2018 Guideline for the Management of Adults with Congenital Heart Disease

Total Page:16

File Type:pdf, Size:1020Kb

2018 Guideline for the Management of Adults with Congenital Heart Disease 2018 Guideline for the Management of Adults with Congenital Heart Disease GUIDELINES MADE SIMPLE A Selection of Tables and Figures ACC.org/GMSACHD 2018 Guideline for the Management of Adults with Congenital Heart Disease A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines Writing Committee: Karen K. Stout, MD, FACC, Chair Curt J. Daniels, MD, FACC, Vice Chair Jamil A. Aboulhosn, MD, FACC, FSCAI Biykem Bozkurt, MD, PhD, FACC, FAHA Craig S. Broberg, MD, FACC Jack M. Colman, MD, FACC Stephen R. Crumb, DNP, AAC Joseph A. Dearani, MD, FACC Stephanie Fuller, MD, MS, FACC Michelle Gurvitz, MD, FACC Paul Khairy, MD, PhD Michael J. Landzberg, MD, FACC Arwa Saidi, MB, BCH, FACC Anne Marie Valente, MD, FACC, FAHA, FASE George F. Van Hare, MD The 2018 ACHD guideline is a full revision of the “2008 ACC/AHA Guidelines for the Management of Adults with Congenital Heart Disease”, which was the first U.S. guideline to be published on the topic. This revision uses the 2008 ACHD guideline as a framework and incorporates new data and growing ACHD expertise to develop recommendations. The following resource contains tables and figures from the 2018 Guideline for the Management of Adults with Congenital Heart Disease. The resource is only an excerpt from the Guideline and the full publication should be reviewed for more tables and figures as well as important context. CITATION: J Am Coll Cardiol. Aug 2018, 25255; DOI 10.1016/j.jacc.2018.08.1029 2018 Guideline for the Management of Adults with Congenital Heart Disease GUIDELINES MADE SIMPLE Selected Table or Figure Page Physiological Variables as Used in ACHD AP Classification ………………………………………………… 4-7 ACHD Anatomic and Physiological (AP) Classification (CHD Anatomy + Physiological Stage = ACHD AP Classification ………………………………………… 8-10 Circumstances Where CMR, CCT, TEE, and/or Cardiac Catheterization May be Superior to TTE ……… 11 Comparison of Imaging Modalities Useful in ACHD Evaluation …………………………………………… 11 Specific Management Practices for Cyanotic CH …………………………………………………………… 12 Secundum ASD ………………………………………………………………………………………………… 13 Hemodynamically Significant Ventricular Level Shunt ……………………………………………………… 14 Isolated PR after Repair of PS ………………………………………………………………………………… 15 Pulmonary Valve Replacement in Patients With TOF Repair and PR ……………………………………… 16 Anomalous Aortic Origin of the Coronary Artery …………………………………………………………… 17 Routine Follow-Up and Testing Intervals for Specific Conditions: ASD …………………………………………………………………………………………………… 18 VSD …………………………………………………………………………………………………… 18 AVSD ………………………………………………………………………………………………… 18 PDA …………………………………………………………………………………………………… 18 Congenital Mitral Stenosis ………………………………………………………………………… 19 SubAS ………………………………………………………………………………………………… 19 Supravalvular Aortic Stenosis ……………………………………………………………………… 20 CoA …………………………………………………………………………………………………… 20 Valvular PS …………………………………………………………………………………………… 20 Branch and Peripheral PS …………………………………………………………………………… 21 Double-Chambered Right Ventricle ………………………………………………………………… 21 Ebstein Anomaly ……………………………………………………………………………………… 21 TOF …………………………………………………………………………………………………… 22 Right Ventricle-to-PA Conduit ……………………………………………………………………… 22 d-TGA with Atrial Switch …………………………………………………………………………… 23 d-TGA with Arterial Switch …………………………………………………………………………… 23 CCTGA ………………………………………………………………………………………………… 24 Fontan Palliation …………………………………………………………………………………… 24 Pulmonary Hypertension and Eisenmenger Syndrome …………………………………………… 25 Routine Follow-Up and Testing Intervals for Congenital Aortic Stenosis ………………………………… 26 GUIDELINES MADE SIMPLE Back to Table of Contents ACHD 2018 Guideline for the Management of Adults with Congenital Heart Disease Physiological Variables as Used in ACHD AP Classification (1 of 4) Variable Description Aortopathy Aortic enlargement is common in some types of CHD and after some repairs. Aortic enlargement may be progressive over a lifetime. There is no universally accepted threshold or repair, nor is the role of indexing to body size clearly dened in adults, as is done in pediatric populations. For purposes of categorization and timing of follow-up imaging: • Mild aortic enlargement is dened as maximum diameter 