?-Fructosidase from Yeast

Total Page:16

File Type:pdf, Size:1020Kb

?-Fructosidase from Yeast Agric. Biol. Chem., 48 (6), 1559~1563, 1984 1559 Effect of Flavonoids on a-Glucosidase and /?-Fructosidase from Yeast Masayoshi Iio, Ayako Yoshioka, Yumiko Imayoshi, Chikako Koriyama and Ayako Moriyama Departmentof Foodand Nutrition Science, Faculty of Life Sciences, KumamotoWomen's University, Kumamoto862, Japan Received December 9, 1983 The influence of 16 flavonoids on yeast a-glucosidase and /?-fructosidase was investigated. Either />-nitrophenyl-a-D-glucopyranoside or maltose was used as substrate for a-glucosidase, and sucrose for jS-fructosidase. Quercetin, myricetin, fisetin, and quercitrin strongly inhibited a- glucosidase at 0.1 mM.The concentrations which gave 50%inhibition were 4, 8, 8, 20, and 20jum for myricetin, quercetin, fisetin, kaempferol, and quercitrin, respectively. The mode of inhibition was found to be mixed type, close to non-competitive type with quercetin and quercitrin. Fisetin, naringenin, and morin showed mixed type inhibition. Albumin from bovine serum slightly affected the anti-a-glucosidase activity of quercetin. The flavonoids tested exhibited little effect on /?- fructosidase activity at 0.1 mM. Flavonoids have attracted interest as food kinase, glucose-6-phosphate dehydrogenase, ATPsodium components. They show bitterness in taste, salt, and NADP sodium salt were obtained from Boehringer. Other chemicals were also purchased from the anti-vitamin Bx activity, antioxidative action, commercial sources indicated. Maltose, quercetin, morin, mutagenicity,1* reaction with proteins,2) and so quercitrin, and rutin (Wako); naringenin, and naringin forth. They have been studied from the food (Tokyo Kasei); fisetin, chrysin, and myricetin (Aldrich); chemical point of view. On the other hand, hesperidin (Nakarai); kaempferol (Sigma); /?-nitrophenyl- their biochemical, physiological, and pharma- a-D-glucopyranoside (Koch-Light). Apiin, herbacitrin, cological effects have also been investigated myricitrin, robinin, and gossypitrin were obtained through the courtesy of Professor Toshio Nakabayashi of and various activities were found.3) Some in- Shizuoka University. vestigators consider them to be semi-essential nutrients. Enzymeactivity assay. (1) a-Glucosidase with p-nitrophenyl-<x-D-gluco- Wehave reported that flavonoids inhibit pyranoside (NPG). The reaction was performed in a alkaline phosphatase4) and glyoxalase I,5) as cuvette which was kept at 37°C in a temperature- part of our study of biochemical effect of controlled cuvette holder in a Shimadzu spectrophotom- flavonoids. eter UV240. The reaction mixture contained 2.96ml of The present report describes inhibition of 0.2mM NPG in 0.1 M phosphate buffer, pH 6.0, 20//1 of yeast a-glucosidase (a-D-glucoside glucohy- 15 mM flavonoid in dimethyl sulfoxide (DMSO), and 20 /^1 of enzyme solution. Absorbance at 402nmwas recorded drolase EC 3.2.1.20), but weak or no inhibi- every 5 sec for the initial 30 sec. The enzyme amount giving tion of /?-fructosidase (/?-D-fructofuranoside an increase of about 0.07/30sec in absorbance was used. fructohydrolase EC 3.2.1.26) by flavonoids, The degree of inhibition (%) was expressed as (l-AAtcJ the mode of inhibition, and the effect of albu- ^control) x 100, where AAindicates the absorbance in- crease in 30sec. min on the inhibitory activity. Some struc- (2) a-Glucosidase with maltose. Glucose was deter- ture-activity relationships are also dicussed. mined in terms of NADPHproduced by the action of hexokinase and glucose-6-phosphate dehydrogenase in the MATERIALS AND METHODS presence of ATP and NADP.6) The reaction mixture contained 1.43ml of 0.1 m acetate buffer, pH 6.0, 0.50ml Materials. Yeast a-glucosidase, /?