Transit and Metabolic Pathways of Quercetin in Tubular Cells: Involvement of Its Antioxidant Properties in the Kidney

Total Page:16

File Type:pdf, Size:1020Kb

Transit and Metabolic Pathways of Quercetin in Tubular Cells: Involvement of Its Antioxidant Properties in the Kidney antioxidants Review Transit and Metabolic Pathways of Quercetin in Tubular Cells: Involvement of Its Antioxidant Properties in the Kidney Daniel Muñoz-Reyes 1,2,3 , Ana I. Morales 1,2,3,4,5,* and Marta Prieto 1,2,3,4,5 1 Toxicology Unit, University of Salamanca, 37007 Salamanca, Spain; [email protected] (D.M.-R.); [email protected] (M.P.) 2 Department of Physiology and Pharmacology, University of Salamanca, 37007 Salamanca, Spain 3 Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), 37007 Salamanca, Spain 4 Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain 5 National Network for Kidney Research REDINREN, RD016/0009/0025, Instituto de Salud Carlos III, 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-677-555-055 Abstract: Quercetin is a flavonoid with antioxidant, antiviral, antimicrobial, and anti-inflammatory properties. Therefore, it has been postulated as a molecule with great therapeutic potential. The renoprotective capacity of quercetin against various toxins that produce oxidative stress, in both in vivo and in vitro models, has been shown. However, it is not clear whether quercetin itself or any of its metabolites are responsible for the protective effects on the kidney. Although the pharmacokinetics of quercetin have been widely studied and the complexity of its transit throughout the body is well known, the metabolic processes that occur in the kidney are less known. Because of that, the objective of this review was to delve into the molecular and cellular events triggered Citation: Muñoz-Reyes, D.; Morales, by quercetin and/or its metabolites in the tubular cells, which could explain some of the protective A.I.; Prieto, M. Transit and Metabolic properties of this flavonoid against oxidative stress produced by toxin administration. Thus, the Pathways of Quercetin in Tubular following are analyzed: (1) the transit of quercetin to the kidney; (2) the uptake mechanisms of Cells: Involvement of Its Antioxidant quercetin and its metabolites from plasma to the tubular cells; (3) the metabolic processes triggered Properties in the Kidney. Antioxidants 2021, 10, 909. https://doi.org/ in those cells, which affect the accumulation of metabolites in the intracellular space; and (4) the 10.3390/antiox10060909 efflux mechanisms of these compounds and their subsequent elimination through urine. Finally, it is discussed whether those processes that are mediated in the tubular cells and that give rise to Academic Editors: Luciano Saso, different metabolites are related to the antioxidant and renoprotective properties observed after the Ryszard Amarowicz and administration of quercetin. Jasmina Dimitri´cMarkovi´c Keywords: quercetin conjugates; renal intake; kidney metabolism; renal efflux; antioxidant; renoprotection Received: 18 May 2021 Accepted: 1 June 2021 Published: 3 June 2021 1. Introduction Publisher’s Note: MDPI stays neutral Quercetin is a flavonoid present in the diet in high proportions. Its main sources are with regard to jurisdictional claims in fruits, vegetables, and teas [1]. High concentrations of