Newsletter Number 76
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Contributions in BIOLOGY and GEOLOGY
MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY Number 51 November 29, 1982 A Compendium of Fossil Marine Families J. John Sepkoski, Jr. MILWAUKEE PUBLIC MUSEUM Contributions in BIOLOGY and GEOLOGY Number 51 November 29, 1982 A COMPENDIUM OF FOSSIL MARINE FAMILIES J. JOHN SEPKOSKI, JR. Department of the Geophysical Sciences University of Chicago REVIEWERS FOR THIS PUBLICATION: Robert Gernant, University of Wisconsin-Milwaukee David M. Raup, Field Museum of Natural History Frederick R. Schram, San Diego Natural History Museum Peter M. Sheehan, Milwaukee Public Museum ISBN 0-893260-081-9 Milwaukee Public Museum Press Published by the Order of the Board of Trustees CONTENTS Abstract ---- ---------- -- - ----------------------- 2 Introduction -- --- -- ------ - - - ------- - ----------- - - - 2 Compendium ----------------------------- -- ------ 6 Protozoa ----- - ------- - - - -- -- - -------- - ------ - 6 Porifera------------- --- ---------------------- 9 Archaeocyatha -- - ------ - ------ - - -- ---------- - - - - 14 Coelenterata -- - -- --- -- - - -- - - - - -- - -- - -- - - -- -- - -- 17 Platyhelminthes - - -- - - - -- - - -- - -- - -- - -- -- --- - - - - - - 24 Rhynchocoela - ---- - - - - ---- --- ---- - - ----------- - 24 Priapulida ------ ---- - - - - -- - - -- - ------ - -- ------ 24 Nematoda - -- - --- --- -- - -- --- - -- --- ---- -- - - -- -- 24 Mollusca ------------- --- --------------- ------ 24 Sipunculida ---------- --- ------------ ---- -- --- - 46 Echiurida ------ - --- - - - - - --- --- - -- --- - -- - - --- -
How to Cite Complete Issue More Information About This Article
Boletín de la Sociedad Geológica Mexicana ISSN: 1405-3322 Sociedad Geológica Mexicana, A.C. Hernández Cisneros, Atzcalli Ehécatl; González Barba, Gerardo; Fordyce, Robert Ewan Oligocene cetaceans from Baja California Sur, Mexico Boletín de la Sociedad Geológica Mexicana, vol. 69, no. 1, January-April, 2017, pp. 149-173 Sociedad Geológica Mexicana, A.C. Available in: http://www.redalyc.org/articulo.oa?id=94350664007 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Project academic non-profit, developed under the open access initiative Boletín de la Sociedad Geológica Mexicana / 2017 / 149 Oligocene cetaceans from Baja California Sur, Mexico Atzcalli Ehécatl Hernández Cisneros, Gerardo González Barba, Robert Ewan Fordyce ABSTRACT Atzcalli Ehecatl Hernández Cisneros ABSTRACT RESUMEN [email protected] Museo de Historia Natural de la Universidad Autónoma de Baja California Sur, Univer- Baja California Sur has an import- Baja California Sur tiene un importante re- sidad Autónoma de Baja California Sur, ant Cenozoic marine fossil record gistro de fósiles marinos del Cenozoico que Carretera al Sur Km 5.5, Apartado Postal which includes diverse but poorly incluye los restos poco conocidos de cetáceos 19-B, C.P. 23080, La Paz, Baja California Sur, México. known Oligocene cetaceans from del Oligoceno de México. En este estudio Instituto Politécnico Nacional, Centro Inter- Mexico. Here we review the cetacean ofrecemos más detalles sobre estos fósiles de disciplinario de Ciencias Marinas (CICMAR), fossil record including new observa- cetáceos, incluyendo nuevas observaciones Av. Instituto Politécnico Nacional s/n, Col. -
First North American Occurrence of the Rudist Durania Sp