-fructosidase, hexo- of0.58 m maltose, 20//I of 10mMflavonoid in DMSO, and 1560 M. Iio et al. 50 fi\ of a-glucosidase solution. The amount of enzyme per had I50 values listed in Table II. Myricetin, reaction mixture was one which liberated 3.3/xmol of quercetin, and fisetin were found to be the glucose per minute. The reaction was initiated by adding the enzymesolution and the mixture was kept at 37°C for most potent in inhibitory action. Whenmal- 4 min. The reaction was terminated by putting the mixture tose was employed as substrate, quercetin into a boiling bath for 3min. An aliquot (10/d) was taken and fisetin showed considerable inhibition, to determine the amount of glucose liberated, by the too (Table III). The degree of inhibition was method described in ref. 6. reduced to some extent, probably because the (3) P-Fructosidase. The reaction mixture contained substrate concentration was much higher 2.50ml of 2him sucrose in 0.2m phosphate buffer, pH 6.8, and 25jjI of 10mMflavonoid in DMSO.The reaction was initiated by adding 0. 10 ml of enzyme solution, which produced 0.46/miol of glucose and fructose in 1 min, and the mixture was kept at 37°C for 20min. An aliquot (100//I) was used to determine the reducing power due to t* 50 glucose and fructose liberated by the modification of Somogyi and Nelson's method described by Hatanaka and Kobara.7) RESULTS AND DISCUSSION 0 10 20 Effect offlavonoids on a-glucosidase activity Quercetin Concentration (uM) The effect is summarized in Table I when Fig. 1. Inhibition of a-Glucosidase Activity as a NPGwas used as substrate. Quercetin, myri- Function of Concentration. setin, fisetin, quercitrin, and kaempferol The reaction conditions were the same as those described showed strong inhibition, whereas myricitrin, in the legend to Table I except that concentrations of morin, naringenin, gossypitrin, herbacirin, quercetin were varied. Each point indicates the average of and rutin exhibited mediumto weak inhibi- quadruplicate measurements. tion at 0.1 mM.Figure 1 shows inhibition (%) Table II. I50 Values of Flavonoids Inhibitory of the activity as a function of quercetin con- TO a-GLUCOSIDASE centration. The quercetin concentration The reaction condition was the same as that described giving 50%inhibition (I50) was determined to in the legend to Table I except that concentrations of the be 8//M from this result. Other flavonoids flavonoid were varied. Table I. Effects of Flavonoids on oc-Glucosidase Flavonoid (fiM) Activity (Substrate =/?-Nitrophenyl- (X-D-GLUCOPYRANOSIDE) The enzyme activity was estimated by measuring p- nitrophenol liberated. Experimental details are described KaempferolMyricitrin NaringeninMorin 20 20 in the text. 3040 50 . å. , Inhibition r, .. Inhibition Flavonoid ( O/,\ /o) Flavonoid (O/.\ /o) Table III. Effects of Quercetin and Fisetin ON a-GLUCOSIDASE ACTIVITY Quercetin 96 Gossypitrin 48 (Substrate = Maltose) Myricetin 94 Herbacitrin 3 8 The enzyme activity was estimated by measuring glu- Fisetin 89 Rutin 27 cose formed with enzymatic assay method. For the Quercitrin 8 7 Robinin 7 details, see Materials and Methods. Kaempferol 78 Hesperidin 2 Myricitrin 69 Apiin 0 _f ., Inhibition M orin 68 N aringin 0 Flavonoid { 0/, Naringenin 66 Chrysina 0 \/o) Quercetin 5 8 The concentration was 0.01mM owing to low Fisetin 46 solubility. IsoFlavonoidI50 Flavonoids Inhibit a-Glucosidase 1561 the presence and absence of quercetin, indicat- ing that the modewas mixed type very close to -r 30 " non-competitive type. The results of kinetic studies with a numberof flavonoids are sum- o JF marized in Table IV. In all the cases studied, both slopes and intercepts were changed by the presence of each flavonoid tested. This sug- gests that flavonoids can bind both free en- zyme and enzyme-substrate complex. Quer- citrin appears to inhibit in the enzyme in a 0 , 0.01 similar manner as quercetin, although the Ki 1/ S (pM-1) and Ki' for quercitrin were one order larger than those for quercetin. The Ki and Ki' are Fig. 2. >rDouble-reciprocal Plots of a-Glucosidase dissociation constants of the enzyme-inhibitor Reaction in the Presence and Absence of Quercetin. The reaction conditions were the same as those