this flavonoid have been described published maps and institutional affil- in kale, onions, berries, apples, red grapes, black tea, etc. Incorporation of quercetin in iations. different commercial food supplements is also common [2]. From a chemical point of view, the nomenclature for quercetin is 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4- one. It is a flavonol with a hydroxyl group in position 3, typical of flavonoids, and four additional hydroxyl groups, in positions 5, 7, 30, and 40 (Table1)[3]. Copyright: © 2021 by the authors. In nature, quercetin can be found free as quercetin aglycone or conjugated as a Licensee MDPI, Basel, Switzerland. quercetin derivative, the latter being the predominant form. Among the most abundant This article is an open access article quercetin derivatives in the diet are quercetin glycosides and ethers, while prenylated, distributed under the terms and sulfated, and glucuronide derivatives are found in smaller proportions (Table1)[ 4]. The conditions of the Creative Commons Attribution (CC BY) license (https:// presence of different groups attached to quercetin changes the biochemical activity and creativecommons.org/licenses/by/ bioavailability of the molecules when compared to aglycone [5]. Quercetin can also be 4.0/). Antioxidants 2021, 10, 909. https://doi.org/10.3390/antiox10060909 https://www.mdpi.com/journal/antioxidants Antioxidants 2021, 10, x FOR PEER REVIEW 2 of 16 Antioxidants 2021, 10, 909 presence of different groups attached to quercetin changes the biochemical2 of 16 activity and bioavailability of the molecules when compared to aglycone [5]. Quercetin can also be found as dihydroquercetin (taxifolin) in nature, the reduced form of quercetin, which has found as dihydroquercetintwo stereocenters (taxifolin) on the C in ring, nature, as theopposed reduced to form quercetin, of quercetin, which which has none has (Table 1) [6]. two stereocenters on the C ring, as opposed to quercetin, which has none (Table1)[6]. Table 1. Main derivatives and metabolites of quercetin. Table 1. Main derivatives and metabolites of quercetin. Radicals Radicals QuercetinQuercetin Derivatives Derivatives R1R1 R2R2 R3R3 R4R4 R5 R6R5 R7R6 R8 R7 R8 AglyconeAglycone QuercetinQuercetin OHOH HH OHOH OHOH HOH OHH H OH H 1 ReducedReduced aglycone aglycone Dihydroquercetin Dihydroquercetin (taxifolin) (taxifolin) (OH)(OH)1 HH OHOH OHOH HOH OHH H OH H QuercetinQuercetin 3-O-rhamnoside 3-O-rhamnoside (quercitrin) O-Rham2 H OH OH OH H OH H O-Rham2 H OH OH OH H OH H Quercetin 7-O-rhamnoside(quercitrin) (Vincetoxicoside B) OH H OH OH OH H O-Rham H Glycosides QuercetinQuercetin 3-O-rhamnoglucoside 7-O-rhamnoside (rutin) O-RG3 H OH OH OH H OH H OH H OH OH OH H O-Rham H Quercetin 3-O-glucoside(Vincetoxicoside (isoquercetin) B) O-Gls4 H OH OH OH H OH H QuercetinQuercetin 3-O-galactoside 3-O- (hyperoside)rhamnoglu- O-Gal5 H OH OH OH H OH H Glycosides O-RG3 H OH OH OH H OH H Quercetin 30-methylethercoside (isorhamnetin)(rutin) OH H OH O-Met6 OH H OH H Quercetin0 3-O-glucoside Ethers Quercetin 4 -methylether (tamarixetin)O OH-Gls4 HH O-MetOH OH OH HOH OHH H OH H Quercetin 7-methylether(isoquercetin) (rhamnetin) OH H OH OH OH H O-Met H Quercetin 3-O-galactoside 8-prenylquercetinO OH-Gal5 HH OHOH OH OH HOH OH H Pren7 OH H Prenylated (hyperoside) 6,50-di-C-prenylquercetin OH H OH Pren