Enzymes of Flavonoid Biosynthesis As a Reason for the Polyvariant Nature of Their Accumulation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cornus Canadensis Serge Lavoie, Isabelle Côté, André Pichette, Charles Gauthier, Michaël Ouellet, Francine Nagau-Lavoie, Vakhtang Mshvildadze, Jean Legault
Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis Serge Lavoie, Isabelle Côté, André Pichette, Charles Gauthier, Michaël Ouellet, Francine Nagau-Lavoie, Vakhtang Mshvildadze, Jean Legault To cite this version: Serge Lavoie, Isabelle Côté, André Pichette, Charles Gauthier, Michaël Ouellet, et al.. Chem- ical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis. BMC Complementary and Alternative Medicine, BioMed Central, 2017, 17 (1), pp.123. 10.1186/s12906-017-1618-2. pasteur-01534565 HAL Id: pasteur-01534565 https://hal-riip.archives-ouvertes.fr/pasteur-01534565 Submitted on 7 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License Lavoie et al. BMC Complementary and Alternative Medicine (2017) 17:123 DOI 10.1186/s12906-017-1618-2 RESEARCH ARTICLE Open Access Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis Serge Lavoie1, Isabelle Côté1, André Pichette1, Charles Gauthier1,2, Michaël Ouellet1, Francine Nagau-Lavoie1, Vakhtang Mshvildadze1 and Jean Legault1* Abstract Background: Many plants of boreal forest of Quebec have been used by Native Americans to treat a variety of microbial infections. -
The Metabolites of the Dietary Flavonoid Quercetin Possess Potent Antithrombotic Activity, and Interact with Aspirin to Enhance Antiplatelet Effects
The metabolites of the dietary flavonoid quercetin possess potent antithrombotic activity, and interact with aspirin to enhance antiplatelet effects Article Published Version Creative Commons: Attribution 4.0 (CC-BY) Open Access Stainer, A. R., Sasikumar, P., Bye, A. P., Unsworth, A. P., Holbrook, L. M., Tindall, M., Lovegrove, J. A. and Gibbins, J. M. (2019) The metabolites of the dietary flavonoid quercetin possess potent antithrombotic activity, and interact with aspirin to enhance antiplatelet effects. TH Open, 3 (3). e244- e258. ISSN 2512-9465 doi: https://doi.org/10.1055/s-0039- 1694028 Available at http://centaur.reading.ac.uk/85495/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1055/s-0039-1694028 Publisher: Thieme All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Published online: 30.07.2019 THIEME e244 Original Article The Metabolites of the Dietary Flavonoid Quercetin Possess Potent Antithrombotic Activity, and Interact with Aspirin to Enhance Antiplatelet Effects Alexander R. Stainer1 Parvathy Sasikumar1,2 Alexander P. Bye1 Amanda J. Unsworth1,3 Lisa M. Holbrook1,4 Marcus Tindall5 Julie A. Lovegrove6 Jonathan M. Gibbins1 1 Institute for Cardiovascular and Metabolic Research, School of Address for correspondence Jonathan M. -
Phytochemical Analysis and Antimicrobial Activity of Myrcia Tomentosa (Aubl.) DC
molecules Article Phytochemical Analysis and Antimicrobial Activity of Myrcia tomentosa (Aubl.) DC. Leaves Fabyola Amaral da Silva Sa 1,3, Joelma Abadia Marciano de Paula 2, Pierre Alexandre dos Santos 3, Leandra de Almeida Ribeiro Oliveira 3, Gerlon de Almeida Ribeiro Oliveira 4, Luciano Morais Liao 4 , Jose Realino de Paula 3,* and Maria do Rosario Rodrigues Silva 1,* 1 Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia 74605-050, Brazil; [email protected] 2 Unit of Exact and Technologic Sciences, Goias State University, Anápolis 75132-400, Brazil; [email protected] 3 Faculty of Pharmacy, Federal University of Goias, Goiânia 74605-170, Brazil; [email protected] (P.A.d.S.); [email protected] (L.d.A.R.O.) 4 Chemistry Institute, Federal University of Goiás, Goiânia 74690-900, Brazil; [email protected] (G.d.A.R.O.); [email protected] (L.M.L.) * Correspondence: [email protected] (J.R.d.P.); [email protected] (M.d.R.R.S.); Tel.: +55-62-3209-6127 (M.d.R.R.S.); Fax: +55-62-3209-6363 (M.d.R.R.S.) Academic Editor: Isabel C. F. R. Ferreira Received: 23 May 2017; Accepted: 29 June 2017; Published: 4 July 2017 Abstract: This work describes the isolation and structural elucidation of compounds from the leaves of Myrcia tomentosa (Aubl.) DC. (goiaba-brava) and evaluates the antimicrobial activity of the crude extract, fractions and isolated compounds against bacteria and fungi. Column chromatography was used to fractionate and purify the extract of the M. tomentosa leaves and the chemical structures of the compounds were determined using spectroscopic techniques. -
Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility. -
Fighting Bisphenol A-Induced Male Infertility: the Power of Antioxidants
antioxidants Review Fighting Bisphenol A-Induced Male Infertility: The Power of Antioxidants Joana Santiago 1 , Joana V. Silva 1,2,3 , Manuel A. S. Santos 1 and Margarida Fardilha 1,* 1 Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (J.S.); [email protected] (J.V.S.); [email protected] (M.A.S.S.) 2 Institute for Innovation and Health Research (I3S), University of Porto, 4200-135 Porto, Portugal 3 Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal * Correspondence: [email protected]; Tel.: +351-234-247-240 Abstract: Bisphenol A (BPA), a well-known endocrine disruptor present in epoxy resins and poly- carbonate plastics, negatively disturbs the male reproductive system affecting male fertility. In vivo studies showed that BPA exposure has deleterious effects on spermatogenesis by disturbing the hypothalamic–pituitary–gonadal axis and inducing oxidative stress in testis. This compound seems to disrupt hormone signalling even at low concentrations, modifying the levels of inhibin B, oestra- diol, and testosterone. The adverse effects on seminal parameters are mainly supported by studies based on urinary BPA concentration, showing a negative association between BPA levels and sperm concentration, motility, and sperm DNA damage. Recent studies explored potential approaches to treat or prevent BPA-induced testicular toxicity and male infertility. Since the effect of BPA on testicular cells and spermatozoa is associated with an increased production of reactive oxygen species, most of the pharmacological approaches are based on the use of natural or synthetic antioxidants. -
Function-Structural Study of Anti-LDL-Oxidation Effects of Flavonoid Phytochemicals
Journal of Medicinal Plants Research Vol. 6(49), pp. 5895-5904, 25 December, 2012 Available online at http://www.academicjournals.org/JMPR DOI: 10.5897/JMPR12.313 ISSN 1996-0875 ©2012 Academic Journals Full Length Research Paper Function-structural study of anti-LDL-oxidation effects of flavonoid phytochemicals Yiwen Yao 1#, Shuqing Liu 2#, Chunmei Guo 3, Chunyan Zhang 3, Dachang Wu 3, Yixin Ren 2, Hong-Shan Yu 4, Ming-Zhong Sun 3 and Hailong Chen 5* 1Department of Otolaryngology, the First affiliated Hospital of Dalian Medical University, Dalian 116011, China. 2Department of Biochemistry, Dalian Medical University, Dalian 116044, China. 3Department of Biotechnology, Dalian Medical University, Dalian 116044, China. 4School of Bioengineering, Dalian Polytechnic University, Dalian 116034, China. 5Department of Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China Accepted 9 March, 2012 As a large group of polyphenolic phytochemicals with excellent anti-oxidation properties, the dietary flavonoid intakes have been shown to be negatively correlated with the incidence of coronary artery disease. Flavonoid compounds potentially inhibit the oxidation of low-density lipoprotein (Ox-LDL) that triggers the generation of a series of oxidation byproducts playing important roles in atherosclerosis development. The diverse inhibitory effects of different flavonoid phytochemicals on Ox-LDL might be closely associated with their intrinsic structures. In current work, we investigated the effects of eight flavonoid phytochemicals in high purity (>95%) with similar core structure on the susceptibility of LDL to Cu 2+ -induced oxidative modification. The results indicated that quercetin, rutin, isoquercitrin, hesperetin, naringenin, hesperidin, naringin and icariin could reduce the Cu 2+ -induced-LDL oxidation by 59.56 ±±±7.03, 46.53 ±±±2.09, 40.52 ±±±4.65, 22.67 ±±±1.68, 20.87 ±±±2.43, 12.34 ±±±2.09, 10.87 ±±±1.68 and 3.53 ±±±3.20%, respectively. -
The Phytochemistry of Cherokee Aromatic Medicinal Plants
medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs. -
(12) Patent Application Publication (10) Pub. No.: US 2013/0243709 A1 Hanson Et Al