described complex and enzyme-substrate-inhibitor com- in the legend to Table I except that concentrations of plex, respectively, as shown in Chart 1. Two substrate were varied. Minus quercetin ( ) and plus +s quercetin ( ). Quercetin concentration was 5 fiM. Each El' Ki Ks ESå point indicates the average of quintuplicate measurements. \Ks' Kiy E + P Table IV. Kinetic Constants of a-GnjcosiDASE Inhibition by Flavonoids possibilities have been considered from the The reaction conditions were the same as those de- structure of flavonoids. Oneis that someflavo- scribed in the legend to Table I except that concen- noids like rutin and quercitrin have glycosyl trations ofNPG were varied. Each set ofKi and Ki' were determined from slopes and intercepts in double- substituents, which may cause competitive in- reciprocal plots. hibition of a-glucosidase through the glycosyl groups. The other is that the product, p- Ki KV Flavonoid - Modeof inhibition nitrophenol has, at least some structural re- (m) semblance to aglycons, which may cause bind- ing of the aglycons to the substrate binding site Quercetin 6.2 8.2 Mixed type, close to of the enzyme. But the result suggests that non-competitive flavonoids can bind both free enzyme and Quercitrin 13 22 Mixed type, close to non-competitive enzyme-substrate complex. This means that Fisetin 3.2 24 Mixed type flavonoids are able to combine with the en- Naringenin 41 120 Mixed type zymeat site(s) other than the substrate-binding Morin 47 230 Mixed type site. Effect ofalbumin on inhibition by quercetin ofa- in this case in comparison with the case glucos idase where NPGwas used, because the analyzing Inhibition of a-glucosidase caused by flavo- method needs a higher concentration of noids mayseemnon-specific in nature, because maltose (see Materials and Methods). polyphenol compounds often bind to protein non-specifically and eventually deactivate en- Modeof inhibition of oc-glucosidase activity by zymes by denaturation. To examine the speci- fla vono ids ficity of quercetin inhibition to a-glucosidase, The mode of inhibition was estimated by bovine serum albumin was added to the re- kinetic analysis. Figure 2 shows double- action mixture.
Recommended publications
  • Effects of Enzymatic and Thermal Processing on Flavones, the Effects of Flavones on Inflammatory Mediators in Vitro, and the Absorption of Flavones in Vivo
    Effects of enzymatic and thermal processing on flavones, the effects of flavones on inflammatory mediators in vitro, and the absorption of flavones in vivo DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Gregory Louis Hostetler Graduate Program in Food Science and Technology The Ohio State University 2011 Dissertation Committee: Steven Schwartz, Advisor Andrea Doseff Erich Grotewold Sheryl Barringer Copyrighted by Gregory Louis Hostetler 2011 Abstract Flavones are abundant in parsley and celery and possess unique anti-inflammatory properties in vitro and in animal models. However, their bioavailability and bioactivity depend in part on the conjugation of sugars and other functional groups to the flavone core. Two studies were conducted to determine the effects of processing on stability and profiles of flavones in celery and parsley, and a third explored the effects of deglycosylation on the anti-inflammatory activity of flavones in vitro and their absorption in vivo. In the first processing study, celery leaves were combined with β-glucosidase-rich food ingredients (almond, flax seed, or chickpea flour) to determine test for enzymatic hydrolysis of flavone apiosylglucosides. Although all of the enzyme-rich ingredients could convert apigenin glucoside to aglycone, none had an effect on apigenin apiosylglucoside. Thermal stability of flavones from celery was also tested by isolating them and heating at 100 °C for up to 5 hours in pH 3, 5, or 7 buffer. Apigenin glucoside was most stable of the flavones tested, with minimal degradation regardless of pH or heating time.