3.5–3.9 cm • Moderate aortic enlargement is dened as maximum diameter 4.0–4.9 cm • Severe aortic enlargement is dened as maximum diameter ≥5.0 cm Arrhythmia Arrhythmias are very common in patients with ACHD and may be both the cause and consequence of deteriorating hemodynamics, valvular dysfunction, or ventricular dysfunction. Arrhythmias are associated with symptoms, outcomes, and prognosis, thus are categorized based on presence and response to treatment. • No arrhythmia–no documented clinically relevant atrial or ventricular tachyarrhythmias •Arrhythmia not requiring treatment–bradyarrhythmia, atrial or ventricular tachyarrhythmia not requiring antiarrhythmic therapy, cardioversion, or ablation • Arrhythmia controlled with therapy: • Bradyarrhythmia requiring pacemaker implantation • Atrial or ventricular tachyarrhythmia requiring antiarrhythmic therapy, cardioversion, or ablation • AF and controlled ventricular response • Patients with an ICD • Refractory arrhythmias: • Atrial or ventricular tachyarrhythmia not currently responsive to or refractory to antiarrhythmic therapy or ablation Concomitant Severity dened according to the 2014 VHD guideline VHD • Mild VHD • Moderate VHD • Severe VHD Table 3 is continued in the next page. For abbreviations please refer to page 7. Table 3 4 GUIDELINES MADE SIMPLE Back to Table of Contents ACHD 2018 Guideline for the Management of Adults with Congenital Heart Disease Physiological Variables as Used in ACHD AP Classification (2 of 4) Variable Description End-organ Clinical and/or laboratory evidence of end-organ dysfunction including dysfunction • Renal (kidney) • Hepatic (liver) • Pulmonary (lung Exercise Patients with ACHD are often asymptomatic notwithstanding exercise limitations capacity demonstrated as diminished exercise capacity when evaluated objectively. Thus, assessment of both subjective and objective exercise capacity is important (see NYHA classication system below). Exercise capacity is associated with prognosis. • Abnormal objective cardiac limitation to exercise is dened as an exercise maximum ventilatory equivalent of oxygen below the range expected for the specic CHD anatomic diagnosis. • Expected norms for CPET values should take into account age, sex, and underlying congenital diagnosis. Published studies with institution-specic norms can be used as guides, bearing in mind variability among institutional norms and ranges. Hypoxemia/ See Section 3.16 for detailed denition of cyanosis. hypoxia/ cyanosis • Hypoxemia is dened as oxygen saturation measured by pulse oximetry at rest ≤90%. • Severe hypoxemia is dened as oxygen saturation at rest <85%. • In patients with normal or high hemoglobin concentrations, severe hypoxemia will be associated with visible cyanosis (which requires ≥5g/L desaturated hemoglobin to be appreciated). • The terms cyanosis and hypoxemia (or hypoxia) are sometimes used interchangeably. Such interchangeability would not apply; however, in the presence of anemia, when severe hypoxemia can be present without visible cyanosis. Table 3 is continued in the next page. For abbreviations please refer to page 7. Table 3 5 GUIDELINES MADE SIMPLE Back to Table of Contents ACHD 2018 Guideline for the Management of Adults with Congenital Heart Disease Physiological Variables as Used in ACHD AP Classification (3 of 4) Variable Description HA Class Functional Capacity functional classification I Patients with cardiac disease but resulting in no limitation of physical activity. system Ordinary physical activity does not cause undue fatigue, palpitation, dyspnea, or anginal pain. II Patients with cardiac disease resulting in slight limitation of physical activity. They are comfortable at rest. Ordinary physical activity results in fatigue, palpitation, dyspnea, or anginal pain. III Patients with cardiac disease resulting in marked limitation of physical activity. They are comfortable at rest. Less than ordinary activity causes fatigue, palpitation, dyspnea, or anginal pain. IV Patients with cardiac disease resulting in inability to carry on any physical activity without discomfort. Symptoms of HF or the anginal syndrome may be present even at rest. If any physical activity is undertaken, discomfort increases. Pulmonary Pulmonary hypertension is a broad term that encompasses pulmonary arterial hypertension, hypertension which is pulmonary