(12) United States Patent (10) Patent No.: US 7,399,783 B2 Rosenbloom (45) Date of Patent: Jul

Total Page:16

File Type:pdf, Size:1020Kb

(12) United States Patent (10) Patent No.: US 7,399,783 B2 Rosenbloom (45) Date of Patent: Jul US007399.783B2 (12) United States Patent (10) Patent No.: US 7,399,783 B2 Rosenbloom (45) Date of Patent: Jul. 15, 2008 (54) METHODS FOR THE TREATMENT OF SCAR Quercetin: Implications for the Treatment of Excessive Scars.” TSSUE Internet Web Page, vol. 57(5); Nov. 2004. Marilyn Sterling, R.D., Article: Science Beat, Internet Web Page, (75) Inventor: Richard A. Rosenbloom, Elkins Park, Natural Foods Merchandiser vol. XXIV, No. 10, p. 50, 2003. PA (US) Phan TT. See P. Tran E. Nguyen TT, Chan SY. Lee ST and Huynh H., PubMed, Internet Web Page, “Suppression of Insulin-like Growth (73) Assignee: The Quigley Corporation, Doylestown, Factor Signalling Pathway and Collagen Expression in Keloid-De rived Fibroblasts by Quercetin: It's Therapeutic Potential Use in the PA (US) Treatment and/or Prevention of Keloids.” Br. J. Dermatol., Mar. 2003, 148(3):544-52. (*) Notice: Subject to any disclaimer, the term of this Crystal Smith, Kevin A. Lombard, Ellen B. Peffley and Weixin Liu; patent is extended or adjusted under 35 "Genetic Analysis of Quercetin in Onion (Allium cepa L.) Lady U.S.C. 154(b) by 440 days. Raider.” The Texas Journal of Agriculture and Natural Resource, vol. 16 pp. 24-28, 2003. (21) Appl. No.: 11/158,986 Skin Actives Scientific L.L.C., Internet Web Page, “Quercetin.” Quercetin by Skinactives, printed on Apr. 10, 2006. (22) Filed: Jun. 22, 2005 Saulis, Alexandrina S. M.D.; Mogford, Jon H. Ph.D.; Mustoe, Tho mas A., M.D., Plastic and Reconstructive Surgery, “Effect of (65) Prior Publication Data Mederma on Hypertrophic Scarring in the Rabbit Ear Model.” Jour US 2006/O293257 A1 Dec. 28, 2006 nal of the American Society of Plastic Surgeons, vol. 110, No. 1, pp. 177-183, Jul. 2002. Ageless Herbal Products, “Herbal Stretch Mark Gel.” Internet Web (51) Int. Cl. Advertisement, printed Apr. 11, 2006. AOIN 43/16 (2006.01) Advanced Stretch Marks Lotion with Top Firming Ingredients, A6 IK3I/35 (2006.01) "Stretch Marks Solved by Botanical Body.” Internet Web Advertise AOIN 43/04 (2006.01) ment, printed Apr. 11, 2006. A61 K3 L/70 (2006.01) What VitaminsareRightforYou.com; Stretch Marks; Internet Webpp. (52) U.S. Cl. ......................... 514/457; 514/27: 514/449; 1-4, 2004. 514/451; 514/453: 514/456 Removal Treatment for Stretch Marks, “StretchRenew.com': (58) Field of Classification Search ........... ... None Internet Web Advertisement, pp. 1-6, 1998. See application file for complete search history. Revitol: Stretch Mark Cream: Review; Stretch-Mark-Guide.com; Internet Web Advertisement, 1 page, printed Apr. 10, 2006. (56) References Cited Stretch Mark Solutions, Internet Web Page/Advertisement, 3 pages, U.S. PATENT DOCUMENTS Jan. 24, 2006. Elliott Middleton, Jr., Chithan Kandaswami and Theoharis C. 5,639,740 A * 6/1997 Crandall ...................... 514,78 Theoharides, The effects of Plant Flavnoids on Mammalian Cells. 5,928,659 A 7/1999 Moy Implications for Inflammation, Heart Disease and Cancer, vol. 52, 6,753,325 B2 * 6/2004 Rosenbloom ............... 514,167 Issue 4, 673-751, Dec. 2000. 7,083,813 B2 * 8/2006 Rosenbloom .. 424,725 2003/0049283 A1* 3/2003 Vandell ...................... 