The Biology of Marine Mammals

Total Page:16

File Type:pdf, Size:1020Kb

The Biology of Marine Mammals Romero, A. 2009. The Biology of Marine Mammals. The Biology of Marine Mammals Aldemaro Romero, Ph.D. Arkansas State University Jonesboro, AR 2009 2 INTRODUCTION Dear students, 3 Chapter 1 Introduction to Marine Mammals 1.1. Overture Humans have always been fascinated with marine mammals. These creatures have been the basis of mythical tales since Antiquity. For centuries naturalists classified them as fish. Today they are symbols of the environmental movement as well as the source of heated controversies: whether we are dealing with the clubbing pub seals in the Arctic or whaling by industrialized nations, marine mammals continue to be a hot issue in science, politics, economics, and ethics. But if we want to better understand these issues, we need to learn more about marine mammal biology. The problem is that, despite increased research efforts, only in the last two decades we have made significant progress in learning about these creatures. And yet, that knowledge is largely limited to a handful of species because they are either relatively easy to observe in nature or because they can be studied in captivity. Still, because of television documentaries, ‘coffee-table’ books, displays in many aquaria around the world, and a growing whale and dolphin watching industry, people believe that they have a certain familiarity with many species of marine mammals (for more on the relationship between humans and marine mammals such as whales, see Ellis 1991, Forestell 2002). As late as 2002, a new species of beaked whale was being reported (Delbout et al. 2002), in 2003 a new species of baleen whale was described (Wada et al. 2003) and in 2005 a new species of dolphin was also described (Beasley et al. 2005). Some scientifically recognized species have never been seen alive by humans and are only known because very occasional remains found on beaches. Because of the paucity of obtaining specimens for certain species and variability in morphological characters, we continue to change the scientific names of some of them (e.g., van Helden 2002). With the increased use of molecular techniques and the discovery of new fossils, the systematics of these mammals is also changing almost every year. Given that there are only about 131 living species of marine mammals, such continued modification of our views of their basic classification underscores how little we still know about them. For example, we still have little understanding of the meaning of the sounds produced by these creatures despite the fact that bioacoustics was one of the first subfields to attract a lot of research. For instance, only relatively recently it was 4 discovered that among fin whales, only males sing loud songs and that they use such songs in order to attract females (Croll et al. 2002). In the evolutionary arena, key discoveries of fossils began to take place in the early 1980’s. These discoveries have helped us explain some of the key anatomical transformations leading to the adaption the aquatic environment. Also, some species and/or populations such as the Steller’s sea cow and the Caribbean monk seal as well as the North Atlantic population of gray whales have become extinct in the last few centuries. That has left us with many questions about their very basic biology. These are just a few examples of our ignorance. Yet, the little we know about these animals shows that these creatures are absolutely amazing. Even at the risk of falling into the realm of trivia, the facts presented in Box 1.1, are just some examples of pieces of knowledge that are astonishing. Box 1.1. Some Interesting Facts About Marine Mammals The Smallest: Among dolphins is the vaquita (1.2 m in length); among the pinnipeds is the Guadalupe fur seal with (1.35 m). The Longest: A 33.5 m female blue whale landed in the Southern Ocean, in 1909. The Heaviest: A 209-ton female blue whale caught in the Southern Ocean in 1947. The Loudest: The low-frequency pulses made by the blue whales and fin whales when communicating with members of their own species across the ocean have been measured at up to 188 decibels: the loudest sounds emitted by any living source (See Table 1.1.). The Longest and Most Complex Songs in the Animal Kingdom: Sung by male humpback whales; each song can last for half an hour or more and consists of several main components. The Longest Migration: Gray whales migrate between 15,000 and 20,000 km each year. The Fastest: The pantropical spotted dolphin can reach 40 km per hour in bursts. Deepest Dive: A sperm whale can dive as deep as 3,000 m or more. The Longest Dive: 2 hours and 18 minutes by five sperm whales. Their