSIR- Institute of Genomics and Integrative Biology, New Delhi, 110025, India. 2Translational Health Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India. 3School of Life Sciences, Sambalpur University, Jyoti Vihar, Sambalpur, Orissa, 768019, India. 4Department of Respiratory Sciences, #211, Maurice Shock Building, University of Leicester, LE1 9HN 5Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia- 7003, Bangladesh. +Contributed equally for this work. S-1 70 G1 S 60 G2/M 50 40 30 % of cells 20 10 0 CURI LPSI LPSCUR Figure S1: Effect of curcumin and/or LPS treatment on A549 cell viability A549 cells were treated with curcumin (10 µM) and/or LPS or 1 µg/ml for the indicated times and after fixation were stained with propidium iodide and Annexin V-FITC. The DNA contents were determined by flow cytometry to calculate percentage of cells present in each phase of the cell cycle (G1, S and G2/M) using Flowing analysis software. S-2 Figure S2: Total proteins identified in all the three experiments and their distribution betwee curcumin and/or LPS treated conditions. The proteins showing differential expressions (log2 fold change≥2) in these experiments were presented in the venn diagram and certain number of proteins are common in all three experiments.
    [Show full text]
  • Gene-Expression Signature Regulated by the KEAP1-NRF2-CUL3 Axis Is Associated with a Poor Prognosis in Head and Neck Squamous Cell Cancer Akhileshwar Namani1†, Md
    Namani et al. BMC Cancer (2018) 18:46 DOI 10.1186/s12885-017-3907-z RESEARCH ARTICLE Open Access Gene-expression signature regulated by the KEAP1-NRF2-CUL3 axis is associated with a poor prognosis in head and neck squamous cell cancer Akhileshwar Namani1†, Md. Matiur Rahaman2†, Ming Chen2* and Xiuwen Tang1* Abstract Background: NRF2 is the key regulator of oxidative stress in normal cells and aberrant expression of the NRF2 pathway due to genetic alterations in the KEAP1 (Kelch-like ECH-associated protein 1)-NRF2 (nuclear factor erythroid 2 like 2)-CUL3 (cullin 3) axis leads to tumorigenesis and drug resistance in many cancers including head and neck squamous cell cancer (HNSCC). The main goal of this study was to identify specific genes regulated by the KEAP1-NRF2-CUL3 axis in HNSCC patients, to assess the prognostic value of this gene signature in different cohorts, and to reveal potential biomarkers. Methods: RNA-Seq V2 level 3 data from 279 tumor samples along with 37 adjacent normal samples from patients enrolled in the The Cancer Genome Atlas (TCGA)-HNSCC study were used to identify upregulated genes using two methods (altered KEAP1-NRF2-CUL3 versus normal, and altered KEAP1-NRF2-CUL3 versus wild-type). We then used a new approach to identify the combined gene signature by integrating both datasets and subsequently tested this signature in 4 independent HNSCC datasets to assess its prognostic value. In addition, functional annotation using the DAVID v6.8 database and protein-protein interaction (PPI) analysis using the STRING v10 databasewereperformedonthesignature. Results: A signature composed of a subset of 17 genes regulated by the KEAP1-NRF2-CUL3 axis was identified by overlapping both the upregulated genes of altered versus normal (251 genes) and altered versus wild-type (25 genes) datasets.
    [Show full text]
  • Tu Cornellgrad 0058F 10421.Pdf (5.371Mb)
    MOLECULAR FUNCTION OF MAMMALIAN TRANSLOCATOR PROTEIN (TSPO) A Dissertation Presented to the Faculty of the Graduate School of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Lan Ngoc Ly Tu August 2017 © 2017 Lan Ngoc Ly Tu MOLECULAR FUNCTION OF MAMMALIAN TRANSLOCATOR PROTEIN (TSPO) Lan Ngoc Ly Tu, Ph. D. Cornell University 2017 Translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is a mitochondrial outer membrane protein highly conserved from bacteria to humans. TSPO is found to be upregulated in many pathological conditions, making it an attractive target for both diagnostic and therapeutic purposes in human medicine. However, the exact molecular function of TSPO remained unclear. For the past 25 years, TSPO was depicted to transport cholesterol from the cytosol to the inner mitochondrial membrane, the rate-limiting step in steroid hormone biosynthesis. Its critical role in survival and development was reinforced by a report that claimed TSPO knockout (Tspo-/-) mice were embryonic lethal. Therefore, there had been no genetic models to study the function of TSPO and all functional interpretations of TSPO were based on in vitro experiments using pharmacological tools. Our lab generated the first global Tspo-/- mice which surprisingly were healthy with no apparent abnormalities. Deletion of TSPO in different steroidogenic cell lines also did not affect cell viability. Furthermore, steroid hormone production was not affected in Tspo-/- mice or in steroidogenic cells lacking TSPO compared to the controls, indicating that TSPO is not involved in steroidogenesis. The stimulating effect of some TSPO binding chemicals on steroid hormone production that formed the early basis for linking TSPO and steroidogenesis was also found to be inaccurate.