424/401 * cited by examiner 2004/O151793 A1 8/2004 Paspaleeva-kuhn et al. Primary Examiner Patrick T Lewis (74) Attorney, Agent, or Firm—Knoble, Yoshida & Dunleavy, OTHER PUBLICATIONS LLC Mohamed Hany El-Tonsy, MD and Arthur C. Huntley, MD, Egyptian Dermatology Online Journal, 2005, Internet Web Page, pp. 1-3, vol. (57) ABSTRACT 1. No. 1. Published by Mohamed Hany El-Tonsy, MD, Egypt. Maha F. El Goweini, MD and Nagwa M. Nour El Din, MD, Egyptian Dermatology Online Journal 1 (1):5: “Effect of Quercetin on Exces A topical composition and method for the reduction of scar sive Dermal Scarring.” Internet Web Page, pp. 1-9, vol. 1, No. 1, tissue and/or improving the appearance of scar tissue after it 2004. has formed. The topical composition includes one or more Toan-Thang Phan, MD, LiSun, MD, Boon-Huat Bay, PhD, Sui-Yung flavonoids formulated in a pharmaceutically acceptable topi Chan, PhD, and Seng-Teik Lee, FRCS, FAMS; The Journal of cal carrier. The method includes the step of topically applying Trauma Injury, Infection and Critical Care, "Dietary Compounds a composition including one or more flavonoids formulated in Inhibit Proliferation and Contraction of Keloid and Hypertrophic a pharmaceutically acceptable topical carrier to Scar tissue to Scar-Derived Fibroblasts. In Vitro: Therapeutic Implication for reduce the amount of, or improve the appearance of the scar Excessive Scarring.” vol. 54, No. 6, pp. 1212-1224. Jun. 2003. tissue. The topical compositions and methods of the present Phan, Toan-Thang MD, PhD; Lim, Ivor Jiun MD, FRCS; Chan, invention reduce Scar tissue after it has formed as well as Sui-Yung PhD; Tan, Ee-Kim BSc; Lee, Seng-Teik MD, FRCS and improving the appearance of the remaining scar tissue. Longaker, Michael T. MD, FRCS, The Journal of Trauma Injury, Infection and Critical Care, “Suppression of Transforming Growth Factor Beta Smad Signaling in Keloid-Derived Fibroblasts by 14 Claims, No Drawings US 7,399,783 B2 1. 2 METHODS FOR THE TREATMENT OF SCAR process of healing, e.g. application to already formed scar TSSUE tissue that forms part of a healing wound. The term "scar tissue' is used to refer to the connective BACKGROUND OF THE INVENTION tissue that forms a scar and which consists primarily of fibro blasts in new scars, and collagen fibers in older Scars. Scar 1. Field of the Invention tissue is generally characterized by red discoloration, edema, The present invention relates to compositions and methods irritation and dehiscence. Patients afflicted with scar tissue for the cosmetic treatment of scar tissue. More specifically, typically have visible indications of past wounds located on the method of the present invention, relates to the topical their skin. application of at least one flavonoid to Scar tissue. 10 The term "derivatives, as used herein, refers to structurally 2. Brief Description of the Prior Art similar compounds that exhibit a common activity (e.g., anti Damage or injury to skin tissues and/or organs is a common oxidant) and contain at least one significant, common struc occurrence. The body is most often able to isolate the dam tural element with the compound from which it is derived, aged area and then repair itself by removing and replacing which common structural element provides the common damaged tissue. Injury to tissues and organs can originate 15 activity. from a great variety of sources such as, for example, trauma, The expression “therapeutically effective amount as used UV degradation, toxic and/or pathogenic degradation, ther herein, refers to a nontoxic amount of a compound, which is mal degradation (e.g. excessive heat or cold) and so forth. sufficient to provide the desired therapy to promote the cos While the body has an impressive array of response mecha metic improvement of scar tissue. A therapeutic amount may, nisms that limit tissue damage and promote repair, methods of for example, reduce the amount of scar tissue, or affect one or increasing the speed and degree of repair are continually more characteristics of the scar tissue to thereby render the being sought out. Additionally, the presence of scar tissue can scar tissue less visible or noticeable. The exact amount be