The Role of Seals in Coastal Hunter-Gatherer Lifeways at Robberg, South Africa

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Seals in Coastal Hunter-Gatherer Lifeways at Robberg, South Africa The role of seals in coastal hunter-gatherer lifeways at Robberg, South Africa. By Leesha Richardson Supervised by Prof Judith Sealy and Dr Deano Stynder Dissertation submitted in fulfilment of the requirements for the degree of Master of Philosophy (MPhil) in Archaeology In the Department of Archaeology Faculty of Science University of Cape Town February 2020 The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. Plagiarism Declaration I have used the Harvard convention for citation and referencing. Each contribution from, and quotation in, this thesis from the work(s) of other people has been attributed, and has been cited and referenced. This thesis is my own work: Leesha Richardson RCHLEE003 Date: 8 February 2020 i Abstract Seals were a major dietary item for coastal hunter-gatherers and herders in South Africa. At Nelson Bay Cave (NBC), more than half of the Holocene mammal bones are from Cape Fur seals (Arctocephalus pusillus). Previous analyses of the seal assemblage from this site have studied only selected skeletal elements. This study is the first comprehensive analysis of seal remains from selected archaeological levels at Nelson Bay Cave and from the 2007/2008 excavations at nearby Hoffmans/Robberg Cave (HRC). Body part representation and frequency, age distribution and bone modification have been documented to determine the role of seals in the lifeways of hunter-gatherers and pastoralists at Robberg throughout the Holocene. The age profiles indicate that seals were obtained directly from a breeding colony throughout the Holocene. A breeding colony at Robberg would have been a rich and reliable resource for coastal foragers throughout the year. There were differences in skeletal element representation in the Early and Middle Holocene, compared with the Late Holocene. Axial skeletal elements are under-represented in earlier time periods, probably due to field butchery and the return of only parts of the seals to the living sites. In the Late Holocene, entire animals were taken back to site. Within each time period, the skeletal profiles of juveniles and adults indicate that both were processed similarly suggesting that aspects such as carcass size, weight and foraging distance were less important factors in transport decisions than the terrain of the Robberg Peninsula and the size of the hunting party. A large proportion of the bones were complete, or almost complete. There was little evidence of canid gnawing. The skeletal element representation, frequency and cut mark patterns suggest that the heads and flippers were highly sought after throughout the Holocene, as recorded in Arctic ethnography. Seals were also of spiritual significance, possibly in aiding transitions from the material into the spirit world. ii Acknowledgements First and foremost, I would like to thank my supervisors Prof Judith Sealy and Dr Deano Stynder for their guidance and support. I would also like to thank Prof John Parkington, Dr Benjamin Schoville, Dr Jamie Hodgkins, Prof Curtis Marean, Dr Erich Fisher, Dr Naomi Cleghorn, Louisa Hutten and Patricia Groenewald for their advice and comments. I would like to give a special thanks to Dolores Jacobs for helping me with the sorting and coding of the NBC and HRC seal assemblage. I would also like to thank Dr Wendy Black and Me Wilhelmina Seconna from IZIKO Museums for their help in accessing the NBC seal collection. Lastly, I would like to thank the South African Research Chairs Initiative (SARChI) of the Department of Science and Technology (DST) and the National Research Foundation (NRF) of South Africa (grant no 84407) for providing funding for this project. iii Table of Contents Plagiarism Declaration ........................................................................................ i Abstract ................................................................................................................ii Acknowledgements............................................................................................ iii List of figures ...................................................................................................... ix List of tables ...................................................................................................... xiv Chapter 1 : Introduction .................................................................................... 1 Chapter 2 : Background ..................................................................................... 3 2.1 Marine resources: brainfood for modern humans ..................................................... 3 2.1.1 Early human origins on the South African coast ...................................................... 3 2.1.2 The nutritional value of seals .................................................................................... 5 2.2 Seal taxonomy and ecology ........................................................................................... 6 2.2.1 Appearance ............................................................................................................... 6 2.2.2 Seasonal blubber and hide variation ......................................................................... 7 2.2.3 Diet ............................................................................................................................ 7 2.2.4 Breeding .................................................................................................................... 8 2.2.5 Cape fur seal demography at haul-out and breeding colonies .................................. 