hypertension with increased pulmonary vascular resistance. This document denes PH and PAH as they are used in the eld of pulmonary hypertension. Pulmonary hypertension is dened: Mean PA pressure by right heart catheterization ≥25 mm Hg. PAH is dened: Mean PA pressure by right heart catheterization ≥25 mm Hg and a pulmonary capillary wedge pressure ≤15 mm Hg and pulmonary vascular resistance ≥3 Wood units Table 3 is continued in the next page. For abbreviations please refer to page 7. Table 3 6 GUIDELINES MADE SIMPLE Back to Table of Contents ACHD 2018 Guideline for the Management of Adults with Congenital Heart Disease Physiological Variables as Used in ACHD AP Classification (4 of 4) Variable Description Shunt An intracardiac shunt is hemodynamically signicant if: (hemo- There is evidence of chamber enlargement distal to the shunt dynamically significant • And/or evidence of sustained Qp:Qs ≥1.5:1 shunt) • An intracardiac shunt not meeting
Recommended publications
  • How to Recognize a Suspected Cardiac Defect in the Neonate
    Neonatal Nursing Education Brief: How to Recognize a Suspected Cardiac Defect in the Neonate https://www.seattlechildrens.org/healthcare- professionals/education/continuing-medical-nursing-education/neonatal- nursing-education-briefs/ Cardiac defects are commonly seen and are the leading cause of death in the neonate. Prompt suspicion and recognition of congenital heart defects can improve outcomes. An ECHO is not needed to make a diagnosis. Cardiac defects, congenital heart defects, NICU, cardiac assessment How to Recognize a Suspected Cardiac Defect in the Neonate Purpose and Goal: CNEP # 2092 • Understand the signs of congenital heart defects in the neonate. • Learn to recognize and detect heart defects in the neonate. None of the planners, faculty or content specialists has any conflict of interest or will be presenting any off-label product use. This presentation has no commercial support or sponsorship, nor is it co-sponsored. Requirements for successful completion: • Successfully complete the post-test • Complete the evaluation form Date • December 2018 – December 2020 Learning Objectives • Describe the risk factors for congenital heart defects. • Describe the clinical features of suspected heart defects. • Identify 2 approaches for recognizing congenital heart defects. Introduction • Congenital heart defects may be seen at birth • They are the most common congenital defect • They are the leading cause of neonatal death • Many neonates present with symptoms at birth • Some may present after discharge • Early recognition of CHD
    [Show full text]
  • Congenital Cardiovascular Defects
    Statistical Fact Sheet 2016 Update Congenital Cardiovascular Defects Congenital cardiovascular defects, also known as congenital heart defects, are structural problems that arise from abnormal formation of the heart or major blood vessels. ICD-9 lists 25 congenital heart defects codes, of which 21 designate specified anatomic or hemodynamic lesions. Defects range in severity from tiny pinholes between chambers that may resolve spontaneously to major malformations that can require multiple surgical procedures before school age and may result in death in utero, in infancy, or in childhood. The common complex defects include the following: Tetralogy of Fallot (TOF) Transposition of the great Trends in age-adjusted death rates attributable to arteries congenital heart defects, 1999 to 2013. Atrioventricular septal de- fects (ASD) Coarctation of the aorta Hypoplastic left heart syn- drome Incidence Congenital heart defects are serious and common condi- tions that have significant impact on morbidity, mortali- ty, and healthcare costs in children and adults. The most commonly report- ed incidence of congenital heart defects in the United States is between 4 and 10 per 1,000, clustering around 8 per 1,000 live births. Continental variations in birth prevalence have been reported, from 6.9 per 1000 births in Europe to 9.3 per 1000 in Asia. An estimated minimum of 40,000 infants are expected to be affected each year in the United States. Of these, about 25%, or 2.4 per 1,000 live births, require invasive treatment in the first year of life. Prevalence It is estimated that there are an estimated 650,000 to 1.3 million children and adults living with con- genital heart disease in the United States.