    [Show full text]
  • Research Article Simultaneous Extraction Optimization And
    Hindawi Publishing Corporation ISRN Biotechnology Volume 2013, Article ID 450948, 10 pages http://dx.doi.org/10.5402/2013/450948 Research Article Simultaneous Extraction Optimization and Analysis of Flavonoids from the Flowers of Tabernaemontana heyneana by High Performance Liquid Chromatography Coupled to Diode Array Detector and Electron Spray Ionization/Mass Spectrometry Thiyagarajan Sathishkumar,1 Ramakrishnan Baskar,1 Mohan Aravind,1 Suryanarayanan Tilak,1 Sri Deepthi,1 and Vellalore Maruthachalam Bharathikumar2 1 Department of Biotechnology, Kumaraguru College of Technology, Coimbatore 641049, India 2 Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5 Correspondence should be addressed to iyagarajan Sathishkumar; [email protected] Received 24 June 2012; Accepted 9 August 2012 Academic Editors: Y. H. Cheong, H. Kakeshita, W. A. Kues, and D. Pant Copyright © 2013 iyagarajan Sathishkumar et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Flavonoids are exploited as antioxidants, antimicrobial, antithrombogenic, antiviral, and antihypercholesterolemic agents. Normally, conventional extraction techniques like soxhlet or shake �ask methods provide low yield of �avonoids with structural loss, and thereby, these techniques may be considered as inefficient. In this regard, an attempt was made to optimize the �avonoid extraction using orthogonal design of experiment and subsequent structural elucidation by high-performance liquid chromatography-diode array detector-electron spray ionization/mass spectrometry (HPLC-DAD-ESI/MS) techniques. e shake �ask method of �avonoid extraction was observed to provide a yield of (mg/g tissue). With the two different solvents, namely, ethanol and ethyl acetate, tried for the extraction optimization of �avonoid, ethanol (80.1 mg/g tissue) has been proved better than ethyl acetate (20.5 mg/g tissue).
    [Show full text]
  • Figure S1. Heat Map of R (Pearson's Correlation Coefficient)
    Figure S1. Heat map of r (Pearson’s correlation coefficient) value among different samples including replicates. The color represented the r value. Figure S2. Distributions of accumulation profiles of lipids, nucleotides, and vitamins detected by widely-targeted UPLC-MC during four fruit developmental stages. The colors indicate the proportional content of each identified metabolites as determined by the average peak response area with R scale normalization. PS1, 2, 3, and 4 represents fruit samples collected at 27, 84, 125, 165 Days After Anthesis (DAA), respectively. Three independent replicates were performed for each stages. Figure S3. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway. Figure S4. Differential metabolites of PS2 vs PS1 group in phenylpropanoid biosynthesis pathway. Figure S5. Differential metabolites of PS3 vs PS2 group in flavonoid biosynthesis pathway. Figure S6. Differential metabolites of PS3 vs PS2 group in phenylpropanoid biosynthesis pathway. Figure S7. Differential metabolites of PS4 vs PS3 group in biosynthesis of phenylpropanoids pathway. Figure S8. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway and phenylpropanoid biosynthesis pathway combined with RNA-seq results. Table S1. A total of 462 detected metabolites in this study and their peak response areas along the developmental stages of apple fruit. mix0 mix0 mix0 Index Compounds Class PS1a PS1b PS1c PS2a PS2b PS2c PS3a PS3b PS3c PS4a PS4b PS4c ID 1 2 3 Alcohols and 5.25E 7.57E 5.27E 4.24E 5.20E
    [Show full text]
  • Download PDF Flyer