8 2.2.6 Distribution ............................................................................................................... 9 2.3 The history of sealing in Southern Africa. ................................................................. 10 2.3.1 Seal harvesting at the Cape of Good Hope (16th-19th century) ............................... 10 2.3.2 Seal harvesting in Namibia (20th – 21st century)..................................................... 11 2.4 Ethnographic studies of pinniped exploitation by coastal hunter-gatherers ......... 11 2.4.1 The different methods of seal hunting .................................................................... 12 2.4.2 Field butchery, storage and transport of seal remains to the consumption site ...... 13 2.4.3 Seal butchery and carcass disarticulation at the consumption site ......................... 14 2.4.4 Seal meat and blubber use....................................................................................... 14 iv 2.4.5 Seal viscera use ....................................................................................................... 16 2.4.6 Sealskin use ............................................................................................................. 16 2.4.7 Seal bone use........................................................................................................... 17 2.5 The spiritual significance of seals ............................................................................... 18 2.5.1 Archaeological depictions of marine animals on the southern coast of South Africa .......................................................................................................................................... 18 2.5.2 The Knysna seal scapula ......................................................................................... 20 2.5.3 The spiritual significance of the Knysna seal scapula ............................................ 23 2.6 Analyses of archaeological faunal assemblages ......................................................... 24 2.6.1 The history of faunal analysis in South Africa. ...................................................... 24 2.6.2 Skeletal frequency and representation: human utilisation and transport of animal remains ............................................................................................................................. 25 2.6.3 Bone fragmentation and surface modification ........................................................ 27 2.6.3.1 Butchering marks ............................................................................................. 27 2.6.3.2 Evidence of burning ......................................................................................... 28 2.6.3.3 Bone nutrient extraction .................................................................................. 29 2.6.3.4 Carnivore ecology ............................................................................................ 30 2.6.3.5 Other taphonomic processes. ........................................................................... 31 2.6.3.6 Bone preservation (Hardness index) ............................................................... 32 2.6.4 The completeness of the archaeological record. ..................................................... 32 2.7 Quantifying animal and seal remains ........................................................................ 34 2.7.1 Calculating taxonomic abundance: NISP and MNI ........................................... 34 2.7.2 Bone completeness and taxa representation: MNE and MAU ........................... 35 2.8 Determining the season of death: Determining the
Recommended publications
  • Mitochondrial Genomes of African Pangolins and Insights Into Evolutionary Patterns and Phylogeny of the Family Manidae Zelda Du Toit1,2, Morné Du Plessis2, Desiré L
    du Toit et al. BMC Genomics (2017) 18:746 DOI 10.1186/s12864-017-4140-5 RESEARCH ARTICLE Open Access Mitochondrial genomes of African pangolins and insights into evolutionary patterns and phylogeny of the family Manidae Zelda du Toit1,2, Morné du Plessis2, Desiré L. Dalton1,2,3*, Raymond Jansen4, J. Paul Grobler1 and Antoinette Kotzé1,2,4 Abstract Background: This study used next generation sequencing to generate the mitogenomes of four African pangolin species; Temminck’s ground pangolin (Smutsia temminckii), giant ground pangolin (S. gigantea), white-bellied pangolin (Phataginus tricuspis) and black-bellied pangolin (P. tetradactyla). Results: The results indicate that the mitogenomes of the African pangolins are 16,558 bp for S. temminckii, 16,540 bp for S. gigantea, 16,649 bp for P. tetradactyla and 16,565 bp for P. tricuspis. Phylogenetic comparisons of the African pangolins indicated two lineages with high posterior probabilities providing evidence to support the classification of two genera; Smutsia and Phataginus. The total GC content between African pangolins was observed to be similar between species (36.5% – 37.3%). The most frequent codon was found to be A or C at the 3rd codon position. Significant variations in GC-content and codon usage were observed for several regions between African and Asian pangolin species which may be attributed to mutation pressure and/or natural selection. Lastly, a total of two insertions of 80 bp and 28 bp in size respectively was observed in the control region of the black-bellied pangolin which were absent in the other African pangolin species. Conclusions: The current study presents reference mitogenomes of all four African pangolin species and thus expands on the current set of reference genomes available for six of the eight extant pangolin species globally and represents the first phylogenetic analysis with six pangolin species using full mitochondrial genomes.