    [Show full text]
  • Pancreatic Cancer Prognosis Is Predicted by a Novel ATAC-Array Technology For
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.21.427604; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Pancreatic cancer prognosis is predicted by a novel ATAC-array technology for assessing chromatin accessibility Authors: Dhara S1, Chhangawala S2,3, Chintalapudi H1, Askan G4, Aveson V4,5, Massa AL1, Zhang L4, Torres D1, Makohon-Moore AP4, Lecomte N4, Melchor JP4, Bermeo J4, Cardenas III A4, Sinha S4, Glassman D4, Nicolle R7, Moffitt R6, Yu KH4, Leppanen S8, Laderman S8, Curry B8, Gui J1, Balachandran VP4, Iacobuzio-Donahue C4, Chandwani R5, Leslie CS3* and Leach SD1* Author affiliations: 1, Dartmouth Geisel School of Medicine and Norris Cotton Cancer Center, Hanover, NH, USA 2, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA. 3, Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA. 4, David M. Rubenstein Center for Pancreatic Cancer Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA 5, Weill Cornell Medicine, New York, NY, USA 6, Stony Brook University, Stony Brook, NY, USA 7, Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre Le Cancer, Paris, France 8, Agilent Technologies Inc. Santa Clara, CA, USA (* Co-corresponding author e-mails: [email protected]; [email protected]) (First two authors contributed equally to this work) 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.21.427604; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Tumor Growth and Cancer Treatment
    Molecular Cochaperones: Tumor Growth and Cancer Treatment The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Calderwood, Stuart K. 2013. “Molecular Cochaperones: Tumor Growth and Cancer Treatment.” Scientifica 2013 (1): 217513. doi:10.1155/2013/217513. http://dx.doi.org/10.1155/2013/217513. Published Version doi:10.1155/2013/217513 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11879066 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Hindawi Publishing Corporation Scientifica Volume 2013, Article ID 217513, 13 pages http://dx.doi.org/10.1155/2013/217513 Review Article Molecular Cochaperones: Tumor Growth and Cancer Treatment Stuart K. Calderwood Division of Molecular and Cellular Biology, Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA Correspondence should be addressed to Stuart K. Calderwood; [email protected] Received 11 February 2013; Accepted 1 April 2013 Academic Editors: M. H. Manjili and Y. Oji Copyright © 2013 Stuart K. Calderwood. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Molecular chaperones play important roles in all cellular organisms by maintaining the proteome in an optimally folded state. They appear to be at a premium in cancer cells whose evolution along the malignant pathways requires the fostering of cohorts of mutant proteins that are employed to overcome tumor suppressive regulation.
    [Show full text]
  • Functional Role of Pentose Phosphate Pathway and Glutamine in Cancer Cell
    Functional Role of Pentose Phosphate Pathway and Glutamine in Cancer Cell Ibrahim Halil Polat ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • Figure S17 Figure S16
    immune responseregulatingcellsurfacereceptorsignalingpathway ventricular cardiacmuscletissuedevelopment t cellactivationinvolvedinimmuneresponse intrinsic apoptoticsignalingpathway single organismalcelladhesion cholesterol biosyntheticprocess myeloid leukocytedifferentiation determination ofadultlifespan response tointerferongamma muscle organmorphogenesis endothelial celldifferentiation brown fatcelldifferentiation mitochondrion organization myoblast differentiation response toprotozoan amino acidtransport leukocyte migration cytokine production t celldifferentiation protein secretion response tovirus angiogenesis Scrt1 Tcf25 Dpf1 Sap30 Ing2 Zfp654 Sp9 Zfp263 Mxi1 Hes6 Zfp395 Rlf Ppp1r13l Snapc1 C030039L03Rik Hif1a Arrb1 Glis3 Rcor2 Hif3a Fbxo21 Dnajc21 Rest Sirt6 Foxj1 Kdm5b Ankzf1 Sos2 Plscr1 Jdp2 Rbbp8 Etv4 Msh5 Mafg Tsc22d3 Nupr1 Ddit3 Cebpg Zfp790 Atf5 Cebpb Atf3 Trim21 Irf9 Irf2 Tbx21 Stat2 Stat1 Zbp1 Irf1 aGOslimPos Ikzf3 Oasl1 Irf7 Trim30a Dhx58 Txk Rorc Rora Nr1d2 Setdb2 Vdr Vax2 Nr1d1 Foxs1 Eno1 Thap3 Nfkbil1 Edf1 Srebf1 Lbr Tead1 Zfp608 Pcx Ift57 Ssbp4 Stat3 Mxd1 Pml Ssh2 Chd7 Maf Cic Bcl3 Prkdc Mbd5 Ppfibp2 Foxp2 Tal2 Mlf1 Bcl6b Zfp827 Ikzf2 Phtf2 Bmyc Plagl2 Nfkb2 Nfkb1 Tox Nrip1 Utf1 Klf3 Plagl1 Nfkbib Spib Nfkbie Akna Rbpj Ncoa3 Id1 Tnp2 Gata3 Gata1 Pparg Id2 Epas1 Zfp280b Commons Pathway Erg GO MSigDB KEGG Hhex WikiPathways SetGene Databases Batf Aff3 Zfp266 gene modules other (hypergeometric TF, from Figure Trim24 Zbtb5 Foxo3 Aebp2 XPodNet -protein-proteininteractionsinthepodocyteexpandedbySTRING Ppp1r10 Dffb Trp53 Enrichment