unsightly, and the reduction of scar tissue is aesthetically required may vary, depending on the species, age, and general desirable. In this regard, increasing the speed and/or degree condition of the patient, the nature of the complications, the that scar tissue is removed is beneficial in that it (i) decreases 25 particular combination of compounds, the mode of adminis the visibility of unsightly tissue; (ii) decreases the chances of tration, and the like. developing an infection or other ailment through re-injury of As used herein, a “pharmaceutically acceptable' compo the scarred area or the Surgical removal of scar tissue; and (iii) nent is one that is Suitable for use with humans and/or animals reduces health costs associated with treating such conditions. without undue adverse side effects (such as toxicity, irritation, Although compounds exist for promoting the healing of 30 and allergic response) commensurate with a reasonable ben wounds, there exists a continuing need for additional and/or efit/risk ratio. improved compounds for treating and/or reducing scartissue. The term "stable” as used herein refers to the property of Accordingly, it is an object of certain embodiments of the retaining at least a portion of the intended activity over a present invention to provide a composition that is effective for certain period of time. the treatment of scar tissue. 35 The terms “mixture.” “composition” and “formulation' as It is an object of other embodiments of the present inven used herein refer to stable mixtures, compositions, and for tion to provide a method that is effective for the treatment of mulations, respectively. Preferred mixtures, compositions, scar tissue and formulations are stable over a period of at least about three months. SUMMARY OF THE INVENTION 40 Scar tissue may be formed as a result of injury or damage to the human body caused by a break in the skin. Such injury In a first aspect, the invention relates to a method for the or damage may include cuts and bruises, or skin damage reduction or treatment of scar tissue comprising the step of caused by infections, burns, scrapes, allergic reactions, acne, topically applying to scar tissue, a composition which com bites Such as animal, human or insect, Surgical incisions, and prises a therapeutically effective amount of one or more fla 45 the like. Scar tissue forms as skin heals after an injury or vonoids.
Recommended publications
  • Cornus Canadensis Serge Lavoie, Isabelle Côté, André Pichette, Charles Gauthier, Michaël Ouellet, Francine Nagau-Lavoie, Vakhtang Mshvildadze, Jean Legault
    Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis Serge Lavoie, Isabelle Côté, André Pichette, Charles Gauthier, Michaël Ouellet, Francine Nagau-Lavoie, Vakhtang Mshvildadze, Jean Legault To cite this version: Serge Lavoie, Isabelle Côté, André Pichette, Charles Gauthier, Michaël Ouellet, et al.. Chem- ical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis. BMC Complementary and Alternative Medicine, BioMed Central, 2017, 17 (1), pp.123. 10.1186/s12906-017-1618-2. pasteur-01534565 HAL Id: pasteur-01534565 https://hal-riip.archives-ouvertes.fr/pasteur-01534565 Submitted on 7 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License Lavoie et al. BMC Complementary and Alternative Medicine (2017) 17:123 DOI 10.1186/s12906-017-1618-2 RESEARCH ARTICLE Open Access Chemical composition and anti-herpes simplex virus type 1 (HSV-1) activity of extracts from Cornus canadensis Serge Lavoie1, Isabelle Côté1, André Pichette1, Charles Gauthier1,2, Michaël Ouellet1, Francine Nagau-Lavoie1, Vakhtang Mshvildadze1 and Jean Legault1* Abstract Background: Many plants of boreal forest of Quebec have been used by Native Americans to treat a variety of microbial infections.