    [Show full text]
  • Ministério Da Educação Universidade Federal Rural Da Amazônia
    MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL RURAL DA AMAZÔNIA TAIANA AMANDA FONSECA DOS PASSOS Biologia reprodutiva de Nacella concinna (Strebel, 1908) (Gastropoda: Nacellidae) do sublitoral da Ilha do Rei George, Península Antártica BELÉM 2018 TAIANA AMANDA FONSECA DOS PASSOS Biologia reprodutiva de Nacella concinna (Strebel, 1908) (Gastropoda: Nacellidae) do sublitoral da Ilha do Rei George, Península Antártica Trabalho de Conclusão de Curso (TCC) apresentado ao curso de Graduação em Engenharia de Pesca da Universidade Federal Rural da Amazônia (UFRA) como requisito necessário para obtenção do grau de Bacharel em Engenharia de Pesca. Área de concentração: Ecologia Aquática. Orientador: Prof. Dr. rer. nat. Marko Herrmann. Coorientadora: Dra. Maria Carla de Aranzamendi. BELÉM 2018 TAIANA AMANDA FONSECA DOS PASSOS Biologia reprodutiva de Nacella concinna (Strebel, 1908) (Gastropoda: Nacellidae) do sublitoral da Ilha do Rei George, Península Antártica Trabalho de Conclusão de Curso apresentado à Universidade Federal Rural da Amazônia, como parte das exigências do Curso de Graduação em Engenharia de Pesca, para a obtenção do título de bacharel. Área de concentração: Ecologia Aquática. ______________________________________ Data da aprovação Banca examinadora __________________________________________ Presidente da banca Prof. Dr. Breno Gustavo Bezerra Costa Universidade Federal Rural da Amazônia - UFRA __________________________________________ Membro 1 Prof. Dr. Lauro Satoru Itó Universidade Federal Rural da Amazônia - UFRA __________________________________________ Membro 2 Profa. Msc. Rosália Furtado Cutrim Souza Universidade Federal Rural da Amazônia - UFRA Aos meus sobrinhos, Tháina, Kauã e Laura. “Cabe a nós criarmos crianças que não tenham preconceitos, crianças capazes de ser solidárias e capazes de sentir compaixão! Cabe a nós sermos exemplos”. AGRADECIMENTOS Certamente algumas páginas não irão descrever os meus sinceros agradecimentos a todos aqueles que cooperaram de alguma forma, para que eu pudesse realizar este sonho.