    [Show full text]
  • Identification of Bleomycin and Radiation-Induced Pulmonary Fibrosis Susceptibility Genes in Mice Anne-Marie Lemay Department Of
    Identification of bleomycin and radiation-induced pulmonary fibrosis susceptibility genes in mice Anne-Marie Lemay Department of Human Genetics McGill University, Montréal February 4th, 2010 A thesis submitted to McGill University in partial fulfilment of the requirements of the degree of Doctor of Philosophy © Anne-Marie Lemay 2010 Comme il est profond, ce mystère de l’Invisible ! Nous ne pouvons le sonder avec nos sens misérables, avec nos yeux qui ne savent apercevoir ni le trop petit, ni le trop grand, ni le trop près, ni le trop loin, ni les habitants d’une étoile, ni les habitants d’une goutte d’eau… Guy de Maupassant Le Horla ii Table of contents Table of contents ................................................................................................... iii Abstract...................................................................................................................vi Résumé ................................................................................................................ viii Acknowledgments................................................................................................... x Abbreviations........................................................................................................ xii Original contributions to knowledge...................................................................xiv Author contribution to research...........................................................................xv List of figures ........................................................................................................
    [Show full text]
  • Development of Potent and Selective Inhibitors of Aldo−Keto Reductase
    Article pubs.acs.org/jmc Development of Potent and Selective Inhibitors of Aldo−Keto Reductase 1C3 (Type 5 17β-Hydroxysteroid Dehydrogenase) Based on N-Phenyl-Aminobenzoates and Their Structure−Activity Relationships † § ‡ § † † † ‡ Adegoke O. Adeniji, , Barry M. Twenter, , Michael C. Byrns, Yi Jin, Mo Chen, Jeffrey D. Winkler,*, † and Trevor M. Penning*, † Department of Pharmacology and Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, 130C John Morgan Building, 3620 Hamilton Walk, Philadelphia, Pennsylvania 19104-6084, United States ‡ Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States *S Supporting Information ABSTRACT: Aldo−keto reductase 1C3 (AKR1C3; type 5 17β-hydroxy- steroid dehydrogenase) is overexpressed in castration resistant prostate cancer (CRPC) and is implicated in the intratumoral biosynthesis of testosterone and 5α-dihydrotestosterone. Selective AKR1C3 inhibitors are required because compounds should not inhibit the highly related AKR1C1 and AKR1C2 isoforms which are involved in the inactivation of 5α-dihydrotestosterone. NSAIDs, N-phenylanthranilates in particular, are potent but nonselective AKR1C3 inhibitors. Using flufenamic acid, 2-{[3-(trifluoromethyl)phenyl]amino}- benzoic acid, as lead compound, five classes of structural analogues were synthesized and evaluated for AKR1C3 inhibitory potency and selectivity. Structure−activity relationship (SAR) studies revealed that a meta-carboxylic acid group relative to the amine conferred pronounced AKR1C3 selectivity without loss of potency, while electron withdrawing groups on the phenylamino B-ring were optimal for AKR1C3 inhibition. Lead compounds did not inhibit COX-1 or COX-2 but blocked the AKR1C3 mediated production of testosterone in LNCaP-AKR1C3 cells. These compounds offer promising leads toward new therapeutics for CRPC.
    [Show full text]