Anodic Behaviour of Flavonoids Orientin, Eriodictyol and Robinin at a Glassy Carbon Electrode

Total Page:16

File Type:pdf, Size:1020Kb

Anodic Behaviour of Flavonoids Orientin, Eriodictyol and Robinin at a Glassy Carbon Electrode Full Paper Anodic Behaviour of Flavonoids Orientin, Eriodictyol and Robinin at a Glassy Carbon Electrode Eric de Souza Gil,a, b Adrian Teodor Enache,a Ana Maria de Oliveira-Brett*a a Departamento de Qumica, Faculdade de CiÞncias e Tecnologia, Universidade de Coimbra, 3004–535 Coimbra, Portugal b Faculdade de Farmcia, Universidade Federal de Gois, 74605–220, Goinia, Gois, Brasil *e-mail: [email protected] Received: April 20, 2012;& Accepted: May 31, 2012 Abstract Orientin, eriodictyol and robinin are polyphenolic compounds, and their oxidation mechanism is pH-dependent, in two steps, involving a different number of electrons and protons. Orientin and eriodictyol first oxidation occurs at a lower potential, corresponding to the reversible oxidation of the catechol group, and is followed by an irreversible oxidation on the ring-A at more positive potential. Robenin oxidation is irreversible, with the formation of electro- active products, and occurs at ring-A and ring-B. The electrochemical characterization of their redox behaviour brought useful data about their chemical stability, antioxidant and pro-oxidant activity, enabling a comprehensive understanding of their redox mechanism. Keywords: Orientin, Eriodictyol, Robinin, Oxidation, Glassy carbon electrode. DOI: 10.1002/elan.201200211 1 Introduction Orientin is a flavone, found in passion flower, bamboo leaves, aÅai pulps and wardii berries [5–7]. Chemically is Flavonoids constitute, among other compounds, an impor- the 8-C glucoside of the widespread citrus flavone, luteo- tant class of antioxidants that inhibit the oxidative degra- lin [8]. dation of organic materials including a large number of Eriodictyol, 3’,4’,5,7-tetrahydroxyflavanone, is found in biological aerobic organisms and commercial products. several types of plants, such as yerba santa (eriodictyon As well as many polyphenols, flavonoids owe their anti- californicum), pistachio (pistacia vera), cork (quercus oxidant activity to their ability to scavenge radicals, by suber), lemon balm (melissa officinalis), rose hips (rosa hydrogen or electron transfer, in a much faster process canina), tomato and lemon species [9–13]. than the radical attack to an organic substrate [1,2]. Robinin, kaempferol 3-O-robinoside-7-O-rhamnoside, The major class of flavonoids may be divided into sev- is a glycoside of the well-studied flavonol, kaempferol eral subclasses, flavonols, flavones, flavanonols, flava- [14,15], that can be isolated from various genus of herbs, nones, isoflavonoids, catechins and anthocianidins, as well such as astragalus (flaronin, milk-vetch), pueraria a varying number of polymeric compounds [1–3]. (kudzu), vinca (periwinkle) and also from false acacia Consumption of flavonoid-rich foods, in particular (robinia pseudoacacia), a garden tree [14–16]. fruits and vegetables, is associated with a lower incidence The importance of these three distinct flavonoids is in of heart disease, ischemic stroke, cancer, and other chron- their diverse biological effects which include radioprotec- ic diseases. Additional studies also found inverse associa- tive, antitumour, antimicrobial, vasodilatory and anti-in- tions between flavonoid intake and the risk of stroke and flammatory actions [5–14]. Eriodictyol has been used as lung and colorectal cancers [2–4]. Because these chronic bitter masking in cosmetic and pharmaceutical formula- diseases are associated with increased oxidative stress and tions [13], while robinin is one of the active constituents flavonoids are strong antioxidants in vitro, it has been of the commercial drug flaronin, which has been widely suggested that dietary flavonoids exert health benefits used in the