    REVIEWS IN PHARMACEUTICAL & BIOMEDICAL ANALYSIS Editors: Constantinos K. Zacharis and Paraskevas D. Tzanavaras eBooks End User License Agreement Please read this license agreement carefully before using this eBook. Your use of this eBook/chapter constitutes your agreement to the terms and conditions set forth in this License Agreement. Bentham Science Publishers agrees to grant the user of this eBook/chapter, a non-exclusive, nontransferable license to download and use this eBook/chapter under the following terms and conditions: 1. This eBook/chapter may be downloaded and used by one user on one computer. The user may make one back-up copy of this publication to avoid losing it. The user may not give copies of this publication to others, or make it available for others to copy or download. For a multi-user license contact [email protected] 2. All rights reserved: All content in this publication is copyrighted and Bentham Science Publishers own the copyright. You may not copy, reproduce, modify, remove, delete, augment, add to, publish, transmit, sell, resell, create derivative works from, or in any way exploit any of this publication’s content, in any form by any means, in whole or in part, without the prior written permission from Bentham Science Publishers. 3. The user may print one or more copies/pages of this eBook/chapter for their personal use. The user may not print pages from this eBook/chapter or the entire printed eBook/chapter for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained from the publisher for such requirements.
    [Show full text]
  • Glycosides and Oligosaccharides in the L-Rhamnose Series
    [Agr. Biol. Chem., Vol. 31, No. 2, p. 133•`136, 1967] Glycosides and Oligosaccharides in the L-Rhamnose Series Part I. Enzymatic Partial Hydrolysis of Flavonoid-glycosides By Shintaro KAMIYA,Sachiko ESAKIand Misao HAMA Laboratoryof FoodChemistry, Shizuoka Women's Junior College,Shizuoka ReceivedJuly 9, 1966 Naringinase, which was induced from Aspergillus niger, consisted ƒÀ-D-glucosidase and ƒ¿-L-rhamnosidase. The former was successfully inactivated by heating the crude enzyme solution at 60•Ž and pH 6.4-,-6.8, whereas the latter was very stable under such treat ment. By using this enzyme solution flavonoid gycosides were partially hydrolyzed and prunin from naringin, isosakuranin from poncirin, hesperetin-7-ƒÀ-D-glucoside from hesperidin and neohesperidin, isoquercitrin from rutin, cosmociin from rhoifolin were obtained respec tively in good yields. Furthermore kaempherol-3-robinobioside, a new flavonol glycoside, and afzelin were obtained from robinin and kaempheritrin, respectively. INTRODUCTION components ƒÀ-D glucosidase and ƒ¿-L-rhamno The flavonoid-glycosides, which contain L- sidase. The authors have found that ƒÀ-D- rhamnose, widely occur in nature. Rhamno glucosidase was inactivated by heating at glucoside rutin, hesperidin, neohesperidin, 60•Ž pH 6.4-6.8, though the latter was very naringin, poncirin and rhoifolin are the most stable under such treatment. readily available flavonoid compounds at Furthermore partial hydrolysis of robinin present. The glucosides corresponding to the and kaempheritrin by the same enzyme gave above rhamnoglucosides, which are desired kaempherol-3-robinobioside, a new flavonoid, for biological testing have not been available. and afzelin as the result. To our knowledge, partial hydrolysis of the EXPERIMENTAL rhamnoglucosides to remove only the rham nose and leave the glucose still attached to 1) The Preparation of Enzyme Solution the flavonoid portion has been very difficult.
