Micro-Computed Tomography Imaging Reveals the Development of A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Papers in Press
Papers in Press “Papers in Press” includes peer-reviewed, accepted manuscripts of research articles, reviews, and short notes to be published in Paleontological Research. They have not yet been copy edited and/or formatted in the publication style of Paleontological Research. As soon as they are printed, they will be removed from this website. Please note they can be cited using the year of online publication and the DOI, as follows: Humblet, M. and Iryu, Y. 2014: Pleistocene coral assemblages on Irabu-jima, South Ryukyu Islands, Japan. Paleontological Research, doi: 10.2517/2014PR020. doi:10.2517/2018PR013 Features and paleoecological significance of the shark fauna from the Upper Cretaceous Hinoshima Formation, Himenoura Group, Southwest Japan Accepted Naoshi Kitamura 4-8-7 Motoyama, Chuo-ku Kumamoto, Kumamoto 860-0821, Japan (e-mail: [email protected]) Abstract. The shark fauna of the Upper Cretaceous Hinoshima Formation (Santonian: 86.3–83.6 Ma) of the manuscriptHimenoura Group (Kamiamakusa, Kumamoto Prefecture, Kyushu, Japan) was investigated based on fossil shark teeth found at five localities: Himedo Park, Kugushima, Wadanohana, Higashiura, and Kotorigoe. A detailed geological survey and taxonomic analysis was undertaken, and the habitat, depositional environment, and associated mollusks of each locality were considered in the context of previous studies. Twenty-one species, 15 genera, 11 families, and 6 orders of fossil sharks are recognized from the localities. This assemblage is more diverse than has previously been reported for Japan, and Lamniformes and Hexanchiformes were abundant. Three categories of shark fauna are recognized: a coastal region (Himedo Park; probably a breeding site), the coast to the open sea (Kugushima and Wadanohana), and bottom-dwelling or near-seafloor fauna (Kugushima, Wadanohana, Higashiura, and Kotorigoe). -
An Introduction to the Classification of Elasmobranchs
An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved. -
Ground Sharks
click for previous page - v - TABLE OF CONTENTS Code Page 9. ORDER CARCHARHINIFORMES - GROUND SHARKS ....................................................................................... 251 9.1 FAMILY SCYLIORHINIDAE - Catsharks .................................................. SCYL ........................................... 253 Apristurus....................................................................................................... SCYL Aprist ................................ 257 A. atlanticus ..................................................................................... SCYL Aprist 1 ............................... 261 A. brunneus ...................................................................................... SCYL Aprist 2 ............................... 262 A. canutus ............................................................................................ SCYL Aprist 3 ............................... 263 A. herklotsi ........................................................................................ SCYL Aprist 4 ............................... 264 A. indicus ............................................................................................. SCYL Aprist 5 ............................... 265 A. investigatoris ................................................................................... SCYL Aprist 6 ............................... 267 A. japonicus ....................................................................................... SCYL Aprist 7 ............................... 268 -
First Records of the False Catshark, Pseudotriakis Microdon Capello, 1868, from the Waters of Eastern Australia and Indonesia