treatment of acute and chronic renal failures through antioxidant mechanisms [1–5]. Besides these [17,18]. benefits, several studies have shown that in specific condi- Regarding the structureÀactivity relationship, the tions the flavonoids can play pro-oxidant function [3,4]. mechanism of action of flavonoids is related to the physi- Among flavonoids derivatives, orientin, eryodictiol and cochemical properties of their electroactive moieties, e.g., robenin, Scheme 1, are of particular interest due their phenol, catechol and resorcinol [2–4]. great occurrence in foodstuffs, cosmetics and pharmaceut- Due to their high sensitivity, voltammetric methods ical products. have been successfully used for the investigation of oxida- tion mechanism of biological active substituted phenols, 1576 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Electroanalysis 2012, 24, No. 7, 1576 – 1583 Anodic Behaviour of Flavonoids Orientin, Eriodictyol and Robinin at a GCE Scheme 1. Chemical structures of orientin, eriodictyol and robinin. providing valuable insights into their redox behaviour 2 Experimental and their detection in various samples. The electrochemi- cal characterization of the mostly widespread flavonoids 2.1 Materials and Reagents has already been investigated at different carbon elec- trode materials: glassy carbon, carbon paste, etc. [19–23] Orientin, eriodictyol and robinin were purchased from and their oxidation mechanisms were correlated with the Extrasynthse (Genay, France) and used without further electroactive groups: phenol, resorcinol and catechol. purification. A stock solution was prepared in ethanol-de- The oxidation of phenol and resorcinol is an irreversi- ionised water (30:70, v/v) and stored at +48C. Solutions ble pH dependent process, occurring in one step, leading of different concentrations were prepared by dilution of to electroactive products [24]. The catechol oxidation is the appropriate quantity in supporting electrolyte. All also pH dependent, and occurs in a two electron two supporting electrolyte solutions, were prepared using ana- proton reversible mechanism [24]. Although the electro- lytical grade reagents and purified water from a Millipore chemical oxidation mechanisms of flavonoids is basically Milli-Q system (conductivity 0.1 mScmÀ1) [25]. addressed considering the position and number of hy- droxyl groups, the different types of chemical substitu- 2.2 Apparatus ents, OCH3, sugar, etc., can also have influence on their redox behaviour and oxidation products formation [19– Voltammetric experiments were carried out using a mAu- 24]. tolab running with GPES 4.9 software, Eco-Chemie, The present study is concerned with the investigation Utrecht, The Netherlands. Measurements were carried of the electron transfer reactions of the three flavonoids, out using a three-electrode system in a 0.5 mL one-com- orientin, eriodictyol and robinin, using cyclic, differential partment electrochemical cell (Cypress System Inc., pulse and square wave voltammetry at a glassy carbon USA). Glassy carbon electrode (GCE, d=1.0 mm) was electrode, and so far no electrochemical study of these the working electrode, Pt wire the counter electrode and compounds has been carried out. Therefore, owing to the Ag/AgCl (3 mol LÀ1 KCl) reference electrode. The their different structure, their redox mechanisms and the GCE was polished using diamond particles of 1 mm influence of non electroactive groups, like the sugar (Kemet, UK) before each electrochemical experiment. moiety and the C3=C2 double bond, will influence the After polishing, it was rinsed thoroughly with Milli-Q redox behaviour of these flavonoids, providing important water. Following this mechanical treatment, the GCE was data for the development of electroanalytical methods placed in buffer supporting electrolyte and voltammo- and also for the understanding of structure activity rela- grams were recorded