OH Pren OH H Quercetin0 03′-methylether -8 - - 6 - Quercetin 3,7,3 ,4 -tetrasulfate OSOOH3 HH OSO3 OHOSO 3 O-OHMet HOH OSO3 H H OH H (isorhamnetin) Quercetin 3-O-sulfate OSO - H OH OH OH H OH H Quercetin 4′-methylether 3 Ethers Quercetin 30-O-sulfate OHOH HH OHO-Met OSO - OH HOH OHH H OH H Sulfated (tamarixetin) 3 Quercetin 40-O-sulfate OH H OSO - OH OH H OH H Quercetin 7-methylether 3 OH H OH OH OH - H O-Met H Quercetin(rhamnetin) 7-O-sulfate OH H OH OH OH H OSO3 H 9 Quercetin8-prenylquerce 3-O-glucuronidetin O-GlcOH HH OHOH OHOH HOH OHH H OH Pren7 Prenylated 0 Quercetin6,5′-di 3-C-O-glucuronide-prenylquercetin OHOH HH OHOH O-Glc Pren OH HOH OHPren H OH H 0 Glucuronides QuercetinQuercetin 4 -O-glucuronide 3,7,3′,4′-tetrasul- OH H O-Glc OH OH H OH H OSO3-8 H OSO3- OSO3- OH H OSO3- H Quercetin 7-O-glucuronidefate OH H OH OH OH H O-Glc H QuercetinQuercetin diglucuronide 3-O-sulfate O-GlcOSO3- HH OHOH OHOH HOH O-GlcH H OH H 1 Sulfated 2 3 4 5 6 7 () indicates stereocenter; Rham:Quercetin rhamnose; 3′-ORG:-sulfate rhamnosylglucose; OHGls: glucose;H Gal: galactoside;OH OSOMet: methyl;3- OHPren: 3-methyl-2-H OH H buten-1-il; 8 OSO3-: sulfate; 9 Glc: glucuronide acid. Quercetin 4′-O-sulfate OH H OSO3- OH OH H OH H - QuercetinQuercetin 7-O-sulfate glycosides areOH derivatives H of theOH flavonoid whereOH oneOH or more hydroxylH OSO3 H 9 Quercetingroups have3-O-glucuronide been replaced byO- differentGlc typesH of sugars,OH suchOH as glucose, OH rhamnose, H or ruti-OH H Quercetinnose. The 3′-O main-glucuronide glycosylated formsOH of quercetinH areOH O-glucosides, O-Glc which OH are formedH from an OH H Glucuronides QuercetinO-glycosidic 4′-O-glucuronide bond between theOH hydroxyl groupH inO position-Glc 3 ofOH quercetin (TableOH 1) andH the dif-OH H Quercetinferent carbohydrates. 7-O-glucuronide The presenceOH of theH carbohydrate OH increasesOH the solubilityOH of quercetin.H O-Glc H QuercetinMore than diglucuronide 20 quercetin glycosidesO-Glc haveH been described;OH amongOH theOH most commonH areO-Glc H 1 () indicates stereocenter;quercetin 2 3-O-glucosideRham: rhamnose; present 3 RG: in peasrhamnosylglucose; or sage, and quercetin 4 Gls: glucose; 3-O-rhamnoglycoside 5 Gal: galactoside; (rutin) 6 Met: methyl; 7 Pren: 3-methyl-2-butenin cherries,-1-il; 8 spinach,OSO3-: sulfate; or grapes 9 Glc: [7 ].glucuronide acid. Quercetin ethers are formed between a hydroxyl group on aglycone and an alcohol group on anotherQuercetin molecule. glycosides These derivatives are derivatives are very of abundant, the flavonoid and contain where sugarsone or more hydroxyl groups have been replaced by different types of sugars, such as glucose, rhamnose, or rutinose. The main glycosylated forms of quercetin are O-glucosides, which are formed Antioxidants 2021, 10, 909 3 of 16 present in great abundance in nature as substituents. Among the most common quercetin monoethers are isorhamnetin (3’-methyl ether) or tamarixetin (4’-methyl ether), present in onions and honey [8,9]. Prenylated quercetin derivatives are less common than the glycosylated and ether derivates in natural sources. Structurally, in C-prenylflavonols, the prenyl groups are attached to the carbon atom of the flavonol backbone [10]. The addition of a prenyl group increases the hydrophobicity of aglycone and enhances the biological function of quercetin [11].