sound clicking was recorded on 11 November 1983, in the Caribbean. The Most Teeth: Spinner dolphins between 172 and 252 in total. The Fewer Teeth: Adult baleen whales lack teeth. Many species of toothed whales, such as beaked whales, have only two teeth and in some cases their females do not erupt them. The Longest Tooth: Narwhals have the longest tooth, up to 267 cm long. Largest Heart: The blue whale has a heart the size of a small car. (Based on data in Carwardine et al., 1998, and information in this book) 5 Yet, that is only the beginning. Once we start to carefully examine the panoply of adaptations that these creatures underwent in 50 million years of evolution in the aquatic environment, is when we really appreciate them for their value to science. Only after we understand their reproductive behavior and ecology, we can really become fully aware of the impact that humans have had, and continue to have, upon them throughout history. Table 1.1. A sample of levels of noise from human-related sources Levels of Noise Sound Decibels (dBA) Quiet home 20 Normal talking 40 Ringing telephone 60 Air conditioner 75 Sustained exposure to noise over 85 dBAs can cause permanent damage Shouting Subway train 100 Honking horns Jack hammers Loud music 120 Jet plane 150 Rocket of the Space Shuttle 180 1.2. What is and what is not a Marine Mammal For the purpose of this book we will include all species of three different orders of mammals: cetaceans (whales, dolphins, and porpoises), pinnipeds (seals, sea-lions, walrus), and sirenians (manatees, dugongs, sea cows). We also include two species of otters (the sea otter and the marine otter) and the polar bear, all of which belong to the order Carnivora. Despite the fact that three species of cetaceans are exclusively freshwater (i.e., river dolphins) and one largely estuarine (the tucuxi), we include them in this book because they evolved from marine species and that helps us better understand a number of adaptations that we observe among cetaceans. The same thing can be said of the two species of pinnipeds (the Lake Baikal seal and the Caspian Sea seal) that are found today in enclosed bodies of waters due to the past distribution of their marine ancestors. One species of sirenian (the Amazonian manatee) is also fundamentally a freshwater one, but is derived from a marine ancestor. However, we are taking a different view when it comes to otters. There is a total of 18 species of otters and with the exception of two they all live in freshwaters. We will be studying only the two sea species. We also consider the polar bear a marine mammal because of its adaptations and impact on the marine ecosystem. We do not, however, include here some species of bats that capture marine fish because they do not really present any special adaptation to the 6 marine environment (they can also fish in freshwaters). All in all, there are 131 species of extant (living) or recently extinct mammals that will be examined in this book. The number of species of extinct marine mammals that have been found in the fossil record is in the hundreds and continues to increase rapidly. As for any other major animal taxon, there is a larger number of species in the fossil record than those that are alive today. There are also examples in the fossil record of species of marine mammals unrelated to the above-mentioned groups such as hippopotamus-like desmostylians, bizarre bear-like carnivores like Kolponomos, and the aquatic sloth Thalassocnus. 1.3. A Question of Names In the English-speaking world common names for marine mammals are confusing to say the least. That is particularly true when dealing with whales and dolphins. For example, in general, ‘whales’ are large in size, ‘dolphins’ are medium size, and ‘porpoises’ are the small ones. But this is confusing because some whale species are smaller than the largest species of dolphins and some species of porpoises are larger than the smallest dolphin species. Further, the term ‘great whales’ is applied to large baleen whales as well as to the largest species of toothed whales: the sperm whale. Also, there are six species of ‘whales’ (the killer whale or orca, the false killer whale, the pygmy killer whale, the short-finned pilot whale, the long-finned pilot whale, and the melon-headed whale) that should be called dolphins because they all belong to the family Delphinidae (the family of dolphins). The short-finned pilot whale is also called ‘blackfish’ in the Caribbean while there is a fish called ‘dolphin’ (Coryphaena hippurus). There are two right whale dolphins named after the northern and southern right whales since all four species have finless backs. Also, not all ‘white beak dolphins’ have white beaks.