    [Show full text]
  • Identification of Compounds with Potential Therapeutic Uses From
    International Journal of Molecular Sciences Article Identification of Compounds with Potential Therapeutic Uses from Sweet Pepper (Capsicum annuum L.) Fruits and Their Modulation by Nitric Oxide (NO) Lucía Guevara 1, María Ángeles Domínguez-Anaya 1, Alba Ortigosa 1, Salvador González-Gordo 1 , Caridad Díaz 2 , Francisca Vicente 2 , Francisco J. Corpas 1 , José Pérez del Palacio 2 and José M. Palma 1,* 1 Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; [email protected] (L.G.); [email protected] (M.Á.D.-A.); [email protected] (A.O.); [email protected] (S.G.-G.); [email protected] (F.J.C.) 2 Department of Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain; [email protected] (C.D.); [email protected] (F.V.); [email protected] (J.P.d.P.) * Correspondence: [email protected]; Tel.: +34-958-181-1600; Fax: +34-958-181-609 Abstract: Plant species are precursors of a wide variety of secondary metabolites that, besides being useful for themselves, can also be used by humans for their consumption and economic benefit. Pepper (Capsicum annuum L.) fruit is not only a common food and spice source, it also stands out for containing high amounts of antioxidants (such as vitamins C and A), polyphenols and capsaicinoids. Citation: Guevara, L.; Particular attention has been paid to capsaicin, whose anti-inflammatory, antiproliferative and Domínguez-Anaya, M.Á.; Ortigosa, A.; González-Gordo, S.; Díaz, C.; analgesic activities have been reported in the literature.
    [Show full text]
  • Phytochemical Analysis and Antimicrobial Activity of Myrcia Tomentosa (Aubl.) DC
    molecules Article Phytochemical Analysis and Antimicrobial Activity of Myrcia tomentosa (Aubl.) DC. Leaves Fabyola Amaral da Silva Sa 1,3, Joelma Abadia Marciano de Paula 2, Pierre Alexandre dos Santos 3, Leandra de Almeida Ribeiro Oliveira 3, Gerlon de Almeida Ribeiro Oliveira 4, Luciano Morais Liao 4 , Jose Realino de Paula 3,* and Maria do Rosario Rodrigues Silva 1,* 1 Institute of Tropical Pathology and Public Health, Federal University of Goias, Goiânia 74605-050, Brazil; [email protected] 2 Unit of Exact and Technologic Sciences, Goias State University, Anápolis 75132-400, Brazil; [email protected] 3 Faculty of Pharmacy, Federal University of Goias, Goiânia 74605-170, Brazil; [email protected] (P.A.d.S.); [email protected] (L.d.A.R.O.) 4 Chemistry Institute, Federal University of Goiás, Goiânia 74690-900, Brazil; [email protected] (G.d.A.R.O.); [email protected] (L.M.L.) * Correspondence: [email protected] (J.R.d.P.); [email protected] (M.d.R.R.S.); Tel.: +55-62-3209-6127 (M.d.R.R.S.); Fax: +55-62-3209-6363 (M.d.R.R.S.) Academic Editor: Isabel C. F. R. Ferreira Received: 23 May 2017; Accepted: 29 June 2017; Published: 4 July 2017 Abstract: This work describes the isolation and structural elucidation of compounds from the leaves of Myrcia tomentosa (Aubl.) DC. (goiaba-brava) and evaluates the antimicrobial activity of the crude extract, fractions and isolated compounds against bacteria and fungi. Column chromatography was used to fractionate and purify the extract of the M. tomentosa leaves and the chemical structures of the compounds were determined using spectroscopic techniques.