VOLUME 51 PART 2 MEMOIRS OF THE QUEENSLAND MUSEUM BRISBANE 31 DECEMBER 2005 © Queensland Museum PO Box 3300, South Brisbane 4101, Australia Phone 06 7 3840 7555 Fax 06 7 3846 1226 Email [email protected] Website www.qmuseum.qld.gov.au National Library of Australia card number ISSN 0079-8835 NOTE Papers published in this volume and in all previous volumes of the Memoirs of the Queensland Museum may be reproduced for scientific research, individual study or other educational purposes. Properly acknowledged quotations may be made but queries regarding the republication of any papers should be addressed to the Director. Copies of the journal can be purchased from the Queensland Museum Shop. A Guide to Authors is displayed at the Queensland Museum web site www.qmuseum.qld.gov.au/resources/resourcewelcome.html A Queensland Government Project Typeset at the Queensland Museum FIRST RECORDS OF THE FALSE CATSHARK, PSEUDOTRIAKIS MICRODON CAPELLO, 1868, FROM THE WATERS OF EASTERN AUSTRALIA AND INDONESIA PETER M. KYNE, JEFFREY W. JOHNSON, WILLIAM T. WHITE AND MICHAEL B. BENNETT Kyne, P.M., Johnson, J.W., White, W.T. & Bennett, M.B. 2005 12 31: First records of the false catshark, Pseudotriakis microdon Capello, 1868, from the waters of eastern Australia and Indonesia. Memoirs of the Queensland Museum 51(2): 525-530. Brisbane. ISSN 0079-8835. A new specimen of a rare deepwater chondrichthyan, the false catshark Pseudotriakis microdon Capello, 1868 is documented from the Coral Sea. This represents the first record of the species from off the east coast of Australia and only the second from Australian waters. -
(Chondrichthyes, Elasmobranchii) from the Upper Cretaceous of South America
A ptychodontid (Chondrichthyes, Elasmobranchii) from the Upper Cretaceous of South America Paulo M. BRITO Departamento de Biologia Animal e Vegetal, Universidade do Estado do Rio de Janeiro, rua São Francisco Xavier, 524, Rio de Janeiro (Brazil) [email protected] Philippe JANVIER UMR 8569 du CNRS, Département Histoire de la Terre, Muséum national d’Histoire naturelle, 8 rue Buffon, F-75231 Paris cedex 05 (France) [email protected] Brito P. M. & Janvier P. 2002. — A ptychodontid (Chondrichthyes, Elasmobranchii) from the Upper Cretaceous of South America. Geodiversitas 24 (4) : 785-790. ABSTRACT An articulated assemblage of chondrichthyan teeth remain, previously described by Larrazet (1886) as selachian dermal scutes from the Carboniferous of New Granada, is re-described as a Ptychodus sp. and turns out to be Cretaceous in age, presumably from the La Luna Formation of Colombia or Venezuela. This Ptychodus species seems to differ from all the other known ptychodon- KEY WORDS tids by its homodontous dentition, tooth morphology and ornamentation, Chondrichthyes, however we prefer not to erect a new taxon here until tooth morphology Ptychodontidae, Upper Cretaceous, morphoclines become better known and help in the understanding of the South America. phylogenetic relationships among chondrichthyans. RÉSUMÉ Un ptychodontidé (Chondrichthyes, Elasmobranchii) du Crétacé supérieur d’Amérique du Sud. Une plaque dentaire de Chondrichthyes, précédemment décrite par Larrazet (1886) comme des plaques dermiques d’un Sélacien du Carbonifère de la Nouvelle -
Upper Cretaceous Chondrichthyes Teeth Record in Phosphorites of the Loma Gorda Formation•
BOLETIN DE CIENCIAS DE LA TIERRA http://www.revistas.unal.edu.co/index.php/rbct Upper Cretaceous chondrichthyes teeth record in phosphorites of the • Loma Gorda formation Alejandro Niño-Garcia, Juan Diego Parra-Mosquera & Peter Anthony Macias-Villarraga Departamento de Geociencias, Facultad de Ciencias Naturales y Exactas, Universidad de Caldas, Manizales, Colombia. [email protected], [email protected], [email protected] Received: April 26th, 2019. Received in revised form: May 17th, 2019. Accepted: June 04th, 2019. Abstract In layers of phosphorites and gray calcareous mudstones of the Loma Gorda Formation, in the vicinity of the municipal seat of Yaguará in Huila department, Colombia, were found fossils teeth of chondrichthyes, these were extracted from the rocks by mechanical means, to be compared with the species in the bibliography in order to indentify them. The species were: Ptychodus mortoni (order Hybodontiformes), were found, Squalicorax falcatus and Cretodus crassidens (order Lamniformes). This finding constitutes the first record of these species in the Colombian territory; which allows to extend its paleogeographic distribution to the northern region of South America, which until now was limited to Africa, Europe, Asia and North America, except for the Ptychodus mortoni that has been described before in Venezuela. Keywords: first record; sharks; upper Cretaceous; fossil teeth; Colombia. Registro de dientes de condrictios del Cretácico Superior en fosforitas de la formación Loma Gorda Resumen En capas de fosforitas y lodolitas calcáreas grises de la Formación Loma Gorda, en cercanías de la cabecera municipal de Yaguará en el departamento del Huila, Colombia, se encontraron dientes fósiles de condrictios; estos fueron extraídos de la roca por medios mecánicos, para ser comparados con las especies encontradas en la bibliografía e identificarlos. -
Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997
The IUCN Species Survival Commission Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 Edited by Sarah L. Fowler, Tim M. Reed and Frances A. Dipper Occasional Paper of the IUCN Species Survival Commission No. 25 IUCN The World Conservation Union Donors to the SSC Conservation Communications Programme and Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 The IUCN/Species Survival Commission is committed to communicate important species conservation information to natural resource managers, decision-makers and others whose actions affect the conservation of biodiversity. The SSC's Action Plans, Occasional Papers, newsletter Species and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation. To date, more than 80 grants have been made from the Fund to SSC Specialist Groups. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC's Wildlife Trade Programme and Conservation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conservation of natural landscapes, coordination of law enforcement efforts as well as promotion of conservation education, research and international cooperation. -
Dr. Kenshu Shimada: Peer-Reviewed Published Articles [Last Updated 04/26/2019]
Dr. Kenshu Shimada: Peer-Reviewed Published Articles [last updated 04/26/2019] [* = undergraduate student; ** = graduate student] 2019 [105] Shimada, K. In press. A new species and biology of the Late Cretaceous 'blunt-snouted' bony fish, Thryptodus (Actinopterygii: Tselfatiiformes), from the United States. Cretaceous Research. [104] Cronin, T. J.*, and K. Shimada . In press. New anatomical information on the Late Cretaceous bony fish, Micropycnodon kansasensis (Actinopterygii: Pycnodontiformes), from the Niobrara Chalk of western Kansas, U.S.A. Transactions of Kansas Academy of Science. [103] Pimiento, C., J. L. Cantalapiedra, K. Shimada , D. J. Field, and J. B. Smaers. 2019. Evolutionary pathways towards shark gigantism. Evolution, 73(3):588–599. 2018 [102] Johnson-Ransom, E. D.*, E. V. Popov, T. A. Deméré, and K. Shimada. 2018. The Late Cretaceous chimaeroid fish, Ischyodus bifurcatus Case (Chondrichthyes: Holocephali), from California, USA, and its paleobiogeographical significance. Paleontological Research, 2(4):364-372. [101] Guinot, G., S. Adnet, K. Shimada , C. J. Underwood, M. Siversson, D. J. Ward, J. Kriwet, and H. Cappetta. 2018. On the need of providing tooth morphology in descriptions of extant elasmobranch species. Zootaxa, 4461(1):118–126. [100] Jacobs, P. K.*, and K. Shimada . 2018. Ontogenetic growth pattern of the extant smalltooth sandtiger shark, Odontaspis ferox (Lamniformes: Odontaspididae)— application from and to paleontology. Journal of Fossil Research, 51(1):23–29. [99] Guzzo, F.*, and K. Shimada . 2018. A new fossil vertebrate locality of the Jetmore Chalk Member of the Upper Cretaceous Greenhorn Limestone in north-central Kansas, U.S.A. Transactions of the Kansas Academy of Science, 121(1-2):59-68. -
Smithsonian Contributions to Paleobiology • Number 90
SMITHSONIAN CONTRIBUTIONS TO PALEOBIOLOGY • NUMBER 90 Geology and Paleontology of the Lee Creek Mine, North Carolina, III Clayton E. Ray and David J. Bohaska EDITORS ISSUED MAY 112001 SMITHSONIAN INSTITUTION Smithsonian Institution Press Washington, D.C. 2001 ABSTRACT Ray, Clayton E., and David J. Bohaska, editors. Geology and Paleontology of the Lee Creek Mine, North Carolina, III. Smithsonian Contributions to Paleobiology, number 90, 365 pages, 127 figures, 45 plates, 32 tables, 2001.—This volume on the geology and paleontology of the Lee Creek Mine is the third of four to be dedicated to the late Remington Kellogg. It includes a prodromus and six papers on nonmammalian vertebrate paleontology. The prodromus con tinues the historical theme of the introductions to volumes I and II, reviewing and resuscitat ing additional early reports of Atlantic Coastal Plain fossils. Harry L. Fierstine identifies five species of the billfish family Istiophoridae from some 500 bones collected in the Yorktown Formation. These include the only record of Makairapurdyi Fierstine, the first fossil record of the genus Tetrapturus, specifically T. albidus Poey, the second fossil record of Istiophorus platypterus (Shaw and Nodder) and Makaira indica (Cuvier), and the first fossil record of/. platypterus, M. indica, M. nigricans Lacepede, and T. albidus from fossil deposits bordering the Atlantic Ocean. Robert W. Purdy and five coauthors identify 104 taxa from 52 families of cartilaginous and bony fishes from the Pungo River and Yorktown formations. The 10 teleosts and 44 selachians from the Pungo River Formation indicate correlation with the Burdigalian and Langhian stages. The 37 cartilaginous and 40 bony fishes, mostly from the Sunken Meadow member of the Yorktown Formation, are compatible with assignment to the early Pliocene planktonic foraminiferal zones N18 or N19. -