TRANSACTIONS OF THE KANSAS Vol. 115, no. 3-4 ACADEMY OF SCIENCE p. 117-124 (2012) Bombers and Bivalves: First North American occurrence of the rudist Durania sp. (Bivalvia: Radiolitidae) in the Upper Cretaceous (Cenomanian) Greenhorn Limestone of southeastern Colorado Bruce A. Schumacher USDA Forest Service, 1420 E. 3rd St., La Junta, CO 81050 [email protected] A colonial monospecific cluster of rudist bivalves from the lowermost Bridge Creek Limestone Member, Greenhorn Limestone (Upper Cenomanian) are attributable to Durania cf. D. cornupastoris. This discovery marks only the eighth recorded pre- Coniacian occurrence of rudist bivalves in the Cretaceous Western Interior and the only Cenomanian record of rudist Durania in North America. Discovered in 2011, the specimen was unearthed by aerial bombing at a training facility utilized during World War II. The appearance of rudist bivalves at mid-latitudes coincident with marked change in marine sediments likely represents the onset of mid-Cretaceous global warming. Keywords: Cenomanian, climate, Durania, Greenhorn, rudist Introduction The Greenhorn Limestone in southeastern Colorado (Fig. 3) is divided into the three Some seventy years ago southeastern Colorado subunits (Cobban and Scott 1972; Hattin 1975; was utilized during World War II (1943 – 1945) Kauffman 1986). Roughly the lower two-thirds as a training area for precision bombing practice of the unit is comprised of the basal Lincoln and air-to-ground gunnery. The La Junta Limestone Member (5 m) and the Hartland Municipal Airport was created in April 1940 as Shale Member (19 m). The dominant lithology La Junta Army Air Field (Thole 1999) and was of the lower members is calcareous shale with used by the United States Army Air Forces for minor amounts of thin calcarenite beds. -
An Inventory of Belemnites Documented in Six Us National Parks in Alaska
Lucas, S. G., Hunt, A. P. & Lichtig, A. J., 2021, Fossil Record 7. New Mexico Museum of Natural History and Science Bulletin 82. 357 AN INVENTORY OF BELEMNITES DOCUMENTED IN SIX US NATIONAL PARKS IN ALASKA CYNTHIA D. SCHRAER1, DAVID J. SCHRAER2, JUSTIN S. TWEET3, ROBERT B. BLODGETT4, and VINCENT L. SANTUCCI5 15001 Country Club Lane, Anchorage AK 99516; -email: [email protected]; 25001 Country Club Lane, Anchorage AK 99516; -email: [email protected]; 3National Park Service, Geologic Resources Division, 1201 Eye Street, Washington, D.C. 20005; -email: justin_tweet@ nps.gov; 42821 Kingfisher Drive, Anchorage, AK 99502; -email: [email protected];5 National Park Service, Geologic Resources Division, 1849 “C” Street, Washington, D.C. 20240; -email: [email protected] Abstract—Belemnites (order Belemnitida) are an extinct group of coleoid cephalopods, known from the Jurassic and Cretaceous periods. We compiled detailed information on 252 occurrences of belemnites in six National Park Service (NPS) areas in Alaska. This information was based on published literature and maps, unpublished U.S. Geological Survey internal fossil reports (“Examination and Report on Referred Fossils” or E&Rs), the U.S. Geological Survey Mesozoic locality register, the Alaska Paleontological Database, the NPS Paleontology Archives and our own records of belemnites found in museum collections. Few specimens have been identified and many consist of fragments. However, even these suboptimal specimens provide evidence that belemnites are present in given formations and provide direction for future research. Two especially interesting avenues for research concern the time range of belemnites in Alaska. Belemnites are known to have originated in what is now Europe in the Early Jurassic Hettangian and to have a well-documented world-wide distribution in the Early Jurassic Toarcian. -
TREATISE ONLINE Number 48
TREATISE ONLINE Number 48 Part N, Revised, Volume 1, Chapter 31: Illustrated Glossary of the Bivalvia Joseph G. Carter, Peter J. Harries, Nikolaus Malchus, André F. Sartori, Laurie C. Anderson, Rüdiger Bieler, Arthur E. Bogan, Eugene V. Coan, John C. W. Cope, Simon M. Cragg, José R. García-March, Jørgen Hylleberg, Patricia Kelley, Karl Kleemann, Jiří Kříž, Christopher McRoberts, Paula M. Mikkelsen, John Pojeta, Jr., Peter W. Skelton, Ilya Tëmkin, Thomas Yancey, and Alexandra Zieritz 2012 Lawrence, Kansas, USA ISSN 2153-4012 (online) paleo.ku.edu/treatiseonline PART N, REVISED, VOLUME 1, CHAPTER 31: ILLUSTRATED GLOSSARY OF THE BIVALVIA JOSEPH G. CARTER,1 PETER J. HARRIES,2 NIKOLAUS MALCHUS,3 ANDRÉ F. SARTORI,4 LAURIE C. ANDERSON,5 