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • Mitochondrial Genomes of African Pangolins and Insights Into Evolutionary Patterns and Phylogeny of the Family Manidae Zelda Du Toit1,2, Morné Du Plessis2, Desiré L
    du Toit et al. BMC Genomics (2017) 18:746 DOI 10.1186/s12864-017-4140-5 RESEARCH ARTICLE Open Access Mitochondrial genomes of African pangolins and insights into evolutionary patterns and phylogeny of the family Manidae Zelda du Toit1,2, Morné du Plessis2, Desiré L. Dalton1,2,3*, Raymond Jansen4, J. Paul Grobler1 and Antoinette Kotzé1,2,4 Abstract Background: This study used next generation sequencing to generate the mitogenomes of four African pangolin species; Temminck’s ground pangolin (Smutsia temminckii), giant ground pangolin (S. gigantea), white-bellied pangolin (Phataginus tricuspis) and black-bellied pangolin (P. tetradactyla). Results: The results indicate that the mitogenomes of the African pangolins are 16,558 bp for S. temminckii, 16,540 bp for S. gigantea, 16,649 bp for P. tetradactyla and 16,565 bp for P. tricuspis. Phylogenetic comparisons of the African pangolins indicated two lineages with high posterior probabilities providing evidence to support the classification of two genera; Smutsia and Phataginus. The total GC content between African pangolins was observed to be similar between species (36.5% – 37.3%). The most frequent codon was found to be A or C at the 3rd codon position. Significant variations in GC-content and codon usage were observed for several regions between African and Asian pangolin species which may be attributed to mutation pressure and/or natural selection. Lastly, a total of two insertions of 80 bp and 28 bp in size respectively was observed in the control region of the black-bellied pangolin which were absent in the other African pangolin species. Conclusions: The current study presents reference mitogenomes of all four African pangolin species and thus expands on the current set of reference genomes available for six of the eight extant pangolin species globally and represents the first phylogenetic analysis with six pangolin species using full mitochondrial genomes.
    [Show full text]
  • Download Full Article in PDF Format
    A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans Robert W. BOESSENECKER Department of Geology, University of Otago, 360 Leith Walk, P.O. Box 56, Dunedin, 9054 (New Zealand) and Department of Earth Sciences, Montana State University 200 Traphagen Hall, Bozeman, MT, 59715 (USA) and University of California Museum of Paleontology 1101 Valley Life Sciences Building, Berkeley, CA, 94720 (USA) [email protected] Boessenecker R. W. 2013. — A new marine vertebrate assemblage from the Late Neogene Purisima Formation in Central California, part II: Pinnipeds and Cetaceans. Geodiversitas 35 (4): 815-940. http://dx.doi.org/g2013n4a5 ABSTRACT e newly discovered Upper Miocene to Upper Pliocene San Gregorio assem- blage of the Purisima Formation in Central California has yielded a diverse collection of 34 marine vertebrate taxa, including eight sharks, two bony fish, three marine birds (described in a previous study), and 21 marine mammals. Pinnipeds include the walrus Dusignathus sp., cf. D. seftoni, the fur seal Cal- lorhinus sp., cf. C. gilmorei, and indeterminate otariid bones. Baleen whales include dwarf mysticetes (Herpetocetus bramblei Whitmore & Barnes, 2008, Herpetocetus sp.), two right whales (cf. Eubalaena sp. 1, cf. Eubalaena sp. 2), at least three balaenopterids (“Balaenoptera” cortesi “var.” portisi Sacco, 1890, cf. Balaenoptera, Balaenopteridae gen. et sp. indet.) and a new species of rorqual (Balaenoptera bertae n. sp.) that exhibits a number of derived features that place it within the genus Balaenoptera. is new species of Balaenoptera is relatively small (estimated 61 cm bizygomatic width) and exhibits a comparatively nar- row vertex, an obliquely (but precipitously) sloping frontal adjacent to vertex, anteriorly directed and short zygomatic processes, and squamosal creases.