Recommended publications
  • The Metabolites of the Dietary Flavonoid Quercetin Possess Potent Antithrombotic Activity, and Interact with Aspirin to Enhance Antiplatelet Effects
    The metabolites of the dietary flavonoid quercetin possess potent antithrombotic activity, and interact with aspirin to enhance antiplatelet effects Article Published Version Creative Commons: Attribution 4.0 (CC-BY) Open Access Stainer, A. R., Sasikumar, P., Bye, A. P., Unsworth, A. P., Holbrook, L. M., Tindall, M., Lovegrove, J. A. and Gibbins, J. M. (2019) The metabolites of the dietary flavonoid quercetin possess potent antithrombotic activity, and interact with aspirin to enhance antiplatelet effects. TH Open, 3 (3). e244- e258. ISSN 2512-9465 doi: https://doi.org/10.1055/s-0039- 1694028 Available at http://centaur.reading.ac.uk/85495/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1055/s-0039-1694028 Publisher: Thieme All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Published online: 30.07.2019 THIEME e244 Original Article The Metabolites of the Dietary Flavonoid Quercetin Possess Potent Antithrombotic Activity, and Interact with Aspirin to Enhance Antiplatelet Effects Alexander R. Stainer1 Parvathy Sasikumar1,2 Alexander P. Bye1 Amanda J. Unsworth1,3 Lisa M. Holbrook1,4 Marcus Tindall5 Julie A. Lovegrove6 Jonathan M. Gibbins1 1 Institute for Cardiovascular and Metabolic Research, School of Address for correspondence Jonathan M.
    [Show full text]
  • February 2019 (.Pdf)
    inform February 2019 February Volume 30 (2) Volume inform International News on Fats, Oils, and Related Materials “Clean” COSMETICS ALSO INSIDE: Navigating TSCA Detecting oats Specialty fats in China We team up with the most demanding Oils & Fats processors in the world COMPLETE PREPARATION PLANTS Innovative proprietary Technologies based on the experience of • 220+ Preparation Plants • 3,000+ Rosedowns Presses COMPLETE EXTRACTION PLANTS Reliable and unmatched Technologies based on the experience of • 900+ Extractors • 900+ Desolventiser Toasters (Dryer Coolers) • 700+ Distillations & Solvent Recovery Sections COMPLETE REFINING PLANTS State-of-the-Art refining Technologies based on the experience of • 700+ Oil pretreatment Processes • 900+ Bleaching Processes • 1,400 + Deodorizing Processes COMPLETE FAT MODIFICATION PLANTS High performance Technologies based on the experience of : • 100+ Full Hydrogenation Processes • 80+ Interesterification Processes Desmet Ballestra designed and • 400+ Fractionation Processes delivered the largest extraction plant in the world, operating at 20,000 TPD with unmatched effi ciency. Science behind Technology US-Process-2017.indd 1 3/7/17 9:37 AM We team up with the most SOLUTIONS FOR CHEMICAL PROCESSING EXCELLENCE demanding Oils & Fats processors Lab, Pilot & Large Scale Production Capabilities in the world Science and industry have looked to Pope Scientifi c for over 50 years to fulfi ll demanding separation, COMPLETE PREPARATION PLANTS purifi cation and mixing applications. In addition to complete turnkey
    [Show full text]
  • Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
    Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility.
    [Show full text]
  • Mechanisms of Toxic Action of the Flavonoid Quercetin and Its Phase II Metabolites
    Mechanisms of toxic action of the flavonoid quercetin and its phase II metabolites Hester van der Woude Promotor: Prof. Dr. Ir. I.M.C.M. Rietjens Hoogleraar in de Toxicologie Wageningen Universiteit Co-promotor: Dr. G.M. Alink Universitair Hoofddocent, Sectie Toxicologie Wageningen Universiteit. Promotiecommissie: Prof. Dr. A. Bast Universiteit Maastricht Dr. Ir. P.C.H. Hollman RIKILT Instituut voor Voedselveiligheid, Wageningen Prof. Dr. Ir. F.J. Kok Wageningen Universiteit Prof. Dr. T. Walle Medical University of South Carolina, Charleston, SC, USA Dit onderzoek is uitgevoerd binnen de onderzoekschool VLAG Mechanisms of toxic action of the flavonoid quercetin and its phase II metabolites Hester van der Woude Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. Dr. M.J. Kropff, in het openbaar te verdedigen op vrijdag 7 april 2006 des namiddags te half twee in de Aula Title Mechanisms of toxic action of the flavonoid quercetin and its phase II metabolites Author Hester van der Woude Thesis Wageningen University, Wageningen, the Netherlands (2006) with abstract, with references, with summary in Dutch. ISBN 90-8504-349-2 Abstract During and after absorption in the intestine, quercetin is extensively metabolised by the phase II biotransformation system. Because the biological activity of flavonoids is dependent on the number and position of free hydroxyl groups, a first objective of this thesis was to investigate the consequences of phase II metabolism of quercetin for its biological activity. For this purpose, a set of analysis methods comprising HPLC-DAD, LC-MS and 1H NMR proved to be a useful tool in the identification of the phase II metabolite pattern of quercetin in various biological systems.