    [Show full text]
  • JMS 70 1 031-041 Eyh003 FINAL
    PHYLOGENY AND HISTORICAL BIOGEOGRAPHY OF LIMPETS OF THE ORDER PATELLOGASTROPODA BASED ON MITOCHONDRIAL DNA SEQUENCES TOMOYUKI NAKANO AND TOMOWO OZAWA Department of Earth and Planetary Sciences, Nagoya University, Nagoya 464-8602,Japan (Received 29 March 2003; accepted 6June 2003) ABSTRACT Using new and previously published sequences of two mitochondrial genes (fragments of 12S and 16S ribosomal RNA; total 700 sites), we constructed a molecular phylogeny for 86 extant species, covering a major part of the order Patellogastropoda. There were 35 lottiid, one acmaeid, five nacellid and two patellid species from the western and northern Pacific; and 34 patellid, six nacellid and three lottiid species from the Atlantic, southern Africa, Antarctica and Australia. Emarginula foveolata fujitai (Fissurellidae) was used as the outgroup. In the resulting phylogenetic trees, the species fall into two major clades with high bootstrap support, designated here as (A) a clade of southern Tethyan origin consisting of superfamily Patelloidea and (B) a clade of tropical Tethyan origin consisting of the Acmaeoidea. Clades A and B were further divided into three and six subclades, respectively, which correspond with geographical distributions of species in the following genus or genera: (AÍ) north­ eastern Atlantic (Patella ); (A2) southern Africa and Australasia ( Scutellastra , Cymbula-and Helcion)', (A3) Antarctic, western Pacific, Australasia ( Nacella and Cellana); (BÍ) western to northwestern Pacific (.Patelloida); (B2) northern Pacific and northeastern Atlantic ( Lottia); (B3) northern Pacific (Lottia and Yayoiacmea); (B4) northwestern Pacific ( Nipponacmea); (B5) northern Pacific (Acmaea-’ânà Niveotectura) and (B6) northeastern Atlantic ( Tectura). Approximate divergence times were estimated using geo­ logical events and the fossil record to determine a reference date.
    [Show full text]
  • The Response of a Protandrous Species to Exploitation, and the Implications for Management: a Case Study with Patellid Limpets
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk University of Southampton Faculty of Engineering, Science and Mathematics National Oceanography Centre, Southampton School of Ocean and Earth Sciences The Response of a Protandrous Species to Exploitation, and the Implications for Management: a Case Study with Patellid Limpets. William J F Le Quesne Thesis for the degree of Doctor of Philosophy July 2005 Graduate School of the National Oceanography Centre, Southampton This PhD dissertation by William J F Le Quesne has been produced under the supervision of the following persons: Supervisors: Prof. John G. Shepherd Prof Stephen Hawkins Chair of Advisory Panel: Dr Lawrence E. Hawkins Member of Advisory Panel: Dr John A. Williams University
    [Show full text]
  • IAN Symbol Library Catalog
    Overview The IAN symbol libraries currently contain 2976 custom made vector symbols The Libraries Include designed specifically for enhancing science communication skills. Download the complete set or create a custom packaged version. 2976 science/ecology symbols Our aim is to make them a standard resource for scientists, resource managers, 55 albums in 6 categories community groups, and environmentalists worldwide. Easily create diagrammatic representations of complex processes with minimal graphical skills. Currently Vector (SVG & AI) versions downloaded by 91068 users in 245 countries and 50 U.S. states. Raster (PNG) version The IAN Symbol Libraries are provided completely cost and royalty free. Please acknowledge as: Symbols courtesy of the Integration and Application Network (ian.umces.edu/symbols/). Acknowledgements The IAN symbol libraries have been developed by many contributors: Adrian Jones, Alexandra Fries, Amber O'Reilly, Brianne Walsh, Caroline Donovan, Catherine Collier, Catherine Ward, Charlene Afu, Chip Chenery, Christine Thurber, Claire Sbardella, Diana Kleine, Dieter Tracey, Dvorak, Dylan Taillie, Emily Nastase, Ian Hewson, Jamie Testa, Jan Tilden, Jane Hawkey, Jane Thomas, Jason C. Fisher, Joanna Woerner, Kate Boicourt, Kate Moore, Kate Petersen, Kim Kraeer, Kris Beckert, Lana Heydon, Lucy Van Essen-Fishman, Madeline Kelsey, Nicole Lehmer, Sally Bell, Sander Scheffers, Sara Klips, Tim Carruthers, Tina Kister , Tori Agnew, Tracey Saxby, Trisann Bambico. From a variety of institutions, agencies, and companies: Chesapeake
    [Show full text]
  • The Role of Encrusting Coralline Algae in the Diets of Intertidal Herbivores