    [Show full text]
  • Congenital Heart Disease Parent FAQ
    Congenital Heart Disease Parent FAQ achd.stanfordchildrens.org | achd.stanfordhealthcare.org About Congenital Heart Disease What is congenital heart disease? Congenital heart disease, also called congenital heart defect (CHD), is a heart problem that a baby is born with. When the heart forms in the womb, it develops incorrectly and does not work properly, which changes how the blood flows through the heart. What causes congenital heart defects? In most cases, there is no clear cause. It can be linked to something out of the ordinary happening during gestation, including a viral infection or exposure to environmental factors. Or, it may be linked to a single gene defect or chromosome abnormalities. How common is CHD in the United States among children? Congenital heart defects are the most common birth defects in children in the United States. Approximately 1 in 100 babies are born with a heart defect. What are the most common types of congenital heart defects in children? In general, CHDs disrupt the flow of blood in the heart as it passes to the lungs or to the body. The most common congenital heart defects are abnormalities in the heart valves or a hole between the chambers of the heart (ventricles). Examples include ventricular septal defect (VSD), atrial septal defect (ASD), and bicuspid aortic valve. At the Betty Irene Moore Children’s Heart Center at Stanford Children’s Health, we are known across the nation and world for treating some of the most complex congenital heart defects with outstanding outcomes. Congenital Heart Disease Parent FAQ | 2 Is CHD preventable? In some cases, it could be preventable.
    [Show full text]
  • Pulmonary-Atresia-Mapcas-Pavsdmapcas.Pdf
    Normal Heart © 2012 The Children’s Heart Clinic NOTES: Children’s Heart Clinic, P.A., 2530 Chicago Avenue S, Ste 500, Minneapolis, MN 55404 West Metro: 612-813-8800 * East Metro: 651-220-8800 * Toll Free: 1-800-938-0301 * Fax: 612-813-8825 Children’s Minnesota, 2525 Chicago Avenue S, Minneapolis, MN 55404 West Metro: 612-813-6000 * East Metro: 651-220-6000 © 2012 The Children’s Heart Clinic Reviewed March 2019 Pulmonary Atresia, Ventricular Septal Defect and Major Aortopulmonary Collateral Arteries (PA/VSD/MAPCAs) Pulmonary atresia (PA), ventricular septal defect (VSD) and major aortopulmonary collateral arteries (MAPCAs) is a rare type of congenital heart defect, also referred to as Tetralogy of Fallot with PA/MAPCAs. Tetralogy of Fallot (TOF) is the most common cyanotic heart defect and occurs in 5-10% of all children with congenital heart disease. The classic description of TOF includes four cardiac abnormalities: overriding aorta, right ventricular hypertrophy (RVH), large perimembranous ventricular septal defect (VSD), and right ventricular outflow tract obstruction (RVOTO). About 20% of patients with TOF have PA at the infundibular or valvar level, which results in severe right ventricular outflow tract obstruction. PA means that the pulmonary valve is closed and not developed. When PA occurs, blood can not flow through the pulmonary arteries to the lungs. Instead, the child is dependent on a patent ductus arteriosus (PDA) or multiple systemic collateral vessels (MAPCAs) to deliver blood to the lungs for oxygenation. These MAPCAs usually arise from the de- scending aorta and subclavian arteries. Commonly, the pulmonary arteries are abnormal, with hypoplastic (small and underdeveloped) central and branch pulmonary arteries and/ or non-confluent central pulmonary arteries.