US 201302437.09A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0243709 A1 Hanson et al. (43) Pub. Date: Sep. 19, 2013 (54) NATURAL SUNSCREEN COMPOSITION Publication Classification (71) Applicants: James E. Hanson, Chester, NJ (US); (51) Int. Cl. Cosimo Antonacci, East Hanover, NJ A6R8/97 (2006.01) (US) A61O 1704 (2006.01) (52) U.S. Cl. (72) Inventors: James E. Hanson, Chester, NJ (US); CPC. A61K 8/97 (2013.01); A61O 1704 (2013.01) Cosimo Antonacci, East Hanover, NJ USPC ............................................... 424/60; 424/59 (US) (57) ABSTRACT A composition for Sunscreen or Sunscreen enhancer is dis (21) Appl. No.: 13/795,305 closed. The composition includes UV-blocking component comprising natural extracts, natural oils or nutrients or a (22) Filed: Mar 12, 2013 combination of these. The composition is capable of protect ing skin from the harmful effects of UV-light and it is capable Related U.S. Application Data of acting as an enhancer of Sunscreen actives, such as Zinc (60) Provisional application No. 61/685, 166, filed on Mar. oxide, titanium dioxide or other Sunscreen actives, such as 13, 2012, provisional application No. 61/685,460, Avobenzone, Dioxybenzone, Ecamsule, Meradimate, Oxy filed on Mar. 19, 2012, provisional application No. benZone, Sulisobenzone, Cinoxate, Ensulizole, Homosalate, 61/690,257, filed on Jun. 23, 2012, provisional appli Octinoxate, Octisalate, Octocrylene PABA, Padimate O or cation No. 61/690,280, filed on Jun. 23, 2012. Trolamine Salicylate. US 2013/0243709 A1 Sep. 19, 2013 NATURAL SUNSCREEN COMPOSITION 0006 To overcome these undesirable side effects of organic and inorganic sunscreen agents, there is a need for PRIORITY new formulations that can protect the skin from the harmful effects of ultraviolet radiation without any undesirable side 0001) This application claims priority of U.S. -
Research Article Simultaneous Extraction Optimization And
Hindawi Publishing Corporation ISRN Biotechnology Volume 2013, Article ID 450948, 10 pages http://dx.doi.org/10.5402/2013/450948 Research Article Simultaneous Extraction Optimization and Analysis of Flavonoids from the Flowers of Tabernaemontana heyneana by High Performance Liquid Chromatography Coupled to Diode Array Detector and Electron Spray Ionization/Mass Spectrometry Thiyagarajan Sathishkumar,1 Ramakrishnan Baskar,1 Mohan Aravind,1 Suryanarayanan Tilak,1 Sri Deepthi,1 and Vellalore Maruthachalam Bharathikumar2 1 Department of Biotechnology, Kumaraguru College of Technology, Coimbatore 641049, India 2 Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5 Correspondence should be addressed to iyagarajan Sathishkumar; [email protected] Received 24 June 2012; Accepted 9 August 2012 Academic Editors: Y. H. Cheong, H. Kakeshita, W. A. Kues, and D. Pant Copyright © 2013 iyagarajan Sathishkumar et al. is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Flavonoids are exploited as antioxidants, antimicrobial, antithrombogenic, antiviral, and antihypercholesterolemic agents. Normally, conventional extraction techniques like soxhlet or shake �ask methods provide low yield of �avonoids with structural loss, and thereby, these techniques may be considered as inefficient. In this regard, an attempt was made to optimize the �avonoid extraction using orthogonal design of experiment and subsequent structural elucidation by high-performance liquid chromatography-diode array detector-electron spray ionization/mass spectrometry (HPLC-DAD-ESI/MS) techniques. e shake �ask method of �avonoid extraction was observed to provide a yield of (mg/g tissue). With the two different solvents, namely, ethanol and ethyl acetate, tried for the extraction optimization of �avonoid, ethanol (80.1 mg/g tissue) has been proved better than ethyl acetate (20.5 mg/g tissue). -
Figure S1. Heat Map of R (Pearson's Correlation Coefficient)