    [Show full text]
  • Wec01's SSSS Fossils Test 2019
    wec01’s SSSS Fossils Test 2019 Team Name: _________________KEY________________ Team Number: ___KEY___ Team Members: ____________KEY____________, ____________KEY____________ This test consists of 18 stations with a total of 200 points. Each answer is worth one point except where specified otherwise. You are only given 2 ½ minutes with the specimens at each station, however you can work on any station’s questions at any time. Scoring Station 1: ___10___ / 10 Station 10: ___12___ / 12 Station 2: ___10___ / 10 Station 11: ____9___ / 9 Station 3: ___11___ / 11 Station 12: ___11___ / 11 Station 4: ___10___ / 10 Station 13: ___10___ / 10 Station 5: ___10___ / 10 Station 14: ___10___ / 10 Station 6: ____9___ / 9 Station 15: ___12___ / 12 Station 7: ____9___ / 9 Station 16: ____9___ / 9 Station 8: ___10___ / 10 Station 17: ___10___ / 10 Station 9: ____9___ / 9 Station 18: ___29___ / 29 Total: __200___ / 200 Team Number: _KEY_ Station 1: Dinosaurs (10 pt) 1. Identify the genus of specimen A Tyrannosaurus (1 pt) 2. Identify the genus of specimen B Stegosaurus (1 pt) 3. Identify the genus of specimen C Allosaurus (1 pt) 4. Which specimen(s) (A, B, or C) are A, C (1 pt) Saurischians? 5. Which two specimens (A, B, or C) lived at B, C (1 pt) the same time? 6. Identify the genus of specimen D Velociraptor (1 pt) 7. Identify the genus of specimen E Coelophysis (1 pt) 8. Which specimen (D or E) is commonly E (1 pt) found in Ghost Ranch, New Mexico? 9. Which specimen (A, B, C, D, or E) would D (1 pt) specimen F have been found on? 10.
    [Show full text]
  • A New Middle Eocene Protocetid Whale (Mammalia: Cetacea: Archaeoceti) and Associated Biota from Georgia Author(S): Richard C
    A New Middle Eocene Protocetid Whale (Mammalia: Cetacea: Archaeoceti) and Associated Biota from Georgia Author(s): Richard C. Hulbert, Jr., Richard M. Petkewich, Gale A. Bishop, David Bukry and David P. Aleshire Source: Journal of Paleontology , Sep., 1998, Vol. 72, No. 5 (Sep., 1998), pp. 907-927 Published by: Paleontological Society Stable URL: https://www.jstor.org/stable/1306667 REFERENCES Linked references are available on JSTOR for this article: https://www.jstor.org/stable/1306667?seq=1&cid=pdf- reference#references_tab_contents You may need to log in to JSTOR to access the linked references. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at https://about.jstor.org/terms SEPM Society for Sedimentary Geology and are collaborating with JSTOR to digitize, preserve and extend access to Journal of Paleontology This content downloaded from 131.204.154.192 on Thu, 08 Apr 2021 18:43:05 UTC All use subject to https://about.jstor.org/terms J. Paleont., 72(5), 1998, pp. 907-927 Copyright ? 1998, The Paleontological Society 0022-3360/98/0072-0907$03.00 A NEW MIDDLE EOCENE PROTOCETID WHALE (MAMMALIA: CETACEA: ARCHAEOCETI) AND ASSOCIATED BIOTA FROM GEORGIA RICHARD C. HULBERT, JR.,1 RICHARD M. PETKEWICH,"4 GALE A.