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of the Western Cape Research Repository Maneveldt, G.W. et al. (2006). The role of encrusting coralline algae in the diets of selected intertidal herbivores. JOURNAL OF APPLIED PHYCOLOGY, 18: 619-627 The role of encrusting coralline algae in the diets of selected intertidal herbivores Gavin W. Maneveldt*, Deborah Wilby, Michelle Potgieter & Martin G.J. Hendricks Department of Biodiversity and Conservation Biology University of the Western Cape P. Bag X17 Bellville 7535 South Africa * Correcsponding author: [email protected] Key words: encrusting coralline algae, diet, grazers, herbivory, organic content, rocky shore. Abstract Kalk Bay, South Africa, has a typical south coast zonation pattern with a band of seaweed dominating the mid-eulittoral and sandwiched between two molluscan- herbivore dominated upper and lower eulittoral zones. Encrusting coralline algae were very obvious features of these zones. The most abundant herbivores in the upper eulittoral were the limpet, Cymbula oculus (10.4 + 1.6 m-2; 201.65 + 32.68 g.m-2) and the false limpet, Siphonaria capensis (97.07 + 19.92 m-2; 77.93 + 16.02 g.m-2). The territorial gardening limpet, Scutellastra cochlear, dominated the lower eulittoral zone, achieving very high densities (545.27 + 84.35 m-2) and biomass (4630.17 + 556.13 g.m-2), and excluded all other herbivores and most seaweeds, except for its garden alga and the encrusting coralline alga, Spongities yendoi (35.93 + 2.26 % cover). For the upper eulittoral zone, only the chiton Acanthochiton garnoti 30.5 + 1.33 % and the limpet C.
    [Show full text]
  • Chapter 15 the Mammals of Angola
    Chapter 15 The Mammals of Angola Pedro Beja, Pedro Vaz Pinto, Luís Veríssimo, Elena Bersacola, Ezequiel Fabiano, Jorge M. Palmeirim, Ara Monadjem, Pedro Monterroso, Magdalena S. Svensson, and Peter John Taylor Abstract Scientific investigations on the mammals of Angola started over 150 years ago, but information remains scarce and scattered, with only one recent published account. Here we provide a synthesis of the mammals of Angola based on a thorough survey of primary and grey literature, as well as recent unpublished records. We present a short history of mammal research, and provide brief information on each species known to occur in the country. Particular attention is given to endemic and near endemic species. We also provide a zoogeographic outline and information on the conservation of Angolan mammals. We found confirmed records for 291 native species, most of which from the orders Rodentia (85), Chiroptera (73), Carnivora (39), and Cetartiodactyla (33). There is a large number of endemic and near endemic species, most of which are rodents or bats. The large diversity of species is favoured by the wide P. Beja (*) CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal CEABN-InBio, Centro de Ecologia Aplicada “Professor Baeta Neves”, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal e-mail: [email protected] P. Vaz Pinto Fundação Kissama, Luanda, Angola CIBIO-InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus de Vairão, Vairão, Portugal e-mail: [email protected] L. Veríssimo Fundação Kissama, Luanda, Angola e-mail: [email protected] E.
    [Show full text]
  • Report of the Expert Panel on a Declared Commercial Fishing Activity
    5 Direct impacts on EPBC Act protected species 49 5.1 Introduction 5 DIRECT There are 241 species (see Appendix 3) protected under the Environment Protection and Biodiversity Conservation Act 1999 (Cwlth) (EPBC Act) that occur in the area of the Small Pelagic Fishery (SPF). These are comprised of: impacts • 10 pinniped species • 44 cetacean species • Dugong Dugong dugon ON EPBC A • 89 species of seabirds • six marine turtle species CT • nine seasnake species PROTECTE • 13 shark and ray species • 69 teleost species, of which 66 are syngnathids and three are other teleost fish. The data compiled by Tuck et al. (2013) have been used as the primary source to inform the panel’s understanding of the D nature and extent of the direct interactions of mid-water trawling in the SPF with protected species to date. Tuck et al. SPECIES (2013) report on ‘interactions’ with protected species but do not define ‘interaction’. Since the data were compiled from Australian Fisheries Management Authority (AFMA) logbooks and observer records the panel has assumed that the interactions data reported in Tuck et al. (2013) reflect the definition in the memorandum of understanding (MoU) between AFMA and the Department of the Environment. As noted in Section 2.2.3, this definition excludes acoustic disturbance and behavioural changes brought about by habituation to fishing operations, which the panel includes in its definition of ‘direct interactions’ applied to the assessment of the Declared Commercial Fishing Activity (DCFA). As a result Tuck et al. (2013) understate the level of ‘direct interactions’. However, in the absence of any more comprehensive assessment of historical interactions data, the panel has used the information collated by Tuck et al.