    [Show full text]
  • Function-Structural Study of Anti-LDL-Oxidation Effects of Flavonoid Phytochemicals
    Journal of Medicinal Plants Research Vol. 6(49), pp. 5895-5904, 25 December, 2012 Available online at http://www.academicjournals.org/JMPR DOI: 10.5897/JMPR12.313 ISSN 1996-0875 ©2012 Academic Journals Full Length Research Paper Function-structural study of anti-LDL-oxidation effects of flavonoid phytochemicals Yiwen Yao 1#, Shuqing Liu 2#, Chunmei Guo 3, Chunyan Zhang 3, Dachang Wu 3, Yixin Ren 2, Hong-Shan Yu 4, Ming-Zhong Sun 3 and Hailong Chen 5* 1Department of Otolaryngology, the First affiliated Hospital of Dalian Medical University, Dalian 116011, China. 2Department of Biochemistry, Dalian Medical University, Dalian 116044, China. 3Department of Biotechnology, Dalian Medical University, Dalian 116044, China. 4School of Bioengineering, Dalian Polytechnic University, Dalian 116034, China. 5Department of Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian 116011, China Accepted 9 March, 2012 As a large group of polyphenolic phytochemicals with excellent anti-oxidation properties, the dietary flavonoid intakes have been shown to be negatively correlated with the incidence of coronary artery disease. Flavonoid compounds potentially inhibit the oxidation of low-density lipoprotein (Ox-LDL) that triggers the generation of a series of oxidation byproducts playing important roles in atherosclerosis development. The diverse inhibitory effects of different flavonoid phytochemicals on Ox-LDL might be closely associated with their intrinsic structures. In current work, we investigated the effects of eight flavonoid phytochemicals in high purity (>95%) with similar core structure on the susceptibility of LDL to Cu 2+ -induced oxidative modification. The results indicated that quercetin, rutin, isoquercitrin, hesperetin, naringenin, hesperidin, naringin and icariin could reduce the Cu 2+ -induced-LDL oxidation by 59.56 ±±±7.03, 46.53 ±±±2.09, 40.52 ±±±4.65, 22.67 ±±±1.68, 20.87 ±±±2.43, 12.34 ±±±2.09, 10.87 ±±±1.68 and 3.53 ±±±3.20%, respectively.