RÜDIGER BIELER,6 ARTHUR E. BOGAN,7 EUGENE V. COAN,8 JOHN C. W. COPE,9 SIMON M. CRAgg,10 JOSÉ R. GARCÍA-MARCH,11 JØRGEN HYLLEBERG,12 PATRICIA KELLEY,13 KARL KLEEMAnn,14 JIřÍ KřÍž,15 CHRISTOPHER MCROBERTS,16 PAULA M. MIKKELSEN,17 JOHN POJETA, JR.,18 PETER W. SKELTON,19 ILYA TËMKIN,20 THOMAS YAncEY,21 and ALEXANDRA ZIERITZ22 [1University of North Carolina, Chapel Hill, USA, [email protected]; 2University of South Florida, Tampa, USA, [email protected], [email protected]; 3Institut Català de Paleontologia (ICP), Catalunya, Spain, [email protected], [email protected]; 4Field Museum of Natural History, Chicago, USA, [email protected]; 5South Dakota School of Mines and Technology, Rapid City, [email protected]; 6Field Museum of Natural History, Chicago, USA, [email protected]; 7North -
Copyrighted Material
06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago). -
Unravelling the Evolutionary Biology of the Bivalvia: a Multidisciplinary Approach
Downloaded from http://sp.lyellcollection.org/ by guest on September 26, 2021 Unravelling the evolutionary biology of the Bivalvia: a multidisciplinary approach E. M. HARPER l, J. D. TAYLOR 2 & J.A. CRAME 3 1 Department of Earth Sciences, Downing Street, Cambridge CB2 3EQ, UK (e-mail: emh21 @cus.cam.ac.uk) 2 Department of Zoology, The Natural History Museum, London SW7 5BD, UK British Antarctic Survey, Madingley Road, Cambridge CB3 0ET, UK Bivalves have been important members of marine taxonomic diversification of the bivalves (Pojeta communities since the early Palaeozoic, in terms of 1978) and the rostroconchs (Runnegar 1978) are both their numerical abundance and diversity. They still widely cited. However, in 1977 the Treatise are particularly prevalent in shallow shelf volumes (Cox et al. 1969; Stenzel 1971) were still sediments, but they have also conquered the very much in vogue as a reliable data source, intertidal zone as well as the deep sea, where they although even then there was a feeling that it was in are successful predators and key components of need of a comprehensive revision (Yonge 1978). some vent communities. They have also invaded This sentiment has been echoed ever since, most freshwater systems a number of times, where today strongly by Johnston & Haggart (1998) in their they are important (and costly) foulers. In terms of introduction to Bivalves: An Eon of Evolution. general community structure, bivalves are Paleobiological Studies Honoring Norman D. important as prey items for a range of different Newell. The Royal Society volume was also written predatory groups, and as major space occupiers, at a time when cladistic studies were virtually particularly on hard substrata where space may be unknown and there was not the wealth of molecular limited. -
Micro-Computed Tomography Imaging Reveals the Development of A
www.nature.com/scientificreports OPEN Micro-computed tomography imaging reveals the development of a unique tooth mineralization pattern Received: 20 February 2019 Accepted: 18 June 2019 in mackerel sharks (Chondrichthyes; Published: xx xx xxxx Lamniformes) in deep time Patrick L. Jambura 1, René Kindlimann2, Faviel López-Romero1, Giuseppe Marramà 1, Cathrin Pfaf 1, Sebastian Stumpf 1, Julia Türtscher1, Charlie J. Underwood 3, David J. Ward 4 & Jürgen Kriwet 1 The cartilaginous fshes (Chondrichthyes) have a rich fossil record which consists mostly of isolated teeth and, therefore, phylogenetic relationships of extinct taxa are mainly resolved based on dental characters. One character, the tooth histology, has been examined since the 19th century, but its implications on the phylogeny of Chondrichthyes is still in debate. We used high resolution micro-CT images and tooth sections of 11 recent and seven extinct lamniform sharks to examine the tooth mineralization processes in this group. Our data showed similarities between lamniform sharks and other taxa (a dentinal core of osteodentine instead of a hollow pulp cavity), but