    [Show full text]
  • Fighting Bisphenol A-Induced Male Infertility: the Power of Antioxidants
    antioxidants Review Fighting Bisphenol A-Induced Male Infertility: The Power of Antioxidants Joana Santiago 1 , Joana V. Silva 1,2,3 , Manuel A. S. Santos 1 and Margarida Fardilha 1,* 1 Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (J.S.); [email protected] (J.V.S.); [email protected] (M.A.S.S.) 2 Institute for Innovation and Health Research (I3S), University of Porto, 4200-135 Porto, Portugal 3 Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal * Correspondence: [email protected]; Tel.: +351-234-247-240 Abstract: Bisphenol A (BPA), a well-known endocrine disruptor present in epoxy resins and poly- carbonate plastics, negatively disturbs the male reproductive system affecting male fertility. In vivo studies showed that BPA exposure has deleterious effects on spermatogenesis by disturbing the hypothalamic–pituitary–gonadal axis and inducing oxidative stress in testis. This compound seems to disrupt hormone signalling even at low concentrations, modifying the levels of inhibin B, oestra- diol, and testosterone. The adverse effects on seminal parameters are mainly supported by studies based on urinary BPA concentration, showing a negative association between BPA levels and sperm concentration, motility, and sperm DNA damage. Recent studies explored potential approaches to treat or prevent BPA-induced testicular toxicity and male infertility. Since the effect of BPA on testicular cells and spermatozoa is associated with an increased production of reactive oxygen species, most of the pharmacological approaches are based on the use of natural or synthetic antioxidants.
    [Show full text]
  • And East Siberian Rhododendron (Rh. Adamsii) Using Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry
    molecules Article Comparative Analysis of Far East Sikhotinsky Rhododendron (Rh. sichotense) and East Siberian Rhododendron (Rh. adamsii) Using Supercritical CO2-Extraction and HPLC-ESI-MS/MS Spectrometry Mayya Razgonova 1,2,* , Alexander Zakharenko 1,2 , Sezai Ercisli 3 , Vasily Grudev 4 and Kirill Golokhvast 1,2,5 1 N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 190000 Saint-Petersburg, Russia; [email protected] (A.Z.); [email protected] (K.G.) 2 SEC Nanotechnology, Far Eastern Federal University, 690950 Vladivostok, Russia 3 Agricultural Faculty, Department of Horticulture, Ataturk University, 25240 Erzurum, Turkey; [email protected] 4 Far Eastern Investment and Export Agency, 123112 Moscow, Russia; [email protected] 5 Pacific Geographical Institute, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia * Correspondence: [email protected] Academic Editors: Seung Hwan Yang and Satyajit Sarker Received: 29 June 2020; Accepted: 12 August 2020; Published: 19 August 2020 Abstract: Rhododendron sichotense Pojark. and Rhododendron adamsii Rheder have been actively used in ethnomedicine in Mongolia, China and Buryatia (Russia) for centuries, as an antioxidant, immunomodulating, anti-inflammatory, vitality-restoring agent. These plants contain various phenolic compounds and fatty acids with valuable biological activity. Among green and selective extraction methods, supercritical carbon dioxide (SC-CO2) extraction has been shown to be the method of choice for the recovery of these naturally occurring compounds. Operative parameters and working conditions have been optimized by experimenting with different pressures (300–400 bar), temperatures (50–60 ◦C) and CO2 flow rates (50 mL/min) with 1% ethanol as co-solvent. The extraction time varied from 60 to 70 min.