    [Show full text]
  • The Biology of Marine Mammals
    Romero, A. 2009. The Biology of Marine Mammals. The Biology of Marine Mammals Aldemaro Romero, Ph.D. Arkansas State University Jonesboro, AR 2009 2 INTRODUCTION Dear students, 3 Chapter 1 Introduction to Marine Mammals 1.1. Overture Humans have always been fascinated with marine mammals. These creatures have been the basis of mythical tales since Antiquity. For centuries naturalists classified them as fish. Today they are symbols of the environmental movement as well as the source of heated controversies: whether we are dealing with the clubbing pub seals in the Arctic or whaling by industrialized nations, marine mammals continue to be a hot issue in science, politics, economics, and ethics. But if we want to better understand these issues, we need to learn more about marine mammal biology. The problem is that, despite increased research efforts, only in the last two decades we have made significant progress in learning about these creatures. And yet, that knowledge is largely limited to a handful of species because they are either relatively easy to observe in nature or because they can be studied in captivity. Still, because of television documentaries, ‘coffee-table’ books, displays in many aquaria around the world, and a growing whale and dolphin watching industry, people believe that they have a certain familiarity with many species of marine mammals (for more on the relationship between humans and marine mammals such as whales, see Ellis 1991, Forestell 2002). As late as 2002, a new species of beaked whale was being reported (Delbout et al. 2002), in 2003 a new species of baleen whale was described (Wada et al.
    [Show full text]
  • Namibia's Etosha Pan & Skeleton Coast
    Namibia's Etosha Pan & Skeleton Coast Naturetrek Tour Report 30 October - 15 November 2015 Black Rhinoceros Elephant Family Flamingoes at Walvis Bay The desert Report compiled by Rob Mileto Images courtesy of Ingrid William Naturetrek Mingledown Barn Wolf's Lane Chawton Alton Hampshire GU34 3HJ UK T: +44 (0)1962 733051 E: [email protected] W: www.naturetrek.co.uk Tour Report Namibia's Etosha Pan & Skeleton Coast Tour Participants: Rob Mileto, Festus Mbinga & Franco Morao (leaders) and 12 Naturetrek clients Day 1 Friday 30th October London Heathrow to Johannesburg We all met up, mostly at the gate, for an uneventful overnight flight to Johannesburg in our double-decker plane Day 2 Saturday 31st October Johannesburg to Namib Grens Farm (via Windhoek) Weather: hot and sunny. The bleary but keen-eyed spotted our first southern African bird, a Rock Martin, from the Johannesburg airport terminal building. After a welcome coffee or two, a further short flight over the Kalahari brought us to Windhoek. Here we met out local guides, Festus and Franco, and were soon aboard our extended Land Rovers that were to be our transport and ‘hides’ for the next two weeks. Then we were off. After passing through Windhoek, we were soon out in the wilds and spotting lots of new birds and mammals like Chacma Baboon, Springbok, Cape Starling, Southern Yellow-billed Hornbill, White- backed Mousebird, Pale Chanting Goshawk and Ostrich. All these distractions meant that we arrived at Namib Grens after dark. The bungalows here are literally built around granite boulders which form some of the walls, and after a hearty farm dinner we retired to our beds amongst the rocks – one complete with a Rock Hyrax stuck in the bath! Day 3 Sunday 1st November Namib Grens to Kulala Weather: hot and sunny.