    [Show full text]
  • PDF of Manuscript and Figures
    The triple origin of whales DAVID PETERS Independent Researcher 311 Collinsville Avenue, Collinsville, IL 62234, USA [email protected] 314-323-7776 July 13, 2018 RH: PETERS—TRIPLE ORIGIN OF WHALES Keywords: Cetacea, Mysticeti, Odontoceti, Phylogenetic analyis ABSTRACT—Workers presume the traditional whale clade, Cetacea, is monophyletic when they support a hypothesis of relationships for baleen whales (Mysticeti) rooted on stem members of the toothed whale clade (Odontoceti). Here a wider gamut phylogenetic analysis recovers Archaeoceti + Odontoceti far apart from Mysticeti and right whales apart from other mysticetes. The three whale clades had semi-aquatic ancestors with four limbs. The clade Odontoceti arises from a lineage that includes archaeocetids, pakicetids, tenrecs, elephant shrews and anagalids: all predators. The clade Mysticeti arises from a lineage that includes desmostylians, anthracobunids, cambaytheres, hippos and mesonychids: none predators. Right whales are derived from a sister to Desmostylus. Other mysticetes arise from a sister to the RBCM specimen attributed to Behemotops. Basal mysticetes include Caperea (for right whales) and Miocaperea (for all other mysticetes). Cetotheres are not related to aetiocetids. Whales and hippos are not related to artiodactyls. Rather the artiodactyl-type ankle found in basal archaeocetes is also found in the tenrec/odontocete clade. Former mesonychids, Sinonyx and Andrewsarchus, nest close to tenrecs. These are novel observations and hypotheses of mammal interrelationships based on morphology and a wide gamut taxon list that includes relevant taxa that prior studies ignored. Here some taxa are tested together for the first time, so they nest together for the first time. INTRODUCTION Marx and Fordyce (2015) reported the genesis of the baleen whale clade (Mysticeti) extended back to Zygorhiza, Physeter and other toothed whales (Archaeoceti + Odontoceti).
    [Show full text]
  • Place Names Describing Fossils in Oral Traditions
    Place names describing fossils in oral traditions ADRIENNE MAYOR Classics Department, Stanford University, Stanford CA 94305 (e-mail: [email protected]) Abstract: Folk explanations of notable geological features, including fossils, are found around the world. Observations of fossil exposures (bones, footprints, etc.) led to place names for rivers, mountains, valleys, mounds, caves, springs, tracks, and other geological and palaeonto- logical sites. Some names describe prehistoric remains and/or refer to traditional interpretations of fossils. This paper presents case studies of fossil-related place names in ancient and modern Europe and China, and Native American examples in Canada, the United States, and Mexico. Evidence for the earliest known fossil-related place names comes from ancient Greco-Roman and Chinese literature. The earliest documented fossil-related place name in the New World was preserved in a written text by the Spanish in the sixteenth century. In many instances, fossil geonames are purely descriptive; in others, however, the mythology about a specific fossil locality survives along with the name; in still other cases the geomythology is suggested by recorded traditions about similar palaeontological phenomena. The antiquity and continuity of some fossil-related place names shows that people had observed and speculated about miner- alized traces of extinct life forms long before modern scientific investigations. Traditional place names can reveal heretofore unknown geomyths as well as new geologically-important sites. Traditional folk names for geological features in the Named fossil sites in classical antiquity landscape commonly refer to mythological or and modern Greece legendary stories that accounted for them (Vitaliano 1973). Landmarks notable for conspicuous fossils Evidence for the practice of naming specific fossil have been named descriptively or mythologically locales can be found in classical antiquity.