also one feature that has not been known from any other elasmobranch fsh: the absence of orthodentine. Our results suggest that this character resembles a synapomorphic condition for lamniform sharks, with the basking shark, Cetorhinus maximus, representing the only exception and reverted to the plesiomorphic tooth histotype. Additionally, †Palaeocarcharias stromeri, whose afliation still is debated, shares the same tooth histology only known from lamniform sharks. This suggests that †Palaeocarcharias stromeri is member of the order Lamniformes, contradicting recent interpretations and thus, dating the origin of this group back at least into the Middle Jurassic. -
The Biology of Marine Mammals
Romero, A. 2009. The Biology of Marine Mammals. The Biology of Marine Mammals Aldemaro Romero, Ph.D. Arkansas State University Jonesboro, AR 2009 2 INTRODUCTION Dear students, 3 Chapter 1 Introduction to Marine Mammals 1.1. Overture Humans have always been fascinated with marine mammals. These creatures have been the basis of mythical tales since Antiquity. For centuries naturalists classified them as fish. Today they are symbols of the environmental movement as well as the source of heated controversies: whether we are dealing with the clubbing pub seals in the Arctic or whaling by industrialized nations, marine mammals continue to be a hot issue in science, politics, economics, and ethics. But if we want to better understand these issues, we need to learn more about marine mammal biology. The problem is that, despite increased research efforts, only in the last two decades we have made significant progress in learning about these creatures. And yet, that knowledge is largely limited to a handful of species because they are either relatively easy to observe in nature or because they can be studied in captivity. Still, because of television documentaries, ‘coffee-table’ books, displays in many aquaria around the world, and a growing whale and dolphin watching industry, people believe that they have a certain familiarity with many species of marine mammals (for more on the relationship between humans and marine mammals such as whales, see Ellis 1991, Forestell 2002). As late as 2002, a new species of beaked whale was being reported (Delbout et al. 2002), in 2003 a new species of baleen whale was described (Wada et al. -
Belemnite Extinction and the Origin of Modern Cephalopods 35 M.Y. Prior to the Cretaceous−Paleogene Event
Belemnite extinction and the origin of modern cephalopods 35 m.y. prior to the Cretaceous−Paleogene event Yasuhiro Iba1,2*, Jörg Mutterlose1, Kazushige Tanabe3, Shin-ichi Sano4, Akihiro Misaki5, and Kazunobu Terabe6 1Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, 44801, Germany 2Department of Geology and Paleontology, National Museum of Nature and Science, Tokyo 169-0073, Japan 3Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033, Japan 4Fukui Prefectural Dinosaur Museum, Fukui 911-8601, Japan 5Kitakyushu Museum of Natural History and Human History, Fukuoka 805-0071, Japan 6Arabian Oil Company, Ltd., Tokyo 140-0002, Japan ABSTRACT determination of the strata studied is based on Belemnites, a very successful group of Mesozoic cephalopods, fl ourished in Cretaceous diagnostic ammonite species. Evaluations of oceans until the Cretaceous−Paleogene event, when they became globally extinct. Following museum collections (Mikasa City Museum, and this event the modern types of cephalopods (squids, cuttlefi sh, octopus) radiated in the Ceno- Kyushu University, Japan; California Academy zoic in all oceans. In the North Pacifi c, however, a turnover from belemnites to the modern of Science, USA) have also been done. Details types of cephalopods about 35 m.y. before the Cretaceous−Paleogene event documents a more of the localities, horizons, and the precise strati- complex evolutionary history of cephalopods than previously thought. Here we show that the graphic ages of Albian belemnites are shown in modern types of cephalopods originated and prospered throughout the Late Cretaceous in Table DR1 in the Data Repository.1 the North Pacifi c. The mid-Cretaceous cephalopod turnover was caused by cooling and the closure of the Bering Strait, which led to a subsequent faunal isolation of this area. -