    [Show full text]
  • Anodic Behaviour of Flavonoids Orientin, Eriodictyol and Robinin at a Glassy Carbon Electrode
    Full Paper Anodic Behaviour of Flavonoids Orientin, Eriodictyol and Robinin at a Glassy Carbon Electrode Eric de Souza Gil,a, b Adrian Teodor Enache,a Ana Maria de Oliveira-Brett*a a Departamento de Qumica, Faculdade de CiÞncias e Tecnologia, Universidade de Coimbra, 3004–535 Coimbra, Portugal b Faculdade de Farmcia, Universidade Federal de Gois, 74605–220, Goinia, Gois, Brasil *e-mail: [email protected] Received: April 20, 2012;& Accepted: May 31, 2012 Abstract Orientin, eriodictyol and robinin are polyphenolic compounds, and their oxidation mechanism is pH-dependent, in two steps, involving a different number of electrons and protons. Orientin and eriodictyol first oxidation occurs at a lower potential, corresponding to the reversible oxidation of the catechol group, and is followed by an irreversible oxidation on the ring-A at more positive potential. Robenin oxidation is irreversible, with the formation of electro- active products, and occurs at ring-A and ring-B. The electrochemical characterization of their redox behaviour brought useful data about their chemical stability, antioxidant and pro-oxidant activity, enabling a comprehensive understanding of their redox mechanism. Keywords: Orientin, Eriodictyol, Robinin, Oxidation, Glassy carbon electrode. DOI: 10.1002/elan.201200211 1 Introduction Orientin is a flavone, found in passion flower, bamboo leaves, aÅai pulps and wardii berries [5–7]. Chemically is Flavonoids constitute, among other compounds, an impor- the 8-C glucoside of the widespread citrus flavone, luteo- tant class of antioxidants that inhibit the oxidative degra- lin [8]. dation of organic materials including a large number of Eriodictyol, 3’,4’,5,7-tetrahydroxyflavanone, is found in biological aerobic organisms and commercial products.
    [Show full text]
  • Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin
    Review Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin Rashida Ginwala, Raina Bhavsar, DeGaulle I. Chigbu, Pooja Jain and Zafar K. Khan * Department of Microbiology and Immunology, and Center for Molecular Virology and Neuroimmunology, Center for Cancer Biology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA; [email protected] (R.G.); [email protected] (R.B.); [email protected] (D.I.C.); [email protected] (P.J.) * Correspondence: [email protected] Received: 28 November 2018; Accepted: 30 January 2019; Published: 5 February 2019 Abstract: Inflammation has been reported to be intimately linked to the development or worsening of several non-infectious diseases. A number of chronic conditions such as cancer, diabetes, cardiovascular disorders, autoimmune diseases, and neurodegenerative disorders emerge as a result of tissue injury and genomic changes induced by constant low-grade inflammation in and around the affected tissue or organ. The existing therapies for most of these chronic conditions sometimes leave more debilitating effects than the disease itself, warranting the advent of safer, less toxic, and more cost-effective therapeutic alternatives for the patients. For centuries, flavonoids and their preparations have been used to treat various human illnesses, and their continual use has persevered throughout the ages. This review focuses on the anti-inflammatory actions of flavonoids against chronic illnesses such as cancer, diabetes, cardiovascular diseases, and neuroinflammation with a special focus on apigenin, a relatively less toxic and non-mutagenic flavonoid with remarkable pharmacodynamics. Additionally, inflammation in the central nervous system (CNS) due to diseases such as multiple sclerosis (MS) gives ready access to circulating lymphocytes, monocytes/macrophages, and dendritic cells (DCs), causing edema, further inflammation, and demyelination.