    [Show full text]
  • Shilin Yang Doctor of Philosophy
    PHYTOCHEMICAL STUDIES OF ARTEMISIA ANNUA L. THESIS Presented by SHILIN YANG For the Degree of DOCTOR OF PHILOSOPHY of the UNIVERSITY OF LONDON DEPARTMENT OF PHARMACOGNOSY THE SCHOOL OF PHARMACY THE UNIVERSITY OF LONDON BRUNSWICK SQUARE, LONDON WC1N 1AX ProQuest Number: U063742 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest U063742 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ACKNOWLEDGEMENT I wish to express my sincere gratitude to Professor J.D. Phillipson and Dr. M.J.O’Neill for their supervision throughout the course of studies. I would especially like to thank Dr. M.F.Roberts for her great help. I like to thank Dr. K.C.S.C.Liu and B.C.Homeyer for their great help. My sincere thanks to Mrs.J.B.Hallsworth for her help. I am very grateful to the staff of the MS Spectroscopy Unit and NMR Unit of the School of Pharmacy, and the staff of the NMR Unit, King’s College, University of London, for running the MS and NMR spectra.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0243709 A1 Hanson Et Al
    US 201302437.09A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0243709 A1 Hanson et al. (43) Pub. Date: Sep. 19, 2013 (54) NATURAL SUNSCREEN COMPOSITION Publication Classification (71) Applicants: James E. Hanson, Chester, NJ (US); (51) Int. Cl. Cosimo Antonacci, East Hanover, NJ A6R8/97 (2006.01) (US) A61O 1704 (2006.01) (52) U.S. Cl. (72) Inventors: James E. Hanson, Chester, NJ (US); CPC. A61K 8/97 (2013.01); A61O 1704 (2013.01) Cosimo Antonacci, East Hanover, NJ USPC ............................................... 424/60; 424/59 (US) (57) ABSTRACT A composition for Sunscreen or Sunscreen enhancer is dis (21) Appl. No.: 13/795,305 closed. The composition includes UV-blocking component comprising natural extracts, natural oils or nutrients or a (22) Filed: Mar 12, 2013 combination of these. The composition is capable of protect ing skin from the harmful effects of UV-light and it is capable Related U.S. Application Data of acting as an enhancer of Sunscreen actives, such as Zinc (60) Provisional application No. 61/685, 166, filed on Mar. oxide, titanium dioxide or other Sunscreen actives, such as 13, 2012, provisional application No. 61/685,460, Avobenzone, Dioxybenzone, Ecamsule, Meradimate, Oxy filed on Mar. 19, 2012, provisional application No. benZone, Sulisobenzone, Cinoxate, Ensulizole, Homosalate, 61/690,257, filed on Jun. 23, 2012, provisional appli Octinoxate, Octisalate, Octocrylene PABA, Padimate O or cation No. 61/690,280, filed on Jun. 23, 2012. Trolamine Salicylate. US 2013/0243709 A1 Sep. 19, 2013 NATURAL SUNSCREEN COMPOSITION 0006 To overcome these undesirable side effects of organic and inorganic sunscreen agents, there is a need for PRIORITY new formulations that can protect the skin from the harmful effects of ultraviolet radiation without any undesirable side 0001) This application claims priority of U.S.
    [Show full text]
  • Estimation of Quercetin in Acacia Catechu Ethanolic Bark Extract by HPLC Method
    International Journal of PharmTech Research CODEN (USA): IJPRIF ISSN : 0974-4304 Vol.4, No.1, pp 501-505, Jan-Mar 2012 Estimation of Quercetin in Acacia catechu Ethanolic Bark Extract by HPLC method Anitha Roy1, Lakshmi. T.*1, Geetha R.V.2 1Faculty of Pharmacology, Saveetha Dental College, Chennai,India. 2Faculty of Microbiology, Saveetha Dental College, Chennai,India. *Corres. author: [email protected] Abstract: High-performance liquid chromatography (HPLC) is a powerful analytical technique because of its reliability, simplicity, reproducibility, and speed. The aim of this work was to develop an accurate, specific, repeatable and robust method for the estimation of Quercetin content in Acacia catechu ethanolic bark extract. The method was validated in compliance with International Conference on Harmonization guidelines. The data obtained from our study conclude that the amount of Quercetin present in Acacia catechu ethanolic bark extract is 0.070 % w/w. Keywords: Acacia catechu Bark, Quercetin, HPLC, ICH guidelines. INTRODUCTION Quercetin is a plant pigment found in many foods such white and heart wood is small and red in colour. The as onions, apples, berries, tea, grapes and red wine. It's leaves, bark and heartwood have many nutritional and not a nutrient, but is classified as a flavonoid. Like many medicinal uses. [3,4] other plant chemicals, it is sold as a supplement. Oral The chief constituents of the plant are catechin and quercetin is relatively well absorbed, and it is [5] [5] catechutannic acid. The wood contains epicatechin , metabolized mainly to isorhamnetin, tamarixetin and [1] Atzelchin, catechin tetramer, dicatechin, gallochin, kaempferol. It often occurs in plants as glycosides, [ 6,7,8] gossypetin, phlobatannin, kaempferol, quercetin .