    [Show full text]
  • Congenitally Corrected Transposition Gonzalo a Wallis1*, Diane Debich-Spicer2,3 and Robert H Anderson4
    Wallis et al. Orphanet Journal of Rare Diseases 2011, 6:22 http://www.ojrd.com/content/6/1/22 REVIEW Open Access Congenitally corrected transposition Gonzalo A Wallis1*, Diane Debich-Spicer2,3 and Robert H Anderson4 Abstract Congenitally corrected transposition is a rare cardiac malformation characterized by the combination of discordant atrioventricular and ventriculo-arterial connections, usually accompanied by other cardiovascular malformations. Incidence has been reported to be around 1/33,000 live births, accounting for approximately 0.05% of congenital heart malformations. Associated malformations may include interventricular communications, obstructions of the outlet from the morphologically left ventricle, and anomalies of the tricuspid valve. The clinical picture and age of onset depend on the associated malformations, with bradycardia, a single loud second heart sound and a heart murmur being the most common manifestations. In the rare cases where there are no associated malformations, congenitally corrected transposition can lead to progressive atrioventricular valvar regurgitation and failure of the systemic ventricle. The diagnosis can also be made late in life when the patient presents with complete heart block or cardiac failure. The etiology of congenitally corrected transposition is currently unknown, and with an increase in incidence among families with previous cases of congenitally corrected transposition reported. Diagnosis can be made by fetal echocardiography, but is more commonly made postnatally with a combination of clinical signs and echocardiography. The anatomical delineation can be further assessed by magnetic resonance imaging and catheterization. The differential diagnosis is centred on the assessing if the patient is presenting with isolated malformations, or as part of a spectrum.
    [Show full text]
  • Transcatheter Device Closure of Atrial Septal Defect in Dextrocardia with Situs Inversus Totalis
    Case Report Nepalese Heart Journal 2019; Vol 16(1), 51-53 Transcatheter device closure of atrial septal defect in dextrocardia with situs inversus totalis Kiran Prasad Acharya1, Chandra Mani Adhikari1, Aarjan Khanal2, Sachin Dhungel1, Amrit Bogati1, Manish Shrestha3, Deewakar Sharma1 1 Department of Cardiology, Shahid Gangalal National Heart Centre, Kathmandu, Nepal 2 Department of Internal Medicine, Kathmandu Medical College, Kathmandu,Nepal 3 Department of Pediatric Cardiology, Shahid Gangalal National Heart Centre, Kathmandu, Nepal Corresponding Author: Chandra Mani Adhikari Department of Cardiology Shahid Gangalal National Heart Centre Kathmandu, Nepal Email: [email protected] Cite this article as: Acharya K P, Adhikari C M, Khanal A, et al. Transcatheter device closure of atrial septal defect in dextrocardia with situs inversus totalis. Nepalese Heart Journal 2019; Vol 16(1), 51-53 Received date: 17th February 2019 Accepted date: 16th April 2019 Abstract Only few cases of Device closure of atrial septal defect in dextrocardia with situs inversus totalis has been reported previously. We present a case of a 36 years old male, who had secundum type of atrial septal defect in dextrocardia with situs inversus totalis. ASD device closure was successfully done. However, we encountered few technical difficulties in this case which are discussed in this case review. Keywords: atrial septal defect; dextrocardia; transcatheter device closure, DOI: https://doi.org/10.3126/njh.v16i1.23901 Introduction There are only two case reported of closure of secundum An atrial septal defect (ASD) is an opening in the atrial ASD associated in patients with dextrocardia and situs inversus septum, excluding a patent foramen ovale.1 ASD is a common totalis.
    [Show full text]
  • Tetralogy of Fallot.” These Podcasts Are Designed to Give Medical Students an Overview of Key Topics in Pediatrics
    PedsCases Podcast Scripts This is a text version of a podcast from Pedscases.com on “Tetralogy of Fallot.” These podcasts are designed to give medical students an overview of key topics in pediatrics. The audio versions are accessible on iTunes or at www.pedcases.com/podcasts. Tetralogy of Fallot Developed by Katie Girgulis, Dr. Andrew Mackie, and Dr. Karen Forbes for PedsCases.com. April 14, 2017 Introduction Hello, my name is Katie Girgulis and I am a medical student at the University of Alberta. This podcast was developed with the help of Dr. Andrew Mackie and Dr. Karen Forbes. Dr. Mackie is a pediatric cardiologist at the Stollery Children’s Hospital, and Dr. Forbes is a pediatrician and medical educator at the Stollery Children’s Hospital. This podcast is about the cardiac condition Tetralogy of Fallot (ToF). For teaching on the general approach to pediatric heart murmurs, please check out the ‘Evaluation of a Heart Murmur’ podcast on Pedscases.com. Slide 2 Learning Objectives By the end of this podcast, the learner will be able to: 1) Recognize the clinical presentations of ToF 2) Describe the four anatomical characteristics of ToF 3) Describe the pathophysiology of the murmur in ToF 4) Formulate initial steps when ToF is suspected 5) Delineate the treatment of hypercyanotic episodes 6) Summarize the definitive treatment for ToF Slide 3 Case – Baby Josh Let’s start with a clinical case: You are working with Dr. Smith, a family physician, during your family medicine rotation. Josh is a 4-month-old infant who is here for a well-baby check.