    [Show full text]
  • Letter to K. Baker, 1-29-07
    Marine Mammal Commission 4340 East-West Highway, Room 905 Bethesda, MD 20814 29January 2007 Mr. Kyle Baker National Marine Fisheries Service 263 13th Avenue, South St. Petersburg, FL 33701 Dear Mr. Baker: The Marine Mammal Commission, in consultation with its Committee of Scientific Advisors on Marine Mammals, has reviewed the National Marine Fisheries Service’s 29 November 2006 Federal Register notice announcing its intent to conduct a review of the Caribbean monk seal, Monachus tropicalis, under the Endangered Species Act and requesting information on the species’ status. We have reviewed our files and, with great regret, we have concluded that the species is extinct and should be removed from the list of endangered and threatened species. Fossil and archeological evidence, along with sighting records, indicate that the species once occurred from the southeastern United States through the Bahamas and the Caribbean Sea. A review of those records by Rice (1973) concluded that the last authoritative sighting was of a small colony of animals at Seranilla Banks between Jamaica and the Yucatan Peninsula in 1952. A few other unconfirmed sightings were reported from the 1950s into the 1970s, but at least some of those were reported to involve escaped California sea lions (Gunter 1968 cited in Rice 1973). Although the species may have been extinct when the Endangered Species Act was passed in 1973, the Marine Mammal Commission wrote to the National Marine Fisheries Service on 26 January 1977 recommending that the Caribbean monk seal be listed as “endangered” under the Endangered Species Act and “depleted” under the Marine Mammal Protection Act.
    [Show full text]
  • Functional Morphology of the Vertebral Column in Remingtonocetus (Mammalia, Cetacea) and the Evolution of Aquatic Locomotion in Early Archaeocetes
    Functional Morphology of the Vertebral Column in Remingtonocetus (Mammalia, Cetacea) and the Evolution of Aquatic Locomotion in Early Archaeocetes by Ryan Matthew Bebej A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in The University of Michigan 2011 Doctoral Committee: Professor Philip D. Gingerich, Co-Chair Professor Philip Myers, Co-Chair Professor Daniel C. Fisher Professor Paul W. Webb © Ryan Matthew Bebej 2011 To my wonderful wife Melissa, for her infinite love and support ii Acknowledgments First, I would like to thank each of my committee members. I will be forever grateful to my primary mentor, Philip D. Gingerich, for providing me the opportunity of a lifetime, studying the very organisms that sparked my interest in evolution and paleontology in the first place. His encouragement, patience, instruction, and advice have been instrumental in my development as a scholar, and his dedication to his craft has instilled in me the importance of doing careful and solid research. I am extremely grateful to Philip Myers, who graciously consented to be my co-advisor and co-chair early in my career and guided me through some of the most stressful aspects of life as a Ph.D. student (e.g., preliminary examinations). I also thank Paul W. Webb, for his novel thoughts about living in and moving through water, and Daniel C. Fisher, for his insights into functional morphology, 3D modeling, and mammalian paleobiology. My research was almost entirely predicated on cetacean fossils collected through a collaboration of the University of Michigan and the Geological Survey of Pakistan before my arrival in Ann Arbor.
    [Show full text]
  • Thewissen Et Al. Reply Replying To: J
    NATURE | Vol 458 | 19 March 2009 BRIEF COMMUNICATIONS ARISING Hippopotamus and whale phylogeny Arising from: J. G. M. Thewissen, L. N. Cooper, M. T. Clementz, S. Bajpai & B. N. Tiwari Nature 450, 1190–1194 (2007) Thewissen etal.1 describe new fossils from India that apparentlysupport fossils, Raoellidae or the raoellid Indohyus is more closely related to a phylogeny that places Cetacea (that is, whales, dolphins, porpoises) as Cetacea than is Hippopotamidae (Fig. 1). Hippopotamidae is the the sister group to the extinct family Raoellidae, and Hippopotamidae exclusive sister group to Cetacea plus Raoellidae in the analysis that as more closely related to pigs and peccaries (that is, Suina) than to down-weights homoplastic characters, althoughin the equallyweighted cetaceans. However, our reanalysis of a modified version of the data set analysis, another topology was equally parsimonious. In that topology, they used2 differs in retaining molecular characters and demonstrates Hippopotamidae moved one node out, being the sister group to an that Hippopotamidae is the closest extant family to Cetacea and that Andrewsarchus, Raoellidae and Cetacea clade. In neither analysis is raoellids are the closest extinct group, consistent with previous phylo- Hippopotamidae closer to the pigs and peccaries than to Cetacea, the genetic studies2,3. This topology supports the view that the aquatic result obtained by Thewissen et al.1. In all our analyses, pachyostosis adaptations in hippopotamids and cetaceans are inherited from their (thickening) of limb bones and bottom walking, which occur in hippo- common ancestor4. potamids9,10, are interpreted to have evolved before the pachyostosis of To conduct our analyses, we started with the same published matrix the auditory bulla, as seen in raoellids and cetaceans1.