    [Show full text]
  • The Phytochemistry of Cherokee Aromatic Medicinal Plants
    medicines Review The Phytochemistry of Cherokee Aromatic Medicinal Plants William N. Setzer 1,2 1 Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; [email protected]; Tel.: +1-256-824-6519 2 Aromatic Plant Research Center, 230 N 1200 E, Suite 102, Lehi, UT 84043, USA Received: 25 October 2018; Accepted: 8 November 2018; Published: 12 November 2018 Abstract: Background: Native Americans have had a rich ethnobotanical heritage for treating diseases, ailments, and injuries. Cherokee traditional medicine has provided numerous aromatic and medicinal plants that not only were used by the Cherokee people, but were also adopted for use by European settlers in North America. Methods: The aim of this review was to examine the Cherokee ethnobotanical literature and the published phytochemical investigations on Cherokee medicinal plants and to correlate phytochemical constituents with traditional uses and biological activities. Results: Several Cherokee medicinal plants are still in use today as herbal medicines, including, for example, yarrow (Achillea millefolium), black cohosh (Cimicifuga racemosa), American ginseng (Panax quinquefolius), and blue skullcap (Scutellaria lateriflora). This review presents a summary of the traditional uses, phytochemical constituents, and biological activities of Cherokee aromatic and medicinal plants. Conclusions: The list is not complete, however, as there is still much work needed in phytochemical investigation and pharmacological evaluation of many traditional herbal medicines. Keywords: Cherokee; Native American; traditional herbal medicine; chemical constituents; pharmacology 1. Introduction Natural products have been an important source of medicinal agents throughout history and modern medicine continues to rely on traditional knowledge for treatment of human maladies [1]. Traditional medicines such as Traditional Chinese Medicine [2], Ayurvedic [3], and medicinal plants from Latin America [4] have proven to be rich resources of biologically active compounds and potential new drugs.
    [Show full text]
  • Shilin Yang Doctor of Philosophy
    PHYTOCHEMICAL STUDIES OF ARTEMISIA ANNUA L. THESIS Presented by SHILIN YANG For the Degree of DOCTOR OF PHILOSOPHY of the UNIVERSITY OF LONDON DEPARTMENT OF PHARMACOGNOSY THE SCHOOL OF PHARMACY THE UNIVERSITY OF LONDON BRUNSWICK SQUARE, LONDON WC1N 1AX ProQuest Number: U063742 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest U063742 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ACKNOWLEDGEMENT I wish to express my sincere gratitude to Professor J.D. Phillipson and Dr. M.J.O’Neill for their supervision throughout the course of studies. I would especially like to thank Dr. M.F.Roberts for her great help. I like to thank Dr. K.C.S.C.Liu and B.C.Homeyer for their great help. My sincere thanks to Mrs.J.B.Hallsworth for her help. I am very grateful to the staff of the MS Spectroscopy Unit and NMR Unit of the School of Pharmacy, and the staff of the NMR Unit, King’s College, University of London, for running the MS and NMR spectra.
    [Show full text]
  • Quercitrin and Afzelin Isolation: Chemical Synthesis of A
    University of Mississippi eGrove Honors College (Sally McDonnell Barksdale Honors Theses Honors College) 2017 Quercitrin and Afzelin Isolation: Chemical Synthesis of a Novel Methicillin-Resistant Staphylococcus Aureus (MRSA) Antibiotic Analogue Taylor Ramsaroop University of Mississippi. Sally McDonnell Barksdale Honors College Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis Part of the Chemistry Commons Recommended Citation Ramsaroop, Taylor, "Quercitrin and Afzelin Isolation: Chemical Synthesis of a Novel Methicillin-Resistant Staphylococcus Aureus (MRSA) Antibiotic Analogue" (2017). Honors Theses. 905. https://egrove.olemiss.edu/hon_thesis/905 This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized administrator of eGrove. For more information, please contact [email protected]. QUERCITRIN AND AFZELIN ISOLATION: CHEMICAL SYNTHESIS OF A NOVEL METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS (MRSA) ANTIBIOTIC ANALOGUE by Taylor Nichole Ramsaroop A thesis submitted to the faculty of The University of Mississippi in partial fulfillment of the requirements of the Sally McDonnell Barksdale Honors College. Oxford May 2017 Approved by ___________________________________ Advisor: Dr. James McChesney ___________________________________ Reader: Dr. Susan Pedigo ___________________________________ Reader: Dr. Nathan Hammer © 2017 Taylor Ramsaroop ii Acknowledgements I would like to thank my thesis advisors for making this project possible and the Sally McDonnell Barksdale Honors College for all the opportunities made available to me throughout my incredible four years at the University of Mississippi. A special thank you to Dr. McChesney for choosing to hire me at Ironstone Separations, Inc two years ago, his continued support, and patience throughout this process.