    [Show full text]
  • Congenital Heart Disease: Recognition and Treatment Options – Anna Gelzer
    CONGENITAL HEART DISEASE: RECOGNITION AND TREATMENT OPTIONS – ANNA GELZER Prevalence and Frequency Congenital heart disease in dogs: ≤ 1% (Canine clinic population of U Penn 1992) Cats estimated < 0.2% Prevalence likely underestimated (perinatal death, no murmur) Small % of cardiac disease overall, but most common in animals < 1 y old Common congenital cardiac defects in dogs (in the order of frequency): Subaortic stenosis (SAS) Pulmonic stenosis (PS) Patent ductus arteriosus (PDA) Tricuspid valve dysplasia (TVD) Ventricular septal defect (VSD) Tetralogy of Fallot (TOF) Persistent right aortic arch (PRAA) Atrial septal defects (ASD) Mitral valve dysplasia (MVD) Persistent left carnial venal cava Congenital cardiac defects in cats (in the order of frequency): Mitral valve dysplasia (MVD) Ventricular septal defect (VSD) Endocardial cushion defect (ASD+VSD) Patent ductus arteriosus (PDA) Aortic stenosis (SAS) Tetralogy of Fallot (TOF) Pulmonic stenosis (PS) Atrial septal defects (ASD) Tricuspid valve dysplasia (TVD) Physical exam finding in animals with most common congenital heart disease: The simple congenital heart defects are normally identified by the presence of a heart murmur. From the clinical examination, by localizing the heart murmur, identifying its radiation, assessing the precordial impulse and the peripheral pulse, a differential diagnosis list can be drawn up. The table summarizes the findings for some of the common defects identified in dogs and cats. Note, for these simple defects, mucus membrane color is normal (pink).
    [Show full text]
  • Subpulmonic Obstruction by Membranous Ventricular Septal Aneurysm in Congenitally Corrected Transposition of Great Arteries
    © 2013, Wiley Periodicals, Inc. DOI: 10.1111/echo.12279 Echocardiography The Windsock Syndrome: Subpulmonic Obstruction by Membranous Ventricular Septal Aneurysm in Congenitally Corrected Transposition of Great Arteries Louai Razzouk, M.D., M.P.H., Robert M. Applebaum, M.D., Charles Okamura, M.D., and Muhamed Saric, M.D., Ph.D. Leon H. Charney Division of Cardiology, New York University Langone Medical Center, New York, New York Anomalies of the membranous portion of the interventricular septum include perimembranous ventric- ular septal defect and/or membranous septal aneurysm (MSA). In congenitally corrected transposition of the great arteries (L-TGA in sinus solitus), the combination of ventricular inversion and arterial trans- position creates a unique anatomic substrate that fosters subpulmonic left ventricular outflow tract obstruction by an MSA. The combination of an L-TGA with subpulmonic obstruction by an MSA is referred to as the windsock syndrome. We report a case of windsock syndrome in a 25-year-old man which is to our knowledge the first three-dimensional echocardiographic description of this congenital entity. (Echocardiography 2013;30:E243-E248) Key words: congenitally corrected transposition of great arteries, L-TGA, obstruction, aneurysm, windsock Anomalies of the membranous portion of the (LV) into the lower pressure right ventricle (RV) interventricular septum include perimembranous rarely causes significant right ventricular outflow ventricular septal defect and/or membranous tract (RVOT) obstruction. This is because the septal aneurysm (MSA). Anatomically, MSA fre- MSA is located infracristal and distant from the quently resembles a windsock, a conical cloth pulmonic valve (PV).1 tube used to show wind direction. In congenitally corrected transposition of the In otherwise normal hearts, the protrusion of great arteries (TGA) (also referred to as L-TGA the MSA from the higher pressure left ventricle in situs solitus) the combination of ventricular Figure 1.