    [Show full text]
  • Proceedings of the United States National Museum
    DESCRIPTION OF TWO SQUALODONTS RECENTLY DIS- COVERED IN THE CALVERT CLIFFS, ^LVRYLAND; AND NOTES ON THE SHARK-TOOTHED CETACEANS. By Remington Kellogg, Of the Bureau of Biological Survey, United States Departynent of Agriculture. INTRODUCTION. When the study of paleontology was less advanced than it is at present, any announcement of the discovery of prehistoric animals unlike the living indigenous fauna was usually received with some suspicion. In spite of this distrust, many attempts were made by the early writers to explain the presence of fossil remains of marine mammals in strata above the sea level or at some distance from the seashore. In one of these treatises ' is found what is, apparently, the first notice of the occurrence of fossil remains referable to shark- toothed cetaceans. The author of this work figures a fragment of a mandible, obtained from the tufa of Malta, which possesses three serrate double-rooted molar teeth. Squalodonts as such were first brought to the attention of ]mleon- tologists in 1840, by J. P. S. Grateloup, ' a French naturalist primarily interested in marine invertebrates. In the original description of Squalodon, Grateloup held the view that this rostral fragment from Leognan, France, belonged to some large saurian related to Iguanodon. Following the anouncement of this discovery. Von Meyer ^ called at- tention to the teeth of this fossil, and concluded that the specimen was referable to some flesh-eating cetacean. A year later, Grateloup* concurred in this opinion. One other specimen should be mentioned in this connection, but, unfortunately, its relationships are quite uncer- tain. This specimen consists of a single tooth which was thought to bear resemblance to some pinniped by Von Meyer ^ and named Pachy- odon mirahilis.
    [Show full text]
  • How to Cite Complete Issue More Information About This Article
    Boletín de la Sociedad Geológica Mexicana ISSN: 1405-3322 Sociedad Geológica Mexicana, A.C. Hernández Cisneros, Atzcalli Ehécatl; González Barba, Gerardo; Fordyce, Robert Ewan Oligocene cetaceans from Baja California Sur, Mexico Boletín de la Sociedad Geológica Mexicana, vol. 69, no. 1, January-April, 2017, pp. 149-173 Sociedad Geológica Mexicana, A.C. Available in: http://www.redalyc.org/articulo.oa?id=94350664007 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Project academic non-profit, developed under the open access initiative Boletín de la Sociedad Geológica Mexicana / 2017 / 149 Oligocene cetaceans from Baja California Sur, Mexico Atzcalli Ehécatl Hernández Cisneros, Gerardo González Barba, Robert Ewan Fordyce ABSTRACT Atzcalli Ehecatl Hernández Cisneros ABSTRACT RESUMEN [email protected] Museo de Historia Natural de la Universidad Autónoma de Baja California Sur, Univer- Baja California Sur has an import- Baja California Sur tiene un importante re- sidad Autónoma de Baja California Sur, ant Cenozoic marine fossil record gistro de fósiles marinos del Cenozoico que Carretera al Sur Km 5.5, Apartado Postal which includes diverse but poorly incluye los restos poco conocidos de cetáceos 19-B, C.P. 23080, La Paz, Baja California Sur, México. known Oligocene cetaceans from del Oligoceno de México. En este estudio Instituto Politécnico Nacional, Centro Inter- Mexico. Here we review the cetacean ofrecemos más detalles sobre estos fósiles de disciplinario de Ciencias Marinas (CICMAR), fossil record including new observa- cetáceos, incluyendo nuevas observaciones Av. Instituto Politécnico Nacional s/n, Col.
    [Show full text]