    [Show full text]
  • Polypodium Vulgare L.: Polyphenolic Profile, Cytotoxicity and Cytoprotective Properties in Different Cell Lines
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 May 2021 doi:10.20944/preprints202105.0351.v1 Article Polypodium vulgare L.: polyphenolic profile, cytotoxicity and cytoprotective properties in different cell lines Adrià Farràs1,2, Víctor López2,4, Filippo Maggi3, Giovani Caprioli3, M.P. Vinardell1, Montserrat Mitjans1* 1Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, 08028 Barcelona, Spain; [email protected] (A.F.); [email protected] (P.V.); [email protected] (M.M.) 2Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Villanueva de Gállego, Zaragoza, 50830 Spain; [email protected] (A.F.); [email protected] (V.L.) 3School of Pharmacy, Università di Camerino, 62032 Camerino, Italy; [email protected] (F.M.); [email protected] (G.C.) 4Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, 50013 Zaragoza, Spain *Correspondence: [email protected] Abstract: Pteridophytes, represented by ferns and allies, are an important phytogenetic bridge between lower and higher plants (gymnosperms and angiosperms). Ferns have evolved independently of any other species in the plant kingdom being its secondary metabolism a reservoir of phytoconstituents characteristic of this taxon. The study of the possible medicinal uses of Polypodium vulgare L. (Polypodiaceae), PV, has increased particularly when in 2008 the European Medicines Agency published a monograph about the rhizome of this species. Thus, our objective is to provide scientific knowledge on the methanolic extract from the fronds of P. vulgare L., one of the main ferns described in the Prades Mountains, to contribute to the validation of certain traditional uses. Specifically, we have characterized the methanolic extract of PV fronds (PVM) by HPLC-DAD and investigated its potential cytotoxicity, phototoxicity, ROS production and protective effects against oxidative stress by using in vitro methods.
    [Show full text]
  • Antioxidant Evaluation-Guided Chemical Profiling and Structure
    www.nature.com/scientificreports OPEN Antioxidant evaluation-guided chemical profling and structure- activity analysis of leaf extracts from fve trees in Broussonetia and Morus (Moraceae) Xinxin Cao1, Lingguang Yang1, Qiang Xue1, Fan Yao1, Jing Sun1, Fuyu Yang2 & Yujun Liu 1* Morus and Broussonetia trees are widely used as food and/or feed. Among 23 phenolics identifed from leaves of fve Moraceae species using UPLC–QTOF–MS/MS, 15 were screened using DPPH/ABTS- guided HPLCs, including seven weak (favonoids with one hydroxyl on B-ring) and eight strong (four cafeoylquinic acids and four favonoids, each with a double hydroxyl on B-ring) antioxidants. We then determined the activity and synergistic efects of individual antioxidants and a mixture of the eight strongest antioxidants using DPPH-guided HPLC. Our fndings revealed that (1) favonoid glucuronide may have a more negative efect on antioxidant activity than glucoside, and (2) other compounds in the mixture may exert a negative synergistic efect on antioxidant activity of the four favonoids with B-ring double hydroxyls but not the four cafeoylquinic acids. In conclusion, the eight phenolics with the strongest antioxidant ability reliably represented the bioactivity of the fve extracts examined in this study. Moreover, the Morus alba hybrid had more phenolic biosynthesis machinery than its cross-parent M. alba, whereas the Broussonetia papyrifera hybrid had signifcantly less phenolic machinery than B. papyrifera. This diference is probably the main reason for livestock preference for the hybrid of B. papyrifera over B. papyrifera in feed. Morus and Broussonetia tree species (family: Moraceae) have high economic value; among other uses, their leaves are widely used as feed to improve meat quality.