until a steady state baseline voltam- tionships and antioxidant properties. mograms were obtained. This procedure ensured very re- Electroanalysis 2012, 24, No. 7, 1576 – 1583 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.electroanalysis.wiley-vch.de 1577 Full Paper E. de Souza Gil et al. producible experimental results. The experimental condi- tions for differential pulse (DP) voltammetry were: pulse amplitude 50 mV, pulse width 70 ms and scan rate 5mVsÀ1. For square wave (SW) voltammetry were: pulse 50 mV, frequency 50 Hz and potential increment 2 mV, corresponding to an effective scan rate of 100 mVsÀ1. The pH measurements were carried out with a Crison micropH 2001 pH-meter with an Ingold combined glass electrode. All experiments were done at room tempera- ture (25Æ18C) and microvolumes were measured using EP-10 and EP-100 Plus Motorized Microliter Pippettes (Rainin Instrument Co. Inc., Woburn, USA). 2.3 Acquisition and Presentation of Voltammetric Data All the voltammograms presented were background-sub- tracted and baseline-corrected using the moving average application with a step window of 5 mV included in GPES version 4.9 software. This mathematical treatment improves the visualisation and identification of peaks over the baseline without introducing any artefact, al- though the peak intensity is, in some cases, reduced (<10%) relative to that of the untreated curve. Never- theless, this mathematical treatment of the original vol- tammograms was used in the presentation of all experi- mental voltammograms for a better and clearer identifica- tion of the peaks. The values for peak current presented in all plots were determined from the original untreated voltammograms after subtraction of the baseline. 3 Results and Discussion 3.1 Cyclic Voltammetry Orientin and eriodictyol have a catechol moiety at ring-B, and two hydroxyl groups at ring-A similar to resorcinol and were studied by cyclic voltammetry. The cyclic voltammogram
Recommended publications
  • Research Article Simultaneous Extraction Optimization And
    Hindawi Publishing Corporation ISRN Biotechnology Volume 2013, Article ID 450948, 10 pages http://dx.doi.org/10.5402/2013/450948 Research Article Simultaneous Extraction Optimization and Analysis of Flavonoids from the Flowers of Tabernaemontana heyneana by High Performance Liquid Chromatography Coupled to Diode Array Detector and Electron Spray Ionization/Mass Spectrometry Thiyagarajan Sathishkumar,1 Ramakrishnan Baskar,1 Mohan Aravind,1 Suryanarayanan Tilak,1 Sri Deepthi,1 and Vellalore Maruthachalam Bharathikumar2 1 Department of Biotechnology, Kumaraguru College of Technology, Coimbatore 641049, India 2 Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5 Correspondence should be addressed to iyagarajan Sathishkumar; [email protected] Received 24 June 2012; Accepted 9 August 2012 Academic Editors: Y. H. Cheong, H. Kakeshita, W. A. Kues, and D. Pant Copyright © 2013 iyagarajan Sathishkumar et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Flavonoids are exploited as antioxidants, antimicrobial, antithrombogenic, antiviral, and antihypercholesterolemic agents. Normally, conventional extraction techniques like soxhlet or shake �ask methods provide low yield of �avonoids with structural loss, and thereby, these techniques may be considered as inefficient. In this regard, an attempt was made to optimize the �avonoid extraction using orthogonal design of experiment and subsequent structural elucidation by high-performance liquid chromatography-diode array detector-electron spray ionization/mass spectrometry (HPLC-DAD-ESI/MS) techniques. e shake �ask method of �avonoid extraction was observed to provide a yield of (mg/g tissue). With the two different solvents, namely, ethanol and ethyl acetate, tried for the extraction optimization of �avonoid, ethanol (80.1 mg/g tissue) has been proved better than ethyl acetate (20.5 mg/g tissue).