    [Show full text]
  • Analysis of the Binding and Interaction Patterns of 100 Flavonoids with the Pneumococcal Virulent Protein Pneumolysin: an in Silico Virtual Screening Approach
    Available online a t www.scholarsresearchlibrary.com Scholars Research Library Der Pharmacia Lettre, 2016, 8 (16):40-51 (http://scholarsresearchlibrary.com/archive.html) ISSN 0975-5071 USA CODEN: DPLEB4 Analysis of the binding and interaction patterns of 100 flavonoids with the Pneumococcal virulent protein pneumolysin: An in silico virtual screening approach Udhaya Lavinya B., Manisha P., Sangeetha N., Premkumar N., Asha Devi S., Gunaseelan D. and Sabina E. P.* 1School of Biosciences and Technology, VIT University, Vellore - 632014, Tamilnadu, India 2Department of Computer Science, College of Computer Science & Information Systems, JAZAN University, JAZAN-82822-6694, Kingdom of Saudi Arabia. _____________________________________________________________________________________________ ABSTRACT Pneumococcal infection is one of the major causes of morbidity and mortality among children below 2 years of age in under-developed countries. Current study involves the screening and identification of potent inhibitors of the pneumococcal virulence factor pneumolysin. About 100 flavonoids were chosen from scientific literature and docked with pnuemolysin (PDB Id.: 4QQA) using Patch Dockprogram for molecular docking. The results obtained were analysed and the docked structures visualized using LigPlus software. It was found that flavonoids amurensin, diosmin, robinin, rutin, sophoroflavonoloside, spiraeoside and icariin had hydrogen bond interactions with the receptor protein pneumolysin (4QQA). Among others, robinin had the highest score (7710) revealing that it had the best geometrical fit to the receptor molecule forming 12 hydrogen bonds ranging from 0.8-3.3 Å. Keywords : Pneumococci, pneumolysin, flavonoids, antimicrobial, virtual screening _____________________________________________________________________________________________ INTRODUCTION Streptococcus pneumoniae is a gram positive pathogenic bacterium causing opportunistic infections that may be life-threating[1]. Pneumococcus is the causative agent of pneumonia and is the most common agent causing meningitis.
    [Show full text]
  • WO 2011/086458 Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date _ . ... _ 21 July 2011 (21.07.2011) WO 2011/086458 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61L 27/20 (2006.01) A61L 27/54 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, PCT/IB20 11/000052 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 13 January 201 1 (13.01 .201 1) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, (25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 12/687,048 13 January 2010 (13.01 .2010) US (84) Designated States (unless otherwise indicated, for every 12/714,377 26 February 2010 (26.02.2010) US kind of regional protection available): ARIPO (BW, GH, 12/956,542 30 November 2010 (30.1 1.2010) us GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, (71) Applicant (for all designated States except US): AL- TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, LERGAN INDUSTRIE, SAS [FR/FR]; Route de EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Promery, Zone Artisanale de Pre-Mairy, F-74370 Pringy LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, (FR).
    [Show full text]
  • Bioavailability of Apigenin from Apiin-Rich Parsley in Humans
    Original Paper Ann Nutr Metab 2006;50:167–172 Received: January 31, 2005 Accepted: September 8, 2005 DOI: 10.1159/000090736 Published online: January 10, 2006 Bioavailability of Apigenin from Apiin-Rich Parsley in Humans a a b a,c Hellen Meyer Adrian Bolarinwa Guenther Wolfram Jakob Linseisen a b Unit of Human Nutrition and Cancer Prevention and Department of Food and Nutrition, c Technical University of Munich, Freising-Weihenstephan , and Division of Clinical Epidemiology, Deutsches Krebsforschungszentrum, Heidelberg , Germany Key Words Introduction Apigenin Apigenin-free diet Apigenin, humans Apigenin, absorption Apiin Luteolin-free diet Flavonoids are abundant phenolic plant substances Parsley that can be divided into six subclasses which all share the common phenylchromane structure consisting of two ar- omatic rings (A and B) and an oxygenated heterocyclic Abstract ring (C) [1] . Apigenin (5,7,4 -trihydroxyfl avone) belongs Aim: Absorption and excretion of apigenin after the in- to the subclass of fl avones and is present in very low gestion of apiin-rich food, i.e. parsley, was tested. Meth- amounts in the human diet [2] . Thus, apigenin has not ods: Eleven healthy subjects (5 women, 6 men) in the age been examined well for aspects like bioavailability distri- range of 23–41 years and with an average body mass bution or excretion in humans. Important food sources index of 23.9 8 4.1 kg/m 2 took part in this study. After an of apigenin as identifi ed to date are parsley and celery [3]. apigenin- and luteolin-free diet, a single oral bolus of Only few studies gave indication on the average dietary 2 g blanched parsley (corresponding to 65.8 8 15.5 mol intake.