    [Show full text]
  • Evaluation of Phytochemical and Anti-Oxidant Activity in Different Mulberry Varieties
    Asian Journal of Chemistry; Vol. 25, No. 14 (2013), 8010-8014 http://dx.doi.org/10.14233/ajchem.2013.14938 Evaluation of Phytochemical and Anti-oxidant Activity in Different Mulberry Varieties 1 2 1,* SEEMA CHAUHAN , SUBASH CHANDRA VERMA and R. VENKATESH KUMAR 1Department of Applied Animal Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow-226 025, India 2The Central Council for Research in Ayurvedic Sciences, (Department of Ayush, MOH & FW), 61-65, Institutional Area, Opposite D-Block, Janakpuri, New Delhi-110 058, India *Corresponding author: E-mail: [email protected] (Received: 8 December 2012; Accepted: 29 July 2013) AJC-13861 The aims of present study were to screen phytochemical constituents and evaluate in vitro anti-oxidant activity of leaves of different varieties of mulberry plant [Family Moraceae]. The methanolic extract of leaves of different mulberry varieties namely S-13, S-54, BR-2, S-36 and S-1 which belongs to Morus alba and Morus indica were subjected for the phytochemical screening. The results obtained from the HPLC analysis, revealed that the methanolic extracts of mulberry leaves samples of S-36 and S-1 varieties contain more amount of phenolics and flavonoids. The in vitro FRAP assay clearly indicate that S-1 mulberry leaf extract have maximum significant FRAP concentration at 800 µL/mL and 1000 µL/mL (0.408 ± 0.001 mmol FeSO4/100 g dried sample and 0.410 ± 0.001 mmol FeSO4/100 g dried sample, respectively) a significant source of natural anti-oxidant, which might be helpful in preventing the progress of various oxidative stresses.
    [Show full text]
  • Fluorescence Spectroscopic Evaluation of the Interactions of Quercetin, Isorhamnetin, and Quercetin-3'-Sulfate with Different Albumins
    Author’s Accepted Manuscript Fluorescence spectroscopic evaluation of the interactions of quercetin, isorhamnetin, and quercetin-3'-sulfate with different albumins Miklós Poór, Gabriella Boda, Sándor Kunsági- Máté, Paul W. Needs, Paul A. Kroon, Beáta Lemli www.elsevier.com/locate/jlumin PII: S0022-2313(17)30968-7 DOI: https://doi.org/10.1016/j.jlumin.2017.10.024 Reference: LUMIN15091 To appear in: Journal of Luminescence Received date: 3 June 2017 Revised date: 2 October 2017 Accepted date: 10 October 2017 Cite this article as: Miklós Poór, Gabriella Boda, Sándor Kunsági-Máté, Paul W. Needs, Paul A. Kroon and Beáta Lemli, Fluorescence spectroscopic evaluation of the interactions of quercetin, isorhamnetin, and quercetin-3'-sulfate with different albumins, Journal of Luminescence, https://doi.org/10.1016/j.jlumin.2017.10.024 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Fluorescence spectroscopic evaluation of the interactions of quercetin, isorhamnetin, and quercetin-3'-sulfate with different albumins Miklós Poór,1,* Gabriella Boda,1 Sándor Kunsági-Máté,2,3 Paul W. Needs,4 Paul A. Kroon,4 Beáta Lemli 2,3 1Department
    [Show full text]
  • Thopen Quercetin Paper Preprint.Pdf