    [Show full text]
  • Stem Cell Therapy in Pinnipedia with Eye Injuries
    Stem cell therapy in Pinnipedia with eye injuries Word count: 9696 Delphine Boone Student number: 01202627 Supervisor: Prof. dr. Catherine Delesalle Supervisor: Dr. Piet De Laender Supervisor: Dr. Constance De Meeûs A dissertation submitted to Ghent University in partial fulfilment of the requirements for the degree of Master of Veterinary Medicine Academic year: 2018 - 2019 Ghent University, its employees and/or students, give no warranty that the information provided in this thesis is accurate or exhaustive, nor that the content of this thesis will not constitute or result in any infringement of third-party rights. Ghent University, its employees and/or students do not accept any liability or responsibility for any use which may be made of the content or information given in the thesis, nor for any reliance which may be placed on any advice or information provided in this thesis Preface With the writing of this word of thanks I put the finishing touches to my thesis after an intensive period of two years. I would like to thank a few people who helped and supported me during this period. To start, Dr. Constance De Meeûs for revising my thesis carefully, always responding fast and enthusiastically and most importantly for giving me great advice. I would like to thank Dr. Piet De Laender for the opportunity to work on this project and help me get in touch with the right people for this thesis. Prof. Dr. Catherine Delesalle for her kind responses and allowing me to work out this topic. Dr. Guy Wouters founder of Fat-Stem Laboratories for providing me freely with stem cell eyedrops.
    [Show full text]
  • List of 28 Orders, 129 Families, 598 Genera and 1121 Species in Mammal Images Library 31 December 2013
    What the American Society of Mammalogists has in the images library LIST OF 28 ORDERS, 129 FAMILIES, 598 GENERA AND 1121 SPECIES IN MAMMAL IMAGES LIBRARY 31 DECEMBER 2013 AFROSORICIDA (5 genera, 5 species) – golden moles and tenrecs CHRYSOCHLORIDAE - golden moles Chrysospalax villosus - Rough-haired Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus – Lowland Streaked Tenrec 3. Microgale dobsoni - Dobson’s Shrew Tenrec 4. Tenrec ecaudatus – Tailless Tenrec ARTIODACTYLA (83 genera, 142 species) – paraxonic (mostly even-toed) ungulates ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BOVIDAE (46 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Impala 3. Alcelaphus buselaphus - Hartebeest 4. Alcelaphus caama – Red Hartebeest 5. Ammotragus lervia - Barbary Sheep 6. Antidorcas marsupialis - Springbok 7. Antilope cervicapra – Blackbuck 8. Beatragus hunter – Hunter’s Hartebeest 9. Bison bison - American Bison 10. Bison bonasus - European Bison 11. Bos frontalis - Gaur 12. Bos javanicus - Banteng 13. Bos taurus -Auroch 14. Boselaphus tragocamelus - Nilgai 15. Bubalus bubalis - Water Buffalo 16. Bubalus depressicornis - Anoa 17. Bubalus quarlesi - Mountain Anoa 18. Budorcas taxicolor - Takin 19. Capra caucasica - Tur 20. Capra falconeri - Markhor 21. Capra hircus - Goat 22. Capra nubiana – Nubian Ibex 23. Capra pyrenaica – Spanish Ibex 24. Capricornis crispus – Japanese Serow 25. Cephalophus jentinki - Jentink's Duiker 26. Cephalophus natalensis – Red Duiker 1 What the American Society of Mammalogists has in the images library 27. Cephalophus niger – Black Duiker 28. Cephalophus rufilatus – Red-flanked Duiker 29. Cephalophus silvicultor - Yellow-backed Duiker 30. Cephalophus zebra - Zebra Duiker 31. Connochaetes gnou - Black Wildebeest 32. Connochaetes taurinus - Blue Wildebeest 33. Damaliscus korrigum – Topi 34.
    [Show full text]