Deep Sea Drilling Project Initial Reports Volume 27
46. LEG 27 CEPHALOPODA Graeme R. Stevens, New Zealand Geological Survey, Department of Scientific and Industrial Research, Lower Hutt, New Zealand COLEOIDEA frequently develop lines of weakness and hence often BELEMNITIDA break at about the position of the protoconch (Stevens, Family Belemnopsidae 1965b), it is possible that very little of the anterior part cf. Parahibolites, sp. indet. of the stem region has been lost. There is a strong (Plate 1, Figures 1-3) possibility, therefore, that if specimen WM 11629 was a Dimitobelus, the cross-sections would show some sign of Material: One guard (Plate 1, Figure 1). Sample 263- the presence of ventrolateral grooves, or at least the 26-2, 108-110 cm. Cuvier Abyssal Plain, 23°20'S, strongly developed lateral lines that are their con- 1 JO°58'E. Water depth 5065 meters. Sample from 698.5 tinuations posteriorly (Stevens, 1965b, figs. 26 and 29). to 708 meters below the sea floor. Specimen deposited in The cross-sections of specimen WM 11629—circular the World Mollusca Collection, New Zealand in both apical and stem regions—and centrally placed Geological Survey, Lower Hutt, New Zealand. apical line, together tend to deny identification with Specimen WM 11629. Dimitobelidae, as both Peratobelus and Dimitobelus Dimensions: Length of guard: 36 mm; diameter of usually show depressed stem and apical cross-sections guard at anterior end: 7 mm. and eccentric apical line (although the Maestrichtian D. Description: Guard moderately elongate. Length hectori Stevens has circular stem cross-sections and about six times maximum diameter. Outline central apical line). It is concluded, therefore, that the symmetrical and nonhastate. -
Fossils Provide Better Estimates of Ancestral Body Size Than Do Extant
Acta Zoologica (Stockholm) 90 (Suppl. 1): 357–384 (January 2009) doi: 10.1111/j.1463-6395.2008.00364.x FossilsBlackwell Publishing Ltd provide better estimates of ancestral body size than do extant taxa in fishes James S. Albert,1 Derek M. Johnson1 and Jason H. Knouft2 Abstract 1Department of Biology, University of Albert, J.S., Johnson, D.M. and Knouft, J.H. 2009. Fossils provide better Louisiana at Lafayette, Lafayette, LA estimates of ancestral body size than do extant taxa in fishes. — Acta Zoologica 2 70504-2451, USA; Department of (Stockholm) 90 (Suppl. 1): 357–384 Biology, Saint Louis University, St. Louis, MO, USA The use of fossils in studies of character evolution is an active area of research. Characters from fossils have been viewed as less informative or more subjective Keywords: than comparable information from extant taxa. However, fossils are often the continuous trait evolution, character state only known representatives of many higher taxa, including some of the earliest optimization, morphological diversification, forms, and have been important in determining character polarity and filling vertebrate taphonomy morphological gaps. Here we evaluate the influence of fossils on the interpretation of character evolution by comparing estimates of ancestral body Accepted for publication: 22 July 2008 size in fishes (non-tetrapod craniates) from two large and previously unpublished datasets; a palaeontological dataset representing all principal clades from throughout the Phanerozoic, and a macroecological dataset for all 515 families of living (Recent) fishes. Ancestral size was estimated from phylogenetically based (i.e. parsimony) optimization methods. Ancestral size estimates obtained from analysis of extant fish families are five to eight times larger than estimates using fossil members of the same higher taxa.