    [Show full text]
  • Figure S1. Heat Map of R (Pearson's Correlation Coefficient)
    Figure S1. Heat map of r (Pearson’s correlation coefficient) value among different samples including replicates. The color represented the r value. Figure S2. Distributions of accumulation profiles of lipids, nucleotides, and vitamins detected by widely-targeted UPLC-MC during four fruit developmental stages. The colors indicate the proportional content of each identified metabolites as determined by the average peak response area with R scale normalization. PS1, 2, 3, and 4 represents fruit samples collected at 27, 84, 125, 165 Days After Anthesis (DAA), respectively. Three independent replicates were performed for each stages. Figure S3. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway. Figure S4. Differential metabolites of PS2 vs PS1 group in phenylpropanoid biosynthesis pathway. Figure S5. Differential metabolites of PS3 vs PS2 group in flavonoid biosynthesis pathway. Figure S6. Differential metabolites of PS3 vs PS2 group in phenylpropanoid biosynthesis pathway. Figure S7. Differential metabolites of PS4 vs PS3 group in biosynthesis of phenylpropanoids pathway. Figure S8. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway and phenylpropanoid biosynthesis pathway combined with RNA-seq results. Table S1. A total of 462 detected metabolites in this study and their peak response areas along the developmental stages of apple fruit. mix0 mix0 mix0 Index Compounds Class PS1a PS1b PS1c PS2a PS2b PS2c PS3a PS3b PS3c PS4a PS4b PS4c ID 1 2 3 Alcohols and 5.25E 7.57E 5.27E 4.24E 5.20E
    [Show full text]
  • Glycosides and Oligosaccharides in the L-Rhamnose Series
    [Agr. Biol. Chem., Vol. 31, No. 2, p. 133•`136, 1967] Glycosides and Oligosaccharides in the L-Rhamnose Series Part I. Enzymatic Partial Hydrolysis of Flavonoid-glycosides By Shintaro KAMIYA,Sachiko ESAKIand Misao HAMA Laboratoryof FoodChemistry, Shizuoka Women's Junior College,Shizuoka ReceivedJuly 9, 1966 Naringinase, which was induced from Aspergillus niger, consisted ƒÀ-D-glucosidase and ƒ¿-L-rhamnosidase. The former was successfully inactivated by heating the crude enzyme solution at 60•Ž and pH 6.4-,-6.8, whereas the latter was very stable under such treat ment. By using this enzyme solution flavonoid gycosides were partially hydrolyzed and prunin from naringin, isosakuranin from poncirin, hesperetin-7-ƒÀ-D-glucoside from hesperidin and neohesperidin, isoquercitrin from rutin, cosmociin from rhoifolin were obtained respec tively in good yields. Furthermore kaempherol-3-robinobioside, a new flavonol glycoside, and afzelin were obtained from robinin and kaempheritrin, respectively. INTRODUCTION components ƒÀ-D glucosidase and ƒ¿-L-rhamno The flavonoid-glycosides, which contain L- sidase. The authors have found that ƒÀ-D- rhamnose, widely occur in nature. Rhamno glucosidase was inactivated by heating at glucoside rutin, hesperidin, neohesperidin, 60•Ž pH 6.4-6.8, though the latter was very naringin, poncirin and rhoifolin are the most stable under such treatment. readily available flavonoid compounds at Furthermore partial hydrolysis of robinin present. The glucosides corresponding to the and kaempheritrin by the same enzyme gave above rhamnoglucosides, which are desired kaempherol-3-robinobioside, a new flavonoid, for biological testing have not been available. and afzelin as the result. To our knowledge, partial hydrolysis of the EXPERIMENTAL rhamnoglucosides to remove only the rham nose and leave the glucose still attached to 1) The Preparation of Enzyme Solution the flavonoid portion has been very difficult.