Paleogene Origin of Planktivory in the Batoidea
Paleogene Origin Of Planktivory In The Batoidea CHARLIE J. UNDERWOOD, 1+ MATTHEW A. KOLMANN, 2 and DAVID J. WARD 3 1Department of Earth and Planetary Sciences, Birkbeck, University of London, UK, [email protected]; 2 Department of Ecology and Evolutionary Biology, University of Toronto, Canada, [email protected]; 3Department of Earth Sciences, Natural History Museum, London, UK, [email protected] +Corresponding author RH: UNDERWOOD ET AL.—ORIGIN OF PLANKTIVOROUS BATOIDS 1 ABSTRACT—The planktivorous mobulid rays are a sister group to, and descended from, rhinopterid and myliobatid rays which possess a dentition showing adaptations consistent with a specialized durophageous diet. Within the Paleocene and Eocene there are several taxa which display dentitions apparently transitional between these extreme trophic modality, in particular the genus Burnhamia. The holotype of Burnhamia daviesi was studied through X-ray computed tomography (CT) scanning. Digital renderings of this incomplete but articulated jaw and dentition revealed previously unrecognized characters regarding the jaw cartilages and teeth. In addition, the genus Sulcidens gen. nov. is erected for articulated dentitions from the Paleocene previously assigned to Myliobatis. Phylogenetic analyses confirm Burnhamia as a sister taxon to the mobulids, and the Mobulidae as a sister group to Rhinoptera. Shared dental characters between Burnhamia and Sulcidens likely represent independent origins of planktivory within the rhinopterid – myliobatid clade. The transition from highly-specialized durophagous feeding morphologies to the morphology of planktivores is perplexing, but was facilitated by a pelagic swimming mode in these rays and we propose through subsequent transition from either meiofauna-feeding or pelagic fish-feeding to pelagic planktivory. -
Copyrighted Material
06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago). -
Fossil Fish Fauna from the Uppermost Graneros Shale (Upper Cretaceous) in Southeastern Nebraska
DePaul Discoveries Volume 1 Issue 1 Article 7 2012 Fossil Fish Fauna from the Uppermost Graneros Shale (Upper Cretaceous) in Southeastern Nebraska Kevin R. Jansen DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/depaul-disc Part of the Life Sciences Commons, and the Physical Sciences and Mathematics Commons Recommended Citation Jansen, Kevin R. (2012) "Fossil Fish Fauna from the Uppermost Graneros Shale (Upper Cretaceous) in Southeastern Nebraska," DePaul Discoveries: Vol. 1 : Iss. 1 , Article 7. Available at: https://via.library.depaul.edu/depaul-disc/vol1/iss1/7 This Article is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It has been accepted for inclusion in DePaul Discoveries by an authorized editor of Via Sapientiae. For more information, please contact [email protected]. Fossil Fish Fauna from the Uppermost Graneros Shale (Upper Cretaceous) in Southeastern Nebraska Acknowledgements Faculty Advisor: Dr. Kenshu Shimada, Department of Environmental Science and Studies & Department of Biological Sciences This article is available in DePaul Discoveries: https://via.library.depaul.edu/depaul-disc/vol1/iss1/7 Jansen: Fossil Fish Fauna from the Uppermost Graneros Shale (Upper Cretaceous) in Southeastern Nebraska DEPAUL DISCOVERIES (2O12) Fossil Fish Fauna from the Uppermost Graneros Shale (Upper Cretaceous) in Southeastern Nebraska Kevin R. Jansen* Department of Environmental Science and Studies ABSTRACT The Graneros Shale is a rock deposited in the Late Cretaceous Western Interior Seaway of North America about 95 million years ago. Many fossil fish remains were collected from the uppermost portion of the Graneros Shale in southeastern Nebraska and were analyzed for their unique characteristics.