    Stainer, Alexander and Sasikumar, Parvathy and Bye, Alexander and Unsworth, Amanda and Holbrook, Lisa and Tindall, Mike and Lovegrove, Julie and Gibbins, Jonathan (2019) The Metabolites of the Dietary Flavonoid Quercetin Possess Potent Antithrombotic Activity, and Interact with Aspirin to Enhance Antiplatelet Effects. Thrombosis and Haemostasis Open, 03 (03). e244-e258. Downloaded from: https://e-space.mmu.ac.uk/623580/ Publisher: Thieme DOI: https://doi.org/10.1055/s-0039-1694028 Usage rights: Creative Commons: Attribution 4.0 Please cite the published version https://e-space.mmu.ac.uk The metabolites of the dietary flavonoid quercetin possess potent anti- thrombotic activity, and interact with aspirin to enhance anti-platelet effects Alexander R. Stainer1, Parvathy Sasikumar2, Alexander P. Bye1, Amanda J. Unsworth1,3, Lisa M. Holbrook1,4, Marcus Tindall5, Julie A. Lovegrove6, Jonathan M. Gibbins1* 1Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, UK 2 Centre for Haematology, Imperial College London, London, UK 3 School of Healthcare Science, Manchester Metropolitan University, Manchester, UK 4 School of Cardiovascular Medicine and Sciences, King’s College London, London, UK 5 Department of Mathematics and Statistics, University of Reading, Reading, UK 6 Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, University of Reading, Reading, UK * Corresponding author Professor Jonathan M. Gibbins, PhD, Professor of Cell Biology, Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, Harborne Building, University of Reading, Whiteknights, Reading, RG6 6AS, UK, [email protected], Tel +44 (0)118 3787082, Fax +44 (0)118 9310180 ABSTRACT Quercetin, a dietary flavonoid, has been reported to possess anti-platelet activity.
    [Show full text]
  • Engen Colostate 0053N 12223.Pdf (1.554Mb)
    THESIS COMPARISON OF DOSE-DEPENDENT OUTCOMES IN INDUCTION OF CYTOGENOTOXIC RESPONSES BY NOVEL GLUCOSYL FLAVONOIDS Submitted by Anya Engen Department of Environmental and Radiological Health Sciences In partial fulfillment of the requirements For the degree of Master of Science Colorado State University Fort Collins, Colorado Spring 2014 Master’s Committee: Advisor: Takamitsu Kato Co-advisor: William Hanneman Marie Legare Gerrit Bouma Copyright by Anya Engen 2014 All Rights Reserved ABSTRACT COMPARISON OF DOSE-DEPENDENT OUTCOMES IN INDUCTION OF CYTOGENOTOXIC RESPONSES BY NOVEL GLUCOSYL FLAVONOIDS The flavonoids quercetin, and its glucosides isoquercetin and rutin, are phytochemicals commonly consumed in plant-derived foods. They are associated with potential health- promoting effects such as anti-inflammation, anti-viral, anti-carcinogenesis, neuro- and cardio- protection, etc. Semi-synthetic water soluble quercetin glucosides, maltooligosyl isoquercetin (MI), monoglucosyl rutin (MO) and maltooligosyl rutin (MA) were developed to overcome solubility challenges for improved incorporation in food and medicinal applications. Quercetin and its glucosides are known to induce genetic instability and decrease cell proliferation, which are possible mechanisms of anti-carcinogenesis in in vitro and animal studies. Using an in vitro system of Chinese hamster ovary (CHO) cells, this thesis project examined the differences in cytogenotoxic responses induced by natural and novel flavonoids. Treatments with flavonoids at a concentration range of 0.1 and 1,000 ppm induced sister chromatid exchanges (SCE) and micronuclei (MN) in CHO cells. Compared to spontaneous occurrences, significant increases in SCE and MN were observed in both natural and synthetic flavonoid-treated cells in a dose- dependent manner. The natural flavonoids exhibited greater potency than the synthetic compounds, where quercetin was most potent.
    [Show full text]