    [Show full text]
  • Analysis of the Binding and Interaction Patterns of 100 Flavonoids with the Pneumococcal Virulent Protein Pneumolysin: an in Silico Virtual Screening Approach
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library Der Pharmacia Lettre, 2016, 8 (16):40-51 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-5071 USA CODEN: DPLEB4 Analysis of the binding and interaction patterns of 100 flavonoids with the Pneumococcal virulent protein pneumolysin: An in silico virtual screening approach Udhaya Lavinya B., Manisha P., Sangeetha N., Premkumar N., Asha Devi S., Gunaseelan D. and Sabina E. P.* 1School of Biosciences and Technology, VIT University, Vellore - 632014, Tamilnadu, India 2Department of Computer Science, College of Computer Science & Information Systems, JAZAN University, JAZAN-82822-6694, Kingdom of Saudi Arabia. _____________________________________________________________________________________________ ABSTRACT Pneumococcal infection is one of the major causes of morbidity and mortality among children below 2 years of age in under-developed countries. Current study involves the screening and identification of potent inhibitors of the pneumococcal virulence factor pneumolysin. About 100 flavonoids were chosen from scientific literature and docked with pnuemolysin (PDB Id.: 4QQA) using Patch Dockprogram for molecular docking. The results obtained were analysed and the docked structures visualized using LigPlus software. It was found that flavonoids amurensin, diosmin, robinin, rutin, sophoroflavonoloside, spiraeoside and icariin had hydrogen bond interactions with the receptor protein pneumolysin (4QQA). Among others, robinin had the highest score (7710) revealing that it had the best geometrical fit to the receptor molecule forming 12 hydrogen bonds ranging from 0.8-3.3 Å. Keywords : Pneumococci, pneumolysin, flavonoids, antimicrobial, virtual screening _____________________________________________________________________________________________ INTRODUCTION Streptococcus pneumoniae is a gram positive pathogenic bacterium causing opportunistic infections that may be life-threating[1]. Pneumococcus is the causative agent of pneumonia and is the most common agent causing meningitis.
    [Show full text]
  • 1 Alkaloid Drugs
    1 Alkaloid Drugs Most plant alkaloids are derivatives of tertiary amines, while others contain primary, secondary or quarternary nitrogen. The basicity of individual alkaloids varies consider- ably, depending on which of the four types is represented. The pK, values (dissociation constants) lie in the range of 10-12 for very weak bases (e.g. purines), of 7-10 for weak bases (e.g. Cinchona alkaloids) and of 3-7 for medium-strength bases (e.g. Opium alkaloids). 1.1 Preparation of Extracts Alkaloid drugs with medium to high alkaloid contents (31%) Powdered drug (Lg) is mixed thoroughly with Iml 10Yo ammonia solution or 10% General method, Na,CO, solution and then extracted for lOmin with 5ml methanol under reflux. The extraction filtrate is then concentrated according to the total alltaloids of the specific drug, so that method A 100p1 contains 50-100pg total alkaloids (see drug list, section 1.4). Rarmalae semen: Powdered drug (Ig) is extracted with lOml methanol for 30min Exception under reflux. The filtrate is diluted 1:10 with methanol and 20pl is used for TLC. Strychni semen: Powdered seeds (Ig) are defatted with 20 rnl n-hexane for 30min under reflux. The defatted seeds are then extracted with lOml methanol for lOmin under reflux. A total of 30yl of the filtrate is used for TL.C. Colchici semen: Powdered seeds (1 g) are defatted with 20 ml n-hexane for 30 min under reflux. The defiitted seeds are then extracted for 15 min with 10ml chloroform. After this, 0.4ml 10% NH, is added to the mixture, shaken vigorously and allowed to stand for about 30min before fillration.
    [Show full text]
  • Quercetin Gregory S
    amr Monograph Quercetin Gregory S. Kelly, ND Description and Chemical Composition 5, 7, 3’, and 4’ (Figure 2). The difference between quercetin and kaempferol is that the latter lacks Quercetin is categorized as a flavonol, one of the the OH group at position 3’. The difference six subclasses of flavonoid compounds (Table 1). between quercetin and myricetin is that the latter Flavonoids are a family of plant compounds that has an extra OH group at position 5’. share a similar flavone backbone (a three-ringed By definition quercetin is an aglycone, lacking an molecule with hydroxyl [OH] groups attached). A attached sugar. It is a brilliant citron yellow color multitude of other substitutions can occur, giving and is entirely insoluble in cold water, poorly rise to the subclasses of flavonoids and the soluble in hot water, but quite soluble in alcohol different compounds found within these subclasses. Flavonoids also occur as either glycosides (with attached sugars [glycosyl groups]) or as aglycones (without attached sugars).1 Figure 1. 3-Hydroxyflavone Backbone with Flavonols are present in a wide variety of fruits Locations Numbered for Possible Attachment and vegetables. In Western populations, estimated of Hydroxyl (OH) and Glycosyl Groups daily intake of flavonols is in the range of 20-50 mg/day.2 Most of the dietary intake is as 3’ flavonol glycosides of quercetin, kaempferol, and 2’ 4’ myricetin rather than their aglycone forms (Table 8 1 2). Of this, about 13.82 mg/day is in the form of O 1’ 2 7 5’ quercetin-type flavonols. 2 The variety of dietary flavonols is created by the 6’ 6 differential placement of phenolic-OH groups and 3 OH attached sugars.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2003/0082101 A1 Taylor Et Al
    US 20030082101A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2003/0082101 A1 Taylor et al. (43) Pub. Date: May 1, 2003 (54) ACCELERATORS FOR INCREASING THE Related U.S. Application Data RATE OF FORMATION OF FREE RADICALS AND REACTIVE OXYGEN SPECIES (60) Provisional application No. 60/296,761, filed on Jun. 11, 2001. (75) Inventors: Kevin Taylor, Mason, OH (US); Jody Mesaros, Mason, OH (US) Publication Classification Correspondence Address: (51) Int. Cl." ....................... A61K 51/00; A61K 31/555; BROWDY AND NEIMARK, P.L.L.C. A61K 33/24 624 Ninth Street, N.W. (52) U.S. Cl. ........................... 424/1.11; 514/185; 514/58; Washington, DC 20001 (US) 424/617; 604/20 (57) ABSTRACT (73) Assignee: Cavalier Discovery, Mason, OH The formation of free radicals is enhanced with photody namic agents, Sonodynamic agents, and Systems and thera (21) Appl. No.: 10/166,038 pies utilizing ultrasound by Subjecting the agent to light waves or Sound waves in the presence of a metal, a reduc (22) Filed: Jun. 11, 2002 tant, or a chelate, or mixtures thereof. Patent Application Publication May 1, 2003 US 2003/0082101 A1 ?NIN3dOONIH NOILOTOA?Zoo (1=x) US 2003/0082101 A1 May 1, 2003 ACCELERATORS FOR INCREASING THE RATE 0006 Ultrasonic cavitation (the ultrasound-driven OF FORMATION OF FREE RADICALS AND growth of microbubbles from tiny gas pockets present in a REACTIVE OXYGEN SPECIES Solution, and their Subsequent Violent collapse which pro duces locally extreme temperatures and preSSures inside CROSS REFERENCE TO RELATED these collapsible bubbles) seems to be required for a sono APPLICATION dynamic effect.
    [Show full text]
  • Flavonoids: a Review Application. Parti For
    J. Appl. Cosmetol. 25, 93-709 (July/September 2007) FLAVONOIDS: A REVIEW FOR COSMETIC APPLICATION. PARTI Mrs.ir. Elzbieta E.Brand-Garnys ', Dr. Horst Denzer ', Dr. Hamke Meijer ', Dr.ir. Hans M.Brand ' ' ELZBIETA COSMETICS B.V., Nieuwerkerk a/d IJssel - The Netherlands ' KAO CHEMICALS GmbH, Emmerich - Germany Received: March, 2007. Key words: Bio-active substances; Biologico/ extracts; Enzyme monipulation; Enzyme cofoctor; Summary Flavonoids are now recognised as essential dietary components, although their functions are just on the brink of understanding. Dietary requirements have been establi shed. Their significance is proba­ bly equal to vitamins. Approximately 5000 flavonoids have been identified, and the list is quickly expanding. The functionality of flavonoids is frequently "multi-purpose", contrary to vitamins, enzy­ mes and (to a lesser extent) hormones. Riassunto I flavonoidi sono riconosciuti come componenti essenziali delle diete, anche se non sono state anco­ ra comprese appieno le loro funzioni. Comunque ne è stato riconosciuto il loro ruolo dietetico che dovrebbe essere simile a quello delle vitamine. Circa 5000 sono i flavonoidi già identificati ed il loro numero si incrementa di continuo. Al contra­ rio delle vitamine, degli enzimi e degli ormoni, l'attività di questi composti naturali è più complessa e serve a molteplici scopi. 93 Flavonoids: a Review far Cosmetic App/ication INTRODUCTION noi. The corresponding flavonoids may be for­ med from the chalcones via oxidative ring closu­ The Greek word "flava" means yellow. re. Also flavonoids are known that are formed by Flavonoids represent a broad variation of aroma­ reduction of the carbonyl group on the 4-posi­ tic compounds occurring in higher plants, fre­ tion.
    [Show full text]
  • Chemical Constituents of Vigna Luteola and Their Anti-Inflammatory
    molecules Article Chemical Constituents of Vigna luteola and Their Anti-inflammatory Bioactivity Sio-Hong Lam 1,†, Yue-Chiun Li 2,†, Ping-Chung Kuo 1,* , Tsong-Long Hwang 3,4,5 , Mei-Lin Yang 1, Chien-Chiao Wang 3 and Jason T. C. Tzen 2,* 1 School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; [email protected] (S.-H.L.); [email protected] (M.-L.Y.) 2 Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan; [email protected] 3 Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; [email protected] (T.-L.H.); [email protected] (C.-C.W.) 4 Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan 5 Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan * Correspondence: [email protected] (P.-C.K.); [email protected] (J.T.C.T.); Tel.: +886-6-2353535 (ext. 6806) (P.-C.K.); +886-4-22840328 (J.T.C.T.) † These authors contributed equally to this work. Received: 18 March 2019; Accepted: 7 April 2019; Published: 8 April 2019 Abstract: Seventy-three compounds were identified from the methanol extract of V. luteola, and among these, three new (1–3) were characterized by spectroscopic and mass spectrometric analyses. The isolated constituents were assessed for anti-inflammatory potential evaluation, and several purified principles exhibited significant superoxide anion and elastase inhibitory effects.
    [Show full text]
  • Subject Index
    Subject Index Absolute configuration 28, 30, 267 A-Ring protons (NMR), C-6 and C-8 261-265 Acacetin 43, 48, 55, 57 -- -,C-5 264 -, UV spectra of 90 Artemetin 43, 56, 60, 277 Acacetin 7-0-glucoside 43,55, 58 -, NMR spectrum of 308 - -, UV spectra of 91 -, UV spectra of 155 Acetylated aglycone 31,45,271 Astilbin 40, 170, 172, 174, 278 Acetylation of TMS ethers 255, 259 -, NMRspectrum of 327 7-Acetyloxy-6-carbomethoxyisoflavone 277 -, UV spectra of 255 -, NMR spectrum of 312 Aurone 40 Acid hydrolysis 24 Aurones, NMR spectra index 274 Afrormosin 14, 166, 169, 173,278 -, -- interpretation 254--272 -, NMR spectrum of 320 -, numbering system 13, 227 -, structure of 20 -, paper chromatography 13 -, UV spectra of 195 -, thin-layer chromatography 22 Aglycone, degradation 28 -, UV spectra index 230 -, identification 27 -, UV spectra interpretation 227,230 -, methylation and acetylation 31,45 - (see also UV and NMR) Baicalein (5,6,7-trihydroxyflavone) 43,45,57 Aluminum chloride for UV spectroscopy 35 - -, UV spectra of 77 --- -, chalcones and aurones 229 Baicalin (5,6,7-trihydroxyflavone 7-0-glucuronide) --- -,5-deoxy-7-hydroxyflavones 53 43, 55, 57 --- -, flavones and flavonols 50-56 -- -, UV spectra of 78 --- -, isoflavones, flavanones, and Baker-Venkataraman transformation 28 dihydroflavonols 171 Bands land II 41 Amentoflavone 43,46,49,55,58,279 -- -, chalcones and aurones 227 -, NMR spectrum of 343 -- -, flavones and flavonols 42 -, UV spectra of 110 -- -, isoflavones, flavanones and Ammonia, paper chromatographie spot detection dihydroflavonols
    [Show full text]
  • ?-Fructosidase from Yeast