    [Show full text]
  • Isolated Ventricular Inversion with Situs Solitus
    Br Heart J: first published as 10.1136/hrt.37.3.293 on 1 March 1975. Downloaded from British HeartJournal, I975$ 37, 293-304. Isolated ventricular inversion with situs solitus M. Quero-Jimenez and I. Raposo-Sonnenfeld From Servicio de Cardiologia Pediatrica, Clinica Infantil La Paz, Madrid, Spain The clinical and anatomicalfindings in two patients with isolated ventricular inversion and situs solitus are described. The other 4 previously published cases are reviewed. The 6 patients with this malformation, all without pulmonary stenosis, presented a clinical picture of cyanotic congenital heart disease, associated with increased pulmonary blood flow (hypoxaemia and cardiac failure). The importance of different diagnostic tests is discussed and it is concluded that angiocardiography is the only definitive means of establishing the diagnosis. Because the physiopathological disturbance is the same as in transposition of the great arteries, both malformations should be similarly considered vith respect to diagnosis and treatment. Never- theless, the high incidence ofcertain associated malformations in cases ofisolated ventricular inversion adds to difficulty in diagnosis, and makes a good result from the Mustard procedure less likely than in transposition of the great arteries. In I966 Van Praagh and Van Praagh described a conus, conal septum, and conal free wall, as used in malformation characterized by ventricular inversion this paper. with situs solitus of the viscera and atria and nor- When present, the subaortic and subpulmonary mally
    [Show full text]
  • Association of Hand Anomalies with Congenital Heart Lesions in Mentally Retarded, State- Institutionalized Patients Marian Grace Jordison Yale University
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 1968 Association of hand anomalies with congenital heart lesions in mentally retarded, state- institutionalized patients Marian Grace Jordison Yale University Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Recommended Citation Jordison, Marian Grace, "Association of hand anomalies with congenital heart lesions in mentally retarded, state-institutionalized patients" (1968). Yale Medicine Thesis Digital Library. 2756. http://elischolar.library.yale.edu/ymtdl/2756 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. YALE MEDICAL LIBRARY 9002 01065 5752 seek ^ j IptxL-ffij y Li: Digitized by the Internet Archive in 2017 with funding from The National Endowment for the Humanities and the Arcadia Fund https://archive.org/details/associationofhanOOjord ASSOCIATION OF HAND ANOMALIES WITH CONGENITAL HEART LESIONS IN MENTALLY RETARDED, STATE- INSTITUTIONALIZED PATIENTS Marian Grace Jordison B.A. Stanford University, 1964 A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Doctor of Medicine Department of Epidemiology & Public Health Yale University School of Medicine April, 1968 y/3. TABLE OF CONTENTS PAGE Introduction. 1 Review of the literature. 3 I. Holt-Oram syndrome. 3 II. Epidemiology of congenital malformations. 6 A. Incidence. 6 B.
    [Show full text]
  • Congenital Heart Defects
    Congenital Heart Defects KNOW THE FACTS What is a congenital Detection heart defect? When can CHDs be detected? Congenital heart defects (CHDs) are problems present CHDs can be detected as early as the prenatal period or at birth that affect the structure or function of the heart. as late as adulthood (or escape detection altogether).2 They can affect how blood flows through the heart and The more severe the form of CHDs, the more likely it is to out to the rest of the body. be detected earlier.3 There are many types of heart defects, with different degrees of severity based on size, location, and other associated defects. Common examples include holes in different areas of the heart and narrow or leaky valves. In more severe forms of CHDs, blood vessels or heart chambers may be missing, poorly formed, or in the wrong place. Approximately 120 infant deaths are prevented each year with pulse oximetry screening What is the difference between congenital heart defect and congenital heart disease? These terms are often used interchangeably and How can CHDs be detected? are nearly synonymous. However, there is a slight There are a number of tools that can be used to aid difference between them. A congenital heart defect in the diagnosis of CHDs, including echocardiogram, refers specifically to a problem with the formation electrocardiogram, chest X-ray, chest CT, cardiac of the structure of the heart or major heart vessels in MRI, and prenatal ultrasound.4 One or more of these utero. Congenital heart disease refers to the clinical diagnostic tests may be ordered if a healthcare provider manifestation of an underlying anatomical defect, or finds a reason to suspect that the child has a CHD or if the more broadly describes functional problems which may child fails a newborn screening test.
    [Show full text]