Figure S1. Heat map of r (Pearson’s correlation coefficient) value among different samples including replicates. The color represented the r value. Figure S2. Distributions of accumulation profiles of lipids, nucleotides, and vitamins detected by widely-targeted UPLC-MC during four fruit developmental stages. The colors indicate the proportional content of each identified metabolites as determined by the average peak response area with R scale normalization. PS1, 2, 3, and 4 represents fruit samples collected at 27, 84, 125, 165 Days After Anthesis (DAA), respectively. Three independent replicates were performed for each stages. Figure S3. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway. Figure S4. Differential metabolites of PS2 vs PS1 group in phenylpropanoid biosynthesis pathway. Figure S5. Differential metabolites of PS3 vs PS2 group in flavonoid biosynthesis pathway. Figure S6. Differential metabolites of PS3 vs PS2 group in phenylpropanoid biosynthesis pathway. Figure S7. Differential metabolites of PS4 vs PS3 group in biosynthesis of phenylpropanoids pathway. Figure S8. Differential metabolites of PS2 vs PS1 group in flavonoid biosynthesis pathway and phenylpropanoid biosynthesis pathway combined with RNA-seq results. Table S1. A total of 462 detected metabolites in this study and their peak response areas along the developmental stages of apple fruit. mix0 mix0 mix0 Index Compounds Class PS1a PS1b PS1c PS2a PS2b PS2c PS3a PS3b PS3c PS4a PS4b PS4c ID 1 2 3 Alcohols and 5.25E 7.57E 5.27E 4.24E 5.20E -
Evaluation of Phytochemical and Anti-Oxidant Activity in Different Mulberry Varieties
Asian Journal of Chemistry; Vol. 25, No. 14 (2013), 8010-8014 http://dx.doi.org/10.14233/ajchem.2013.14938 Evaluation of Phytochemical and Anti-oxidant Activity in Different Mulberry Varieties 1 2 1,* SEEMA CHAUHAN , SUBASH CHANDRA VERMA and R. VENKATESH KUMAR 1Department of Applied Animal Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow-226 025, India 2The Central Council for Research in Ayurvedic Sciences, (Department of Ayush, MOH & FW), 61-65, Institutional Area, Opposite D-Block, Janakpuri, New Delhi-110 058, India *Corresponding author: E-mail: [email protected] (Received: 8 December 2012; Accepted: 29 July 2013) AJC-13861 The aims of present study were to screen phytochemical constituents and evaluate in vitro anti-oxidant activity of leaves of different varieties of mulberry plant [Family Moraceae]. The methanolic extract of leaves of different mulberry varieties namely S-13, S-54, BR-2, S-36 and S-1 which belongs to Morus alba and Morus indica were subjected for the phytochemical screening. The results obtained from the HPLC analysis, revealed that the methanolic extracts of mulberry leaves samples of S-36 and S-1 varieties contain more amount of phenolics and flavonoids. The in vitro FRAP assay clearly indicate that S-1 mulberry leaf extract have maximum significant FRAP concentration at 800 µL/mL and 1000 µL/mL (0.408 ± 0.001 mmol FeSO4/100 g dried sample and 0.410 ± 0.001 mmol FeSO4/100 g dried sample, respectively) a significant source of natural anti-oxidant, which might be helpful in preventing the progress of various oxidative stresses. -
Thopen Quercetin Paper Preprint.Pdf
Stainer, Alexander and Sasikumar, Parvathy and Bye, Alexander and Unsworth, Amanda and Holbrook, Lisa and Tindall, Mike and Lovegrove, Julie and Gibbins, Jonathan (2019) The Metabolites of the Dietary Flavonoid Quercetin Possess Potent Antithrombotic Activity, and Interact with Aspirin to Enhance Antiplatelet Effects. Thrombosis and Haemostasis Open, 03 (03). e244-e258. Downloaded from: https://e-space.mmu.ac.uk/623580/ Publisher: Thieme DOI: https://doi.org/10.1055/s-0039-1694028 Usage rights: Creative Commons: Attribution 4.0 Please cite the published version https://e-space.mmu.ac.uk The metabolites of the dietary flavonoid quercetin possess potent anti- thrombotic activity, and interact with aspirin to enhance anti-platelet effects Alexander R. Stainer1, Parvathy Sasikumar2, Alexander P. Bye1, Amanda J. Unsworth1,3, Lisa M. Holbrook1,4, Marcus Tindall5, Julie A. Lovegrove6, Jonathan M. Gibbins1* 1Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK 2 Centre for Haematology, Imperial College London, London, UK 3 School of Healthcare Science, Manchester Metropolitan University, Manchester, UK 4 School of Cardiovascular Medicine and Sciences, King’s College London, London, UK 5 Department of Mathematics and Statistics, University of Reading, Reading, UK 6 Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading, UK * Corresponding author Professor Jonathan M. Gibbins, PhD, Professor of Cell Biology, Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Harborne Building, University of Reading, Whiteknights, Reading, RG6 6AS, UK, [email protected], Tel +44 (0)118 3787082, Fax +44 (0)118 9310180 ABSTRACT Quercetin, a dietary flavonoid, has been reported to possess anti-platelet activity.