    Agric. Biol. Chem., 48 (6), 1559~1563, 1984 1559 Effect of Flavonoids on a-Glucosidase and /?-Fructosidase from Yeast Masayoshi Iio, Ayako Yoshioka, Yumiko Imayoshi, Chikako Koriyama and Ayako Moriyama Departmentof Foodand Nutrition Science, Faculty of Life Sciences, KumamotoWomen's University, Kumamoto862, Japan Received December 9, 1983 The influence of 16 flavonoids on yeast a-glucosidase and /?-fructosidase was investigated. Either />-nitrophenyl-a-D-glucopyranoside or maltose was used as substrate for a-glucosidase, and sucrose for jS-fructosidase. Quercetin, myricetin, fisetin, and quercitrin strongly inhibited a- glucosidase at 0.1 mM.The concentrations which gave 50%inhibition were 4, 8, 8, 20, and 20jum for myricetin, quercetin, fisetin, kaempferol, and quercitrin, respectively. The mode of inhibition was found to be mixed type, close to non-competitive type with quercetin and quercitrin. Fisetin, naringenin, and morin showed mixed type inhibition. Albumin from bovine serum slightly affected the anti-a-glucosidase activity of quercetin. The flavonoids tested exhibited little effect on /?- fructosidase activity at 0.1 mM. Flavonoids have attracted interest as food kinase, glucose-6-phosphate dehydrogenase, ATPsodium components. They show bitterness in taste, salt, and NADP sodium salt were obtained from Boehringer. Other chemicals were also purchased from the anti-vitamin Bx activity, antioxidative action, commercial sources indicated. Maltose, quercetin, morin, mutagenicity,1* reaction with proteins,2) and so quercitrin, and rutin (Wako); naringenin, and naringin forth. They have been studied from the food (Tokyo Kasei); fisetin, chrysin, and myricetin (Aldrich); chemical point of view. On the other hand, hesperidin (Nakarai); kaempferol (Sigma); /?-nitrophenyl- their biochemical, physiological, and pharma- a-D-glucopyranoside (Koch-Light).
    [Show full text]
  • Rubber Composition and Tire with Rubber Containing Flavone
    (19) TZZ ¥Z¥__T (11) EP 2 730 431 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 14.05.2014 Bulletin 2014/20 B60C 1/00 (2006.01) C08K 5/1545 (2006.01) (21) Application number: 13191506.8 (22) Date of filing: 05.11.2013 (84) Designated Contracting States: (72) Inventor: Sandstrom, Paul Harry AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Cuyahoga Falls, Ohio 44223 (US) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (74) Representative: Kutsch, Bernd Designated Extension States: Goodyear S.A. BA ME Patent Department Avenue Gordon Smith (30) Priority: 13.11.2012 US 201213674978 7750 Colmar-Berg (LU) (71) Applicant: The Goodyear Tire & Rubber Company Akron, Ohio 44316 (US) (54) Rubber composition and tire with rubber containing flavone (57) A rubber composition comprising a diene based cobalt. Also, a pneumatic tire comprising such a rubber elastomer and an adhesion promoter derived from a fla- composition is disclosed. vone, a methylene donor and a methylene acceptor is disclosed. The rubber composition is essentially free of EP 2 730 431 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 730 431 A1 Description Background of the Invention 5 [0001] A tire is a composite of several components each serving a specific and unique function yet all synergistically functioning to produce the desired performance. In several tire components, an in-situ resin is included in a rubber composition to impart desirable properties to the rubber composition, including hardness, tear strength, and adhesion to reinforcement.
    [Show full text]