    [Show full text]
  • Chemistry and Pharmacology of the Kazakh Crataegus Almaatensis Pojark: an Asian Herbal Medicine
    antioxidants Article Chemistry and Pharmacology of the Kazakh Crataegus Almaatensis Pojark: An Asian Herbal Medicine 1,2, 3, 1,4,5 3 Sabrina S. Soares y , Elmira Bekbolatova y, Maria Dulce Cotrim , Zuriyadda Sakipova , Liliya Ibragimova 3, Wirginia Kukula-Koch 6,* , Thais B. Sardella Giorno 7, Patrícia D. Fernandes 7, Diogo André Fonseca 1,4,5 and Fabio Boylan 2,* 1 Laboratory of Pharmacy and Pharmaceutical care, Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal 2 School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2 D02 PN40, Ireland 3 School of Pharmacy, JSC National Medical University, 050000 Almaty, Kazakhstan 4 Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal 5 CIBB Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-548 Coimbra, Portugal 6 Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, 1 Chodzki str., 20-093 Lublin, Poland 7 Laboratório da Dor e Inflamação, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil * Correspondence: [email protected] (W.K.-K.); [email protected] (F.B.) Sabrina S. Soares and Elmira Bekbolatova contributed equally to this paper. y Received: 26 June 2019; Accepted: 6 August 2019; Published: 10 August 2019 Abstract: Crataegus almaatensis, an endemic ornamental plant in Kazakhstan is used in popular medicine due to its cardiotonic properties. The most studied species of the same genus are commonly found in Europe, which shows the importance of having the Kazakh species validated via its chemical and pharmacological studies.
    [Show full text]
  • Phenolic Constituentswith Promising Antioxidant and Hepatoprotective
    id27907328 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com December 2007 Volume 3 Issue 3 NNaattuurraall PPrrAoon dIdnduuian ccJotutrnssal Trade Science Inc. Full Paper NPAIJ, 3(3), 2007 [151-158] Phenolic constituents with promising antioxidant and hepatoprotective activities from the leaves extract of Carya illinoinensis Haidy A.Gad, Nahla A.Ayoub*, Mohamed M.Al-Azizi Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, (EGYPT) E-mail: [email protected] Received: 15th November, 2007 ; Accepted: 20th November, 2007 ABSTRACT KEYWORDS The aqueous ethanolic leaf extract of Carya illinoinensis Wangenh. K.Koch Carya illinoinensis; (Juglandaceae) showed a significant antioxidant and hepatoprotective Juglandaceae; activities in a dose of 100 mg/ kg body weight. Fifteen phenolic compounds Phenolic compounds; were isolated from the active extract among which ten were identified for Hepatoprotective activity. the first time from Carya illinoinensis . Their structures were elucidated to be gallic acid(1), methyl gallate(2), P-hydroxy benzoic acid(3), 2,3-digalloyl- 4 â 4 -D- C1-glucopyranoside(4), kaempferol-3-O- -D- C1-galactopyranoside, ’-O-galloyl)- 4 trifolin(8), querectin-3-O-(6' -D- C1-galactopyranoside(9), ’-O-galloyl)- 4 kaempferol-3-O-(6' -D- C1-galactopyranoside(10), ellagic acid(11), 3,3' dimethoxyellagic acid(12), epigallocatechin-3-O-gallate(13). Establishment of all structures were based on the conventional methods of analysis and confirmed by NMR spectral analysis. 2007 Trade Science Inc. - INDIA INTRODUCTION dition, caryatin(quercetin-3,5-dimethyl ether) , caryatin glucoside and rhamnoglucoside were also isolated from Family Juglandaceae includes the deciduous gen- the bark[4], while, quercetin glycoside, galactoside, rham- era, Juglans(walnuts) and Carya(hickories).
    [Show full text]