    [Show full text]
  • 1 Alkaloid Drugs
    1 Alkaloid Drugs Most plant alkaloids are derivatives of tertiary amines, while others contain primary, secondary or quarternary nitrogen. The basicity of individual alkaloids varies consider- ably, depending on which of the four types is represented. The pK, values (dissociation constants) lie in the range of 10-12 for very weak bases (e.g. purines), of 7-10 for weak bases (e.g. Cinchona alkaloids) and of 3-7 for medium-strength bases (e.g. Opium alkaloids). 1.1 Preparation of Extracts Alkaloid drugs with medium to high alkaloid contents (31%) Powdered drug (Lg) is mixed thoroughly with Iml 10Yo ammonia solution or 10% General method, Na,CO, solution and then extracted for lOmin with 5ml methanol under reflux. The extraction filtrate is then concentrated according to the total alltaloids of the specific drug, so that method A 100p1 contains 50-100pg total alkaloids (see drug list, section 1.4). Rarmalae semen: Powdered drug (Ig) is extracted with lOml methanol for 30min Exception under reflux. The filtrate is diluted 1:10 with methanol and 20pl is used for TLC. Strychni semen: Powdered seeds (Ig) are defatted with 20 rnl n-hexane for 30min under reflux. The defatted seeds are then extracted with lOml methanol for lOmin under reflux. A total of 30yl of the filtrate is used for TL.C. Colchici semen: Powdered seeds (1 g) are defatted with 20 ml n-hexane for 30 min under reflux. The defiitted seeds are then extracted for 15 min with 10ml chloroform. After this, 0.4ml 10% NH, is added to the mixture, shaken vigorously and allowed to stand for about 30min before fillration.
    [Show full text]
  • Growth Biocontrol of Foodborne Pathogens and Spoilage Microorganisms of Food by Polish Propolis Extracts
    molecules Article Growth Biocontrol of Foodborne Pathogens and Spoilage Microorganisms of Food by Polish Propolis Extracts Katarzyna Pobiega 1,*, Karolina Kra´sniewska 1, Jarosław L. Przybył 2 , Katarzyna B ˛aczek 2 , Joanna Zubernik˙ 3, Dorota Witrowa-Rajchert 3 and Małgorzata Gniewosz 1,* 1 Division of Food Biotechnology and Microbiology, Department of Biotechnology, Microbiology and Food Evaluation, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland 2 Laboratory of New Herbal Products, Department of Vegetable and Medicinal Plants, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland 3 Department of Food Engineering and Process Management, Faculty of Food Sciences, Warsaw University of Life Sciences SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland * Correspondence: [email protected] (K.P.); [email protected] (M.G.); Tel.: +48-22-59-376-63 (K.P.); +48-22-59-376-50 (M.G.) Academic Editor: Lars P. Christensen Received: 18 July 2019; Accepted: 14 August 2019; Published: 15 August 2019 Abstract: Propolis is a natural mixture produced by bees from plant resin substances. This study focuses on the general characteristics of five samples of Polish extract propolis originating from agricultural areas. Chemical composition with high performance liquid chromatography-diode array detector method, total content of flavonoids and polyphenols, and antioxidative activity were determined in the ethanol extracts of propolis (EEP) samples. Minimum inhibitory concentration (MIC), minimum bactericidal/fungicidal concentration (MBC/MFC) and time-kill curves were studied for foodborne pathogens and food spoilage microorganisms. In EEPs the predominant flavonoid compounds were pinocembrin, chrysin, pinobanksin, apigenin, and kaempferol and the predominant phenolic acids were p-coumaric acid, ferulic acid, and